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Simple Summary: High-grade serous ovarian carcinoma (HGSOC) is the most aggressive histologic
type of epithelial ovarian cancer, associated with high recurrence and mortality rates despite standard
treatment. In accordance with the era of precision cancer medicine, we aimed to develop machine
learning models predicting platinum sensitivity in patients with HGSOC. First, we collected patients’
clinicopathologic data from three tertiary hospitals. Second, we elected six variables associated
with platinum sensitivity using the stepwise selection method. Third, based on these variables,
predictive models were constructed using four machine learning algorithms, logistic regression (LR),
random forest, support vector machine, and deep neural network. Evaluation of model performance
with the five-fold cross-validation method identified the LR-based model as the best at identifying
platinum-resistant cases. Lastly, we developed a web-based nomogram by fitting the LR model
results for clinical utility. Based on the prediction results, physicians may implement individualized
treatment and surveillance plans for each HGSOC patient.

Abstract: To support the implementation of individualized disease management, we aimed to
develop machine learning models predicting platinum sensitivity in patients with high-grade serous
ovarian carcinoma (HGSOC). We reviewed the medical records of 1002 eligible patients. Patients’
clinicopathologic characteristics, surgical findings, details of chemotherapy, treatment response, and
survival outcomes were collected. Using the stepwise selection method, based on the area under
the receiver operating characteristic curve (AUC) values, six variables associated with platinum
sensitivity were selected: age, initial serum CA-125 levels, neoadjuvant chemotherapy, pelvic lymph
node status, involvement of pelvic tissue other than the uterus and tubes, and involvement of the
small bowel and mesentery. Based on these variables, predictive models were constructed using
four machine learning algorithms, logistic regression (LR), random forest, support vector machine,
and deep neural network; the model performance was evaluated with the five-fold cross-validation
method. The LR-based model performed best at identifying platinum-resistant cases with an AUC
of 0.741. Adding the FIGO stage and residual tumor size after debulking surgery did not improve
model performance. Based on the six-variable LR model, we also developed a web-based nomogram.
The presented models may be useful in clinical practice and research.
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1. Introduction

Ovarian cancer accounted for approximately 313,959 new cases and 207,252 deaths in
2020, ranking eighth in both incidence and mortality among female cancers, globally [1].
Ovarian cancer epidemiology shows regional differences according to the level of develop-
ment [2]. In the United States, ovarian cancer accounts for 4.9% of female cancer-related
deaths, ranking the disease as the fifth most deadly female cancer [3]. In Korea, ovarian
cancer incidence is rapidly increasing, likely due to population aging and the uptake of
sedentary lifestyles [4]. In the absence of cancer-specific symptoms and effective screening
tools, epithelial ovarian cancer tends to be diagnosed at an advanced stage, leading to high
recurrence and mortality rates despite treatment [5].

Approximately 90% of ovarian cancers are epithelial; high-grade serous ovarian
carcinoma (HGSOC) is the most common and aggressive histologic ovarian cancer type [6].
Presently, the primary treatment for HGSOC is cytoreductive surgery followed by platinum-
based combination chemotherapy [7-9]. Nevertheless, most HGSOC patients undergoing
primary treatment are at high risk of recurrence due to chemoresistance [10]. In general,
patients are divided into two groups according to the duration of a platinum-free interval
(PFI), which is the time interval from the completion of platinum-based chemotherapy
to disease progression [11]. Patients with PFI of <6 months are considered “platinum-
resistant”, have poor prognosis with a median survival of <12 months, and a response rate
of <15% to subsequent chemotherapy [12].

In the era of precision cancer medicine, predicting platinum sensitivity with high
accuracy remains a challenge. A patient likely to be platinum-resistant might undergo
more aggressive treatment in addition to the standard primary treatment. For example,
angiogenesis inhibitors or poly(ADP-ribose) polymerase (PARP) inhibitors may be added
as maintenance therapy after the completion of chemotherapy [13-15]. Conventional
intraperitoneal chemotherapy or hyperthermic intraperitoneal chemotherapy may be
considered in this group [16]. In addition, patients may undergo intensive recurrence
surveillance with an adjusted checkup schedule, including measuring serum CA-125 or
undergoing imaging studies more frequently. However, among previously developed
prognostic prediction models or nomograms for the primary treatment of ovarian cancer,
only a few can predict platinum sensitivity [17], as most previous studies have focused on
the prediction of progression-free (PFS) [18] or overall survival (OS) [19,20], or both [21,22].

In addition, few studies have developed prognostic prediction models based on a
specific histologic type of epithelial ovarian cancer; most of the previous studies included
HGSOC alongside other histologic types in the same study population. Previously, our re-
search team developed a nomogram predicting platinum sensitivity using clinicopathologic
data of 710 patients with epithelial ovarian cancer, including 389 (54.8%) with HGSOC [22].
In that study, the model showed a performance identifying platinum-resistant cases with
the area under the receiver operating characteristic (ROC) curve (AUC) of 0.758. How-
ever, applying this model to an extended cohort, we observed a significant drop in the
predictive performance. Considering that most multi-omics studies on ovarian cancer have
been conducted in HGSOC, it is necessary to focus on the HGSOC and develop models
predicting platinum sensitivity in this patient group. Moreover, if we apply the machine
learning method, a data analytics technique emerging in the biomedical research field, we
think it will be possible to develop models with higher predictive capabilities.

Thus, we aimed to develop machine learning models predicting platinum sensitivity
in patients with HGSOC to support the implementation of individualized treatment and
surveillance in this population. Patients’ clinicopathologic data were collected from three
tertiary hospitals, and various machine learning algorithms were used.
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2. Materials and Methods
2.1. Study Population and Data Collection

From the Ovarian Cancer Cohort Database of each institution, we identified patients
who met the following inclusion criteria: (1) aged > 19 years; (2) pathologically confirmed
HGSOCs; (3) diagnosed between January 2000 and June 2019; and (4) underwent primary
treatment, either primary debulking surgery (PDS) followed by platinum-based postop-
erative adjuvant chemotherapy or platinum-based neoadjuvant chemotherapy (NAC)
followed by interval debulking surgery and postoperative adjuvant chemotherapy. Mean-
while, patients were excluded if they met any of the following criteria: (1) were immuno-
compromised or pregnant; (2) did not receive platinum-based combination chemotherapy;
(3) had synchronous double primary cancers; and (4) were lost to follow-up before reaching
six months of PFI without evidence of disease recurrence, precluding the determination
of platinum sensitivity. In addition, patients who received front-line chemotherapy con-
taining bevacizumab or PARP inhibitor maintenance therapy were also excluded for fair
comparisons of platinum sensitivity.

We extracted clinicopathologic data from patients’ medical records and pathologic
reports. Detailed information on the type of collected variables was the same as our
previous study [22] except for differential blood cell counts at initial diagnosis, which were
not collected in this study.

The three institutions are conducting NAC on a similar basis. In general, we apply
NAC when the patients meet one of the following conditions: (1) high tumor burden
on initial imaging studies with multiple and unresectable extra-abdominal metastases,
multiple liver parenchymal metastases or pulmonary metastases, and extensive small
bowel/mesenteric root involvement; (2) poor performance status and high operative risk
with severe comorbidities; or (3) if suboptimal primary cytoreduction is expected (residual
disease measuring >1 cm).

At all participating institutions, patients underwent surveillance, consisting of com-
puted tomography (CT) scans and serum CA-125 level measurements every three cycles
of chemotherapy, and every three months for the first year after the completion of pri-
mary treatment, and every six months for three years thereafter. Disease progression or
recurrence was ascertained based on CT scans, using the Response Evaluation Criteria in
Solid Tumors (RECIST) version 1.1 in patients with measurable disease [23] or based on
the serum CA-125 levels, using Gynecologic Cancer InterGroup criteria in patients with
unmeasurable disease [24].

For the present study, patients who experienced disease recurrence with PFI of
<6 months were assigned to the platinum-resistant group, while those with PFI >6 months,
regardless of disease recurrence status, were assigned to the platinum-sensitive group.
In addition to platinum sensitivity, which was the primary endpoint of this study, we
collected patients’ survival data. PFS was defined as the time interval between the start
date of primary treatment and the date of disease progression, while OS was defined as the
time interval between the date of initial diagnosis and the date of cancer-related death or
the end of the study period.

2.2. Exploratory Data Analysis

Among the variables collected by the participating institutions, 42 were considered
independent variables and underwent exploratory analysis (Table S1). Specifically, we iden-
tified the distribution of each continuous variable and created a contingency table for each
categorical variable. Variables with skewed distributions (e.g., serum CA-125 levels) were
In-transformed to correct the skewness. To identify candidate markers related to platinum
sensitivity, we performed univariate analysis. The Wilcoxon rank-sum test, chi-square test,
and log-rank test were used for continuous, binary, and time-to-event variables, respec-
tively. For variables with more than three categories, we performed a likelihood ratio test
by comparing the deviance of the full model (FM: logit(p(Resistant)) = g + 1 Variable)
with that of the reduced model (RM: logit(p(Resistant)) = f3).
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2.3. Variable Selection

To construct a model that predicts platinum sensitivity, we used stepwise selection
based on the AUC values. This AUC-based stepwise variable selection method was
also used in our previously published studies [22,25]. The leave-one-out cross-validation
(LOOCYV) method was used to calculate the AUC value for the validation set (AUC oocv)-
The detailed process of the model selection was as follows:

(1) Specify the initial model My with no predictors. Set t = 0 and set AUCLpoocy = 0.5.

(2) Forward step: Let t =t + 1. For each predictor X that is not included in M;_1,
perform steps (2-1) to (2-4) and select the model Mg with the highest AUC; pocy. If
Mg > M;_1, update the model M; to be Mg. Otherwise, My = M,_1, stop the algorithm
and report M; as the final model.

(2-1) Fit the model {M;_1, X} using n-1 training samples.

(2-2) Calculate the predicted probability of a validation sample by applying the fitted
model to the validation sample.

(2-3) Iterate step (2-1) and (2-2) until the predicted probabilities for all validation
samples are calculated.

(2-4) Calculate AUC using n predicted probabilities and true labels (i.e., AUC gocv).

(3) Backward step: Let t = t + 1. For each predictor X that is included in M;_, perform
step (3-1) to (3-4) and select the model Mg with the highest AUC; pocy. If Mp > M;_1,
update the model M; to be Mg. Otherwise, My = M,_; and proceed to step (2).

(3-1) Fit the model {M;_1, —X} using n-1 training samples.

(3-2) Calculate the predicted probability of a validation sample by applying the fitted
model to the validation sample.

(3-3) Iterate step (3-1) and (3-2) until the predicted probabilities for all validation
samples are calculated.

(3-4) Calculate AUC using n predicted probabilities and true labels (i.e., AUCt oocv)-

2.4. Model Development and Validation

We developed predictive models with selected variables and evaluated the perfor-
mance of these models. Four machine learning algorithms were used: logistic regression
(LR), random forest (RF) [26], support vector machine (SVM) [27], and deep neural network
(DNN) [28]. A list of machine-learning methods is presented in Table S2. We compared
the performance metrics among the models using the five-fold cross-validation method.
Splitting the whole dataset for five-fold cross-validation, we considered the proportions
of platinum-resistant cases and institutions to reduce the heterogeneity. As the metrics of
interest, we used AUC, sensitivity, specificity, and balanced accuracy estimates. To present
sensitivity and specificity, we chose a threshold value with the maximum balanced accuracy.
For RE, SVM, and DNN, we tuned hyperparameters to get the optimal hyperparameter
combination with the highest mean of validation AUC values.

2.5. Statistical Analysis

Differences in the clinicopathologic characteristics were evaluated between the platinum-
sensitive and resistant groups. We used the Kaplan-Meier methods with log-rank test
for survival analysis. Survival analyses were performed using IBM SPSS Statistics soft-
ware (version 25.0; SPSS Inc., Chicago, IL, USA), while all other statistical analyses were
performed using R statistical software version 3.6.1 (R Foundation for Statistical Com-
puting, Vienna, Austria; http://www.R-project.org, accessed on 1 December 2020). A
p value < 0.05 was considered statistically significant.

3. Results
3.1. Characteristics of the Study Population

The overall study design is presented in Figure 1. In total, 1002 patients were included
in this study: 568 (56.7%), 246 (24.6%), and 188 (18.8%) from the Seoul National University
Hospital, Asan Medical Center, and Severance Hospital, respectively. Among the study
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population, 388 (38.7%) were also part of the study population assessed in our previous
study [22]. In terms of primary treatment, 764 (76.2%) patients underwent PDS, while 238
(23.8%) patients received NAC followed by interval debulking surgery. Among the study
population, 223 (22.3%) and 779 (77.7%) patients were assigned to the platinum-resistant
and -sensitive groups, respectively. The distribution of the platinum-sensitive and -resistant
patients was similar among the participating institutions (p = 0.164; Figure S1).

HGSOC
(n = 1002)

Exploratory Data Analysis

sammy  Model development & Validation

Leave—one—out < Machine learning model via 5—fold CV>
cross validation (CV)

Variable selection

Train set (1) Logistic regression (2) Random Forest

08|

06|
=04

AUC—based stepwise selection

Selected variables

Figure 1. Overall workflow of statistical analysis.

During the median observation period of 41.5 (range, 4.0 to 224.0) months, 734 (73.3%)
and 305 (30.4%) patients experienced disease recurrence and died, respectively. The
median PFS and OS estimates for all patients were 19.2 and 119.8 months, respectively
(Figure 2A,B). Compared to the platinum-sensitive group, the platinum-resistant group
showed significantly worse PFS (median, 9.2 vs. 25.1 months; p < 0.001) and OS (median,
30.6 vs. 144.8; p < 0.001) (Figure 2C,D).

Patients” clinicopathologic characteristics are presented in Table 1. The platinum-
resistant group was significantly older (mean, 58.3 vs. 55.2 years; p < 0.001), and had a
higher proportion of International Federation of Gynecology and Obstetrics (FIGO) stage
III-1V disease (99.1% vs. 87.9%; p < 0.001), and higher serum CA-125 levels (mean In-
transformed value, 7.1 vs. 6.6 IU/mL; p < 0.001) than did the platinum-sensitive group.
The proportion of NAC recipients was higher in the platinum-resistant group (39.5% vs.
19.3%; p < 0.001) than in the platinum-sensitive group. After cytoreductive surgery (PDS
or interval debulking surgery after NAC), complete cytoreduction was less likely to be
achieved in the platinum-resistant group than in the platinum-sensitive group (43.9%
vs. 61.2%; p < 0.001). The frontline chemotherapy regimen was similar in both groups
(p = 0.870); however, the total number of frontline chemotherapy cycles was different
(pr <0.001).

Details of surgical procedures and the associated findings are shown in Table S3.
There was no difference in the rates of lymph node (LN) dissection, large bowel resection,
or upper abdominal surgery between the groups. However, the groups showed signifi-
cant differences in the rates of pelvic LN metastasis (p < 0.001), para-aortic LN metastasis
(p = 0.002), tumor involvement of the small bowel and mesentery (p < 0.001), tumor involve-
ment of the colon other than rectosigmoid (p = 0.038), tumor involvement of the diaphragm
(p < 0.001), liver parenchyma metastasis (p = 0.019), and pleural effusion (p < 0.001).
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Figure 2. Survival outcomes of the study population. (Upper) All patients; (Lower) Comparisons between platinum-resistant

and sensitive groups. (A,C) Progression-free survival; (B,D) Overall survival.

Table 1. Patients’ clinicopathologic characteristics.

Missing Platinum- Platinum-
Characteristics Rate All (n = 1002, %) Sensitive Resistant p
(%) (n =779, %) (n =223, %)
Age, years 0 55.8 £ 10 552 £10 583 £10 <0.001
BMI, kg/m? 3.2 23.6+3 235+3 239+3 0.135
Parity 0.9 0.884
0 97 (9.8) 77 (10.0) 20 (9.1)
1-2 592 (59.6) 458 (59.2) 134 (60.9)
>3 304 (30.6) 238 (30.8) 66 (30.0)
Menopause 0.4 691 (69.2) 513 (66.1) 178 (80.2) <0.001
Comorbidities
Hypertension 22.2 153 (19.6) 107 (18.1) 46 (24.5) 0.069
Diabetes 22.2 53 (6.8) 36 (6.1) 17 (9.0) 0.215
Dyslipidemia 223 35 (4.5) 29 (4.9) 6(3.2) 0.431
Personal history of breast cancer 33 72 (7.4) 59 (7.8) 13 (6.0) 0.453
Familial history of breast cancer * 5.5 51 (5.4) 42 (5.7) 9(4.2) 0.486
No. of family members with cancer
Median (range) 55 0 (0-3) 0 (0-3) 0 (0-2) 0.295
Familial history of gynecologic cancer * 5.5 21(2.2) 18 (2.5) 3(1.4) 0.511
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Table 1. Cont.

Missing Platinum- Platinum-
Characteristics Rate All (n = 1002, %) Sensitive Resistant p
(%) (n =779, %) (n =223, %)
No. of family members with cancer
Median (range) 5.5 0(0-2) 0(0-2) 0 (0-2) 0.702
Origin 0 0.532
Ovary 911 (90.9) 708 (90.9) 203 (91.0)
Tube 51 (5.1) 42 (5.4) 9 (4.0)
Peritoneum 40 (4.0) 29 (3.7) 11 (4.9)
FIGO stage 0 <0.001
I 40 (4.0 40 (5.1) 0
II 56 (5.6) 54 (6.9) 2(0.9)
11 628 (62.7) 496 (63.7) 132 (59.2)
v 278 (27.7) 189 (24.3) 89 (39.9)
Ln (Serum CA-125 [IU/mL]) 43 6.7+2 6.6 +2 7141 <0.001
Hemoglobin (g/dL) 11.9 123+1 12341 122+1 0.192
Primary treatment strategy 0 <0.001
PDS 764 (76.2) 629 (80.7) 135 (60.5)
NAC 238 (23.8) 150 (19.3) 88 (39.5)
Residual tumor size after PDS/IDS 44 <0.001
Complete cytoreduction 549 (57.3) 455 (61.2) 94 (43.9)
Gross residual tumor 409 (42.7) 289 (38.8) 120 (56.1)

Frontline chemotherapy regimen 4.0 0.870
Paclitaxel-Carboplatin 872 (90.6) 676 (90.5) 196 (91.2)
Docetaxel-Carboplatin 90 (9.4) 71 (9.5) 19 (8.8)

Total cycle of frontline chemotherapy 0 <0.001
<6 694 (69.3) 564 (72.4) 130 (58.3)
>6 308 (30.7) 215 (27.6) 93 (41.7)
Recurrence 0 734 (73.3) 511 (65.6) 223 (100.0) <0.001
Treatment-free interval, months 0
Median (range) 12.9 (0.1-153.4) 17.2 (6.1-153.4) 3.4 (0.1-6.0) <0.001

Data are presented as mean =+ standard deviation for continuous variables and as count (%) for categorical variables. Abbreviations: BMI,
body mass index; CA-125, cancer antigen 125; FIGO, International Federation of Gynecology and Obstetrics; IDS, interval debulking
surgery; NAC, neoadjuvant chemotherapy; PDS, primary debulking surgery. * Up to second degree.

3.2. Model Development and Validation

Through the variable selection step, the following six variables were selected: age
(continuous), serum CA-125 levels (In-transformed, continuous), primary treatment strat-
egy (NAC vs. PDS), pelvic LN status (metastasis vs. no metastasis), tumor involvement
of pelvic tissue other than uterus and tube (macroscopic vs. microscopic vs. no involve-
ment), and tumor involvement of the small bowel and mesentery (>2 cm vs. <2 cm vs.
microscopic or no involvement).

Based on these variables, we developed machine learning models predicting plat-
inum sensitivity, using LR, RF, SVM, and DNN methods. Table 2 presents each model’s
performance identifying platinum-resistant cases. The four models” ROC curves, created
from the five-fold cross validation, are shown in Figure 3A. Among them, the LR-based
model showed the best performance identifying platinum-resistant cases with an AUC
of 0.741 (sensitivity, 0.778; specificity, 0.622; balanced accuracy, 0.700 at the cut-off value
of 0.175). We further added one or two of the well-known prognostic factors, FIGO stage
and residual tumor size after debulking surgery, and developed machine learning models.
However, performance of the seven or eight-variable models was similar to those of the
six-variable model (Table 2 and Figure 3B-D).
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Table 2. Performance of developed models identifying platinum-resistant cases.

No. of . Machine . g s Balanced
Variables List Learning AUC Sensitivity Specificity Accuracy Threshold

LR 0.556 1.000 0.111 0.556 0.025

RF 0.500 0 1.000 0.500 0
1 FIGO stage SVM 0.556 1.000 0.167 0.583 0.241
DNN 0.558 1.000 0.122 0.561 0.214
LR 0.586 0.605 0.564 0.584 0.172

. . RF 0.500 0 1.000 0.500 0
1 Residual tumor size after PDS/IDS SVM 0586 0.605 0.564 0584 0.295
DNN 0.587 0.605 0.564 0.584 0.355
LR 0.611 0.605 0.570 0.588 0.203

. . RF 0.500 0 1.000 0.500 0
2 FIGO stage + Residual tumor size after PDS/IDS SVM 0611 0.605 0.570 0.588 0.309
DNN 0.611 0.605 0.570 0.588 0.252
Age + Serum CA125 levels * + NAC + Pelvic LN status LR 0.741 0.778 0.622 0.700 0.175
6 + Involvement of pelvic tissue other than uterus and RE 0.738 0.538 0.887 0.713 0.185
tube + Involvement of small bowel and mesenter SVM 0.733 0.731 0.745 0.738 0.232
y DNN 0.721 0.857 0.556 0.706 0.357
Age + Serum CA125 levels * + NAC + Pelvic LN status LR 0.748 0.920 0.476 0.698 0.141
7 + Involvement of pelvic tissue other than uterus and RF 0.704 0.800 0.524 0.662 0.034
tube + Involvement of small bowel and mesentery + SVM 0.745 0.920 0.457 0.689 0.133
FIGO stage DNN 0.646 0.655 0.625 0.640 0.218
Age + Serum CA125 levels * + NAC + Pelvic LN status LR 0.741 0.793 0.563 0.678 0.144
7 + Involvement of pelvic tissue other than uterus and RF 0.719 0.960 0.385 0.672 0.021
tube + Involvement of small bowel and mesentery + SVM 0.740 0.517 0.883 0.700 0.259
Residual tumor size after PDS/IDS DNN 0.735 0.680 0.654 0.667 0.461
Age + Serum CA125 levels * + NAC + Pelvic LN status LR 0.738 0.769 0.648 0.708 0.211
8 + Involvement of pelvic tissue other than uterus and RF 0.738 0.897 0.519 0.708 0.065
tube + Involvement of small bowel and mesentery + SVM 0.729 0.519 0.883 0.701 0.293
FIGO stage + Residual tumor size after PDS/IDS DNN 0.740 0.852 0.561 0.707 0.088

Abbreviations: AUC, area under the receiver operating characteristic curve; CA-125, cancer antigen 125; DNN, deep neural network; FIGO,
International Federation of Gynecology and Obstetrics; IDS, interval debulking surgery; LN, lymph node; LR, logistic regression; NAC,
neoadjuvant chemotherapy; PDS, primary debulking surgery; RF, random forest; SVM, support vector machine. * Ln-transformed.

Next, we compared patients’ survival outcomes between platinum-sensitive and
-resistant groups predicted by the six-variable, LR model with a cut-off value of 0.175
(Figure S2). Regardless of the validation set, the platinum-resistant group showed signifi-
cantly worse PFS and OS than the platinum-sensitive group. These results suggest that
the developed predictive model also discriminates patients with good and poor survival
outcomes well.

Finally, we developed a nomogram based on the six-variable LR model. Table S4
presents fitted results of the LR model used for nomogram development. The developed
nomogram presents total points as well as the probability of being platinum-resistant cases.
Based on the cut-off value of 41 points, we regarded the case with total point > 41 as a
high-risk group. A user-friendly interface was implemented for the developed nomo-
gram and posted on a website to facilitate clinical use (http://statgen.snu.ac.kr/software/
nomogramHGSOC/, accessed on 15 January 2021). In this web-based nomogram, the
input of risk factors and output of calculated results are operated by HTML and CGI files,
respectively (Figure 4).
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Figure 3. ROC curves for comparative models obtained via five-fold cross-validation. (A) Models con-
sisting of six selected variables; (B) Models consisting of six selected variables and FIGO stage; (C) Mod-
els consisting of six selected variables and residual tumor size after debulking surgery; (D) Models
consisting of six selected variables, FIGO stage, and residual tumor size after debulking surgery.
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Figure 4. Web-based nomogram predicting platinum sensitivity.
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4. Discussion

In the current study, we successfully developed machine learning models predict-
ing platinum sensitivity after primary treatment in patients with HGSOC. Based on six
systematically selected variables, predictive models were developed using LR, RF, SVM,
and DNN methods; among them, the LR-based model performed best at identifying
platinum-resistant cases, with the AUC of 0.741. For clinical purposes, we also developed a
web-based nomogram by fitting the LR model results. To our knowledge, this study is the
first that applied machine learning algorithms in model development for the prediction of
HGSOC patients’ platinum sensitivity.

This study was based on a hypothesis that predictive models targeting HGSOC
may differ from those targeting epithelial ovarian cancer of all histological types. To the
best of our knowledge, this study is the first to present machine learning models that
predict platinum sensitivity in patients with HGSOC. Previous studies aimed at developing
predictive models of platinum sensitivity did not confine ovarian cancer patients to a
specific histologic type, such as HGSOC [17,22]. While Paik et al.’s study included only
PDS cases [17], our previous and current studies put PDS and NAC cases together in the
model development [22]. The selected variables also differed among the models [17,22].
Such differences in study population and selected variables make it difficult to conduct
comparisons of predictive models, even in the same population.

Nevertheless, we could compare the predictive performance of models in the cur-
rent study population by excluding samples with missing values (complete dataset) or
generating imputed datasets using multivariate imputation by the chained equations al-
gorithm. As a result, the six-variable LR model of the current study had significantly
superior predictive power than our previous model (AUCs, 0.762 vs. 0.667; p = 0.009 in
the complete dataset; 0.706 vs. 0.639; p < 0.05 in the imputed dataset), but similar to Paik
et al.’s model. As the origin and molecular pathogenesis of HGSOC differ from those of
the other histologic types, translating to distinct clinical features [29-31], it follows that
predictive models should be dedicated to specific histologic types.

During the AUC-based stepwise selection, where all 42 independent variables were
evaluated fairly without giving any priority to the specific variables, the six variables were
selected. In contrast, both the FIGO stage and residual tumor size after debulking surgery,
which are the best-known prognostic factors in ovarian cancer, were not selected. We added
either the FIGO stage or residual tumor size after debulking surgery, or both, and developed
machine learning models. However, the seven or eight-variable models did not perform
better at identifying platinum-resistant cases than did the original six-variable models.

If the FIGO stage and residual tumor size were essential variables for platinum sensi-
tivity, they would have been identified as such in the variable selection step, which they
were not. At the same time, we cannot help but point out that among the six selected
variables, “pelvic LN status”, “involvement of pelvic tissue other than uterus and tube”,
and “tumor involvement of the small bowel and mesentery” are directly associated with
FIGO stage. In particular, the latter is also associated with residual tumor size as multiple
tumors in the small bowel and mesentery are difficult to remove completely. The com-
bination of the selected variables seems to be more suitable for reflecting disease status
and consequently shows better predictive performance than the FIGO stage and residual
tumor size. Lastly, parsimonious models, defined as simple models with great explanatory
predictive power, are desirable, as are nomograms consisting of a minimal number of
predictors with high predictive performance. As such, a parsimonious model may be
useful in a clinical setting [32,33]; therefore, we regarded the six-variable models as the
best models.

Interestingly, the primary treatment strategy was selected as one of the six variables
related to platinum sensitivity. Specifically, NAC, rather than PDS, was associated with
an increased risk of developing platinum resistance. Such a relationship is supported
by the previous retrospective studies, which reported a higher rate of platinum-resistant
recurrence in patients with stage IIIC-IV epithelial ovarian cancer who underwent NAC
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than those with PDS [34-36]. Although the underlying mechanism is not fully understood,
researchers have suggested that NAC may increase ovarian cancer cell stemness and induce
gene mutations towards drug resistance. This NAC-related platinum resistance may be
further promoted by early exposure to chemotherapy when the tumor is still large or by
remnant residual cancer cells, not completely resected at the time of interval debulking
surgery [37].

In this study, four different machine learning methods, LR, RF, SVM, and DNN,
were used. The performance of the LR-based model was comparable or superior to
that of RF, SVM, or DNN. Similar findings were reported in other studies developing
predictive models using patients’ clinicopathologic data [38,39], likely resulting from a
weak signal-to-noise ratio associated with clinical prediction studies [40]. In a systematic
review of 71 studies, Christodoulou et al. concluded that there is no evidence of the
superior performance of RE SVM, or DNN in clinical predictive models, relative to LR [40].
Further studies are warranted to justify the application of machine learning algorithms in
developing clinical predictive models.

First-line treatments for HGSOC are changing. The addition of bevacizumab, a human-
ized anti-vascular endothelial growth factor monoclonal antibody, to the primary treatment
of ovarian cancer improved the associated PFS [13,41]. Meanwhile, recent studies on PARP
inhibitors have produced encouraging results. After complete or partial responses to
platinum-based chemotherapy, maintenance with olaparib significantly decreased recur-
rence and mortality rates of patients with BRCA1/2-mutated advanced ovarian cancer [42].
Maintenance with niraparib has been associated with improved PFS, regardless of the
BRCA1/2 mutation status [14]. In addition, bevacizumab plus olaparib maintenance has
shown PFS benefit in patients with homologous-recombination-deficient advanced ovarian
cancer [15].

Regarding treatment options for newly diagnosed HGSOC, it remains unclear which
maintenance therapy may be most suitable for which individual. Despite the survival
benefit from both bevacizumab and PARP inhibitors, the toxicity and cost-effectiveness
profiles of these therapies remain among their drawbacks. In addition, germline or somatic
BRCA1/2 mutation status may affect treatment efficacy; however, the required tests take
time and other resources to perform. The present models may help physicians and patients
in many aspects. In particular, the present models may enable the confirmation of platinum
sensitivity before genetic test results are available. As the present study excluded patients
treated with bevacizumab and PARP inhibitors, the proposed model is likely to predict
the pure response to platinum-based chemotherapy. These predictions may facilitate the
implementation of individualized treatment and surveillance protocols. The proposed
models may also support clinical trial design.

The current study has several limitations. First, selection bias might exist due to the
retrospective study design. Second, heterogeneity in patients and clinical practice among
the tertiary hospitals is also problematic. For example, there were significant differences
in the FIGO stage, proportion of patients who achieved complete cytoreduction, and OS
among the institutions. In contrast, the distribution of the platinum-sensitive and -resistant
patients was similar among the institutions. To overcome heterogeneity issues, we matched
the institutions as well as the proportion of platinum-resistant cases at the time of data
splitting for five-fold cross-validation. Third, molecular features, such as specific gene
mutations, were not considered in this study. Regarding BRCA1/2 mutation status, only
a small portion of the patients underwent germline or somatic BRCA1/2 gene testing in
our institutions. By incorporating BRRCA1/2 gene test results and other genetic alterations,
we believe that it would be possible to develop predictive models with higher accuracy.
Lastly, although we conducted internal validation using the five-fold cross-validation
method, which is an established statistical approach, a further external validation study is
warranted. Despite these limitations, we developed predictive models based on data from
more than a thousand HGSOC patients with a relatively long observation period using
various machine learning algorithms.
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5. Conclusions

In conclusion, we developed machine learning models predicting platinum sensitiv-
ity in patients with HGSOC. Based on the six-variable LR model, we also developed a
nomogram to facilitate clinical use of the proposed model. This nomogram is expected to
support clinical practice, clinical trial design, and future research.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ cancers13081875/s1, Figure S1: Distribution of platinum-sensitive and -resistant patients
by each institution, Figure S2: Comparisons of survival outcomes between the platinum-sensitive
and -resistant groups predicted by the six-variable, LR model using the cut-off value of 0.175 in
each validation set, Table S1: Independent variables used in the analysis, Table S2: List of machine
learning methods used in this study, Table S3: Surgical procedures and findings, Table S4: Fitted
results of the logistic regression model used for nomogram development.
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