Table 5.
Method | Parameters Tuned |
Parameters Selected |
10-Fold CV Accuracy (%) a |
---|---|---|---|
RF | Bootstrap: True/False | False | |
Criterion: Gini, Entropy, | Gini | ||
Maximum depth: 10, 30, 50, 70, 90, 100, None | 90 | ||
Maximum features: Auto, Sqrt | Sqrt | 91.02 | |
Minimum samples leaf: 1, 2, 4 | 1 | ||
Minimum samples split: 2, 5, 10 | 5 | ||
Number of estimators: 50, 100, 200,500 | 200 | ||
kNN | Number of neighbors: 1–31 | 20 | |
Weight options: Uniform, Distance | Distance | 79.20 | |
Algorithms: Auto, Ball tree, kd_tree, brute | Auto | ||
Xgboost | Minimum child weight: 1,5,10 | 1 | |
Gamma: 0, 0.5, 1, 1.5, 2, 5 | 0 | ||
Sum sample: 0.6, 0.8, 1.0 | 0.8 | 91.54 | |
Number of estimators: 50, 100, 200,300 | 100 | ||
Maximum depth: 3, 4, 5 | 5 | ||
RBF-SVC | C: 0.1, 1, 10, 100, 1000 | 1 | 62.30 |
Gamma: 1, 0.1, 0.01, 0.001 | 1 | ||
MLP | Hidden layer sizes:(50,50,50), (50,100,50), (100,) | (100,) | |
Activation: Identity, Logistic, Tanh, Relu | Relu | ||
Solver: SGD, Adam | Adam | 82.97 | |
Alpha: 0.0001, 0.001, 0.01,1 | 0.0001 | ||
Learning rate: Constant, Adaptive, Inverse scaling | Adaptive | ||
DT | Criterion: Gini, EntropyMaximum depth: 10,30,50,70,90,100, NoneMaximum features: Auto, SqrtMinimum samples leaf: 1,2,4Minimum samples split: 2–50 | Entropy100Sqrt113 | 84.33 |
NB | Alpha: 1,0.5,0.1Fit prior: True, False | 0.1True | 69.40 |
a The cross-validation accuracy was estimated only on the sub-training set.