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Abstract: Due to the trajectory error of the low-precision position and orientation system (POS) used
in unmanned aerial laser scanning (ULS), discrepancies usually exist between adjacent LiDAR (Light
Detection and Ranging) strips. Strip adjustment is an effective way to eliminate these discrepancies.
However, it is difficult to apply existing strip adjustment methods in mountainous areas with
few artificial objects. Thus, digital elevation model-iterative closest point (DEM-ICP), a pair-wise
registration method that takes topography features into account, is proposed in this paper. First,
DEM-ICP filters the point clouds to remove the non-ground points. Second, the ground points are
interpolated to generate continuous DEMs. Finally, a point-to-plane ICP algorithm is performed
to register the adjacent DEMs with the overlapping area. A graph-based optimization is utilized
following DEM-ICP to estimate the correction parameters and achieve global consistency between
all strips. Experiments were carried out using eight strips collected by ULS in mountainous areas
to evaluate the proposed method. The average root-mean-square error (RMSE) of all data was less
than 0.4 m after the proposed strip adjustment, which was only 0.015 m higher than the result of
manual registration (ground truth). In addition, the plane fitting accuracy of lateral point clouds
was improved 4.2-fold, from 1.565 to 0.375 m, demonstrating the robustness and accuracy of the
proposed method.

Keywords: strip adjustment; low-cost UAV; DEM; LiDAR point cloud; point-to-plane ICP; registra-
tion; mountainous areas; terrain features

1. Introduction

The unmanned aerial vehicle (UAV) Light Detection and Ranging (LiDAR) system is
a multi-functional and highly automatic system to obtain terrain information. Compared
with traditional remote sensing technology, ULS (unmanned aerial laser scanning) has the
advantage of active measurement. As a new revolutionary measurement technology, it has
attracted wide interest from industry and academia [1]. This technology has been widely
used in 3D vegetation mapping [2], disaster management [3,4], forestry inventory [5–8],
power line inspection [9,10], 3D city development [11], etc.

ULS [12] is a complex multi-sensor integrated system composed of multiple com-
ponents such as Global Navigation Satellite System (GNSS), Inertial Navigation System
(INS), and laser scanners. Systematic errors caused by the integration of these components
affects the accuracy of the collected data. In practice, an area of interest usually needs
to be covered by several overlapped parallel LiDAR strips collected by ULS. However,
due to the systematic error and the attitude error of the position and orientation system
(POS) [13], offset of the same object exists in adjacent LiDAR strips. These offsets not only
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have negative impacts on the point cloud accuracy, but also in application. For example, if
unadjusted strips are used to directly generate a digital elevation model (DEM), the terrain
surface will be discontinuous and incomplete, which cannot be further utilized. There-
fore, eliminating the discrepancy between different strips to achieve global consistency is
indispensable [14].

Strip adjustment is an effective way to eliminate these discrepancies. Existing strip ad-
justment methods for eliminating the discrepancy of laser scanning data generally fall into
two categories: system-driven strip adjustment and data-driven strip adjustment [15,16].
System-driven strip adjustment is mainly based on estimating the calibration parameters
to compensate for the sensor placement errors. However, due to the confidentiality of
the LiDAR system, it is difficult for users to obtain the raw observations (such as angle
and distance) directly. Usually, users can only obtain the 3D point clouds, which leads
to difficulties in the use of the system-driven strip adjustment method. On the contrary,
the data-driven strip adjustment method does not need to access the raw LiDAR data and
GNSS/inertial measurement unit (IMU) data. It utilizes the corresponding features in the
adjacent strips and achieves accurate registration between strips using rigid transforma-
tions. This kind of method also has the defect that it is not rigorous in theory because it
does not consider the sensor model of LiDAR.

In recent decades, scholars have conducted extensive and in-depth research on strip
adjustment, which can eliminate the discrepancy between adjacent strips. Although the
reported methods have been successfully applied to eliminate systematic errors between
the ULS strips in urban scenes, they still have difficulties in dealing with laser scanning
data from mountainous areas because of the complex terrain, large vegetation coverage,
few artificial buildings, and lack of reliable homonymous features. Thus, a data-driven
strip adjustment method based on topographic features for mountainous areas is proposed
in this paper, which can be applied to the strips collected by ULS in mountainous areas.

The main contributions of this paper are two-fold:

1. We propose DEM-iterative closest point (ICP), a variation of point-to-plane ICP [17],
taking the mountainous characteristics into account. Compared with the classic point-
to-plane ICP, DEM-ICP has the advantages of good robustness, high registration
accuracy, and fast convergence speed.

2. We utilize graph-based optimization following DEM-ICP, achieving accurate strip
adjustment in mountainous areas. This is an effective means of addressing the
disadvantages of existing methods, which are difficult to use in mountainous areas
that lack the corresponding features. The proposed data-driven strip adjustment
method only requires 3D point clouds, so it is suitable for a wide range of applications.

The rest of the paper is organized as follows: Section 2 reviews the literature on strip
adjustment. In Section 3, the workflow of the proposed method is demonstrated. Then, the
comprehensive experiments are described in Section 4. Finally, the conclusions and future
research directions are presented in Section 5.

2. Related Work

Due to the existence of systematic error, the data collected by LiDAR systems cannot
be directly applied to production. Many strip adjustment methods have been proposed to
eliminate the systematic error of LiDAR systems. Chan et al. [18] proposed a system calibra-
tion method based on planar features and catenary features, which could simultaneously
estimate multiple boresight angles of different laser scanners. In their method, least-squares
adjustment (LSA) was used to estimate the parameters of a land-based mobile mapping
system (MMS). Experiments showed that the introduced three-dimensional catenary curve
model could improve the overall accuracy when there were long- hanging cables. In [19],
point and plane features were extracted and matched with the ground control features
generated from accurately georeferenced terrestrial laser scanners (TLS) data. Based on
LSA, their method could simultaneously estimate the boresight and lever-arm parameters
of the sensors mounted on an MMS. However, because the perspective and density of the
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MMS and UAV LiDAR system are different, the existing strip adjustment methods for
MMS cannot be directly applied for UAVs.

Regarding airborne laser scanning (ALS), strip adjustment can be simplified as the
one-dimensional correction problem in a flat area, only considering the error of the eleva-
tion. Crombaghs et al. [20] designed a practical one-dimensional strip adjustment model,
which only checked the data elevation, and was successfully applied to the production
of DEM data. However, Vosselman and Maas [21] believed that the error of airborne
LiDAR data in the horizontal direction was greater than that in the vertical direction,
and elevation adjustment could not completely eliminate the system error. Therefore, the
method of only focusing on elevation without considering the difference of horizontal
coordinates cannot meet the production and application needs of strip adjustment in most
situations. Subsequently, most of the methods proposed by scholars aim to correct the three-
dimensional errors. The existing strip adjustment methods can be generally categorized
into system-driven and data-driven methods.

2.1. System-Driven Strip Adjustment Methods

The system-driven strip adjustment method estimates the error parameters based on
the system error source. Skaloud and Lichti [22] proposed a rigorous method for estimating
the calibration parameters (the three bore-sight angles and the range-finder offset) in
ALS (airborne laser scanning), which can work with voluminous ALS and INS/GPS
(Global Positioning System) data. This method was robust and accurate when there
were sufficiently strong geometries. Junior and Santos [23] estimated the calibration
parameters by restricting the centroid of the segmentation plane to the corresponding
segmented plane, and then used the proposed corresponding point-to-plane strategy to
refine the boresight angles. Experiments showed that this approach is slightly better
than Skaloud and Lichti’s method [22] when the geometric constraint was also included.
Habib et al. [24] presented a “simplified method” and a “quasi-rigorous method”, which
do not rely on the empirical and proprietary procedures. The proposed methods were
relatively easy to be implemented and could be applied to a variety of terrain coverage.
Ravi et al. [25] used self-made high reflection calibration boards to increase the conjugate
feature extraction efficiency. Furthermore, they proposed a procedure to calibrate the
mounting parameters of the multiunit LiDAR system. The experiments indicated that by
adopting the optimal configuration, the calibration result was better than the expected
accuracy. Zhang et al. [26] considered the influence of the low-precision POS system error
and proposed an aerotriangulation-aided LiDAR strip adjustment (AT-aided LSA) method,
which required auxiliary information such as aerial images in the same area.

The self-calibration method is more feasible because it does not demand extra ref-
erencing data during calibration. Zhang et al. [27] proposed a virtual tie point model to
solve the problem of points corresponding in the discrete point clouds. Employing the
intensity data, this self-calibrated method could extract corresponding points automatically
and was proved to be feasible and effective by experiments. Li et al. [16] developed an
automatic boresight self-calibration method, in which the boresight angles were expressed
in the direct geo-referencing equation. The ICP [28] algorithm was used to search the
point-to-point correspondences between strips. Their method could significantly reduce
the root-mean-square errors (RMSEs) of misalignments of the mobile LiDAR scanning
(MLS) systems and ULS systems. In [22], a self-calibration method was also reported.

2.2. Data-Driven Strip Adjustment Methods

Many scientific studies on the data-driven strip adjustment method have also been
reported. Wang [29] used “approximate control points” and “approximate connection
points” to establish a regional network adjustment model, which was suitable for airborne
LiDAR strip adjustment in a variety of different surface conditions. Yang et al. [30] proposed
a multi-view registration method based on semantic feature points, which was marker-free
and achieved good registration performance. In [31], an airborne LiDAR strip adjustment
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method based on planar features extracted from buildings was introduced. They applied
the minimum Hausdorff distance (MHD) to match the buildings and planar features.
Experiments indicated that the proposed method was more automatic than that of Wu
and Fan [32]. You and Lee [33] introduced surface feature strength data derived from the
tensor voting method into strip adjustment. Based on the partial least squares method, it
improved the accuracy significantly when the surface feature strength data and height data
were utilized together.

Usually, the amount of data collected by airborne LiDAR is very large. If the proposed
algorithm lacks automation, its application will be labor-intensive. In Lee et al. [34],
an automatic method utilizing changes in local height variations was reported, which
used the contour tree (CT) to represent local height changes to find a suitable initial
transformation and then optimized the function parameters using the ICP algorithm.
This method did not acquire any preprocessing, and could eliminate the discrepancies
significantly. Rentsch and Krzystek [35] utilized a five-parameter adjustment model to
eliminate LiDAR system errors, relying on the match of the roof plane. Glira et al. [36]
proposed an automatic strip adjustment method, which iteratively and directly established
correspondences between points of overlapping ALS strips. The experiments showed that
this method could individually correct the trajectory errors of strips and calibrate the entire
ALS multisensor system in real time. By considering the time-dependent trajectory errors
and modeling them by natural cubic splines, they extended their previous work [36] to
achieve a more accurate georeference of point clouds [37].

In addition, methods were also designed for the adjustment of underwater LiDAR
strips. In Ji et al. [38], a coarse-to-fine strip adjustment method was developed for airborne
LiDAR bathymetry (ALB). Due to the monotonous underwater environment targets, the
point cloud density collected by ALB is low, which makes it difficult to mosaic adjacent
strips. Therefore, they proposed an improved alpha shapes algorithm to rapidly and
accurately detect the overlapping area between strips. Based on the non-rigid ICP algo-
rithm and least-squares trend surface fitting algorithm, the proposed method achieved
good performance.

Overall, because the raw observation data is usually difficult to obtain by end-users,
the data-driven strip adjustment method is user-friendly compared with the system-driven
method. In addition, most of the existing methods rely on the homonymous features
between adjacent strips, and may not be able to eliminate the systematic errors among
the strips in mountainous areas lacking distinctive features. Thus, this paper proposes a
data-driven strip adjustment method for ULS strips collected in mountainous areas.

3. Methodology

The proposed method mainly includes three steps: data preprocessing, DEM-ICP
registration, and graph-based optimization. The main process, DEM-ICP, can be further
divided into spatial filtering, ground point interpolation, and pair-wise registration of
DEM. The complete workflow is shown in Figure 1. Some of the symbols used in this
section and their brief descriptions are shown in Table 1.

Table 1. Some of the symbols used in this section and their brief descriptions.

Symbol Brief Description

pi, qi the ith 3D point
wi the weight of pi
R a 3 × 3 rotation matrix
t a 3 × 1 translation vector
ηi the normal vector of pi
T a 4 × 4 transformation matrix
P a 4 × 4 pose matrix
Ω the information matrix
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3.1. Data Preprocessing

Because of the load and budget constraints of low-cost UAV, the POS accuracy is
relatively low [39]. POS is the key system of UAV trajectory navigation and UAV pose
recording. During data acquisition, the cumulative effect of the systematic error is more
obvious, and the accuracy of the collected point cloud is lower.

NRLI-UAV [40] is a two-step non-rigid registration method and was introduced to
preprocess the original point clouds. Firstly, the GNSS and IMU-aided structure from
motion (SfM) was used to obtain accurate image orientation and correct the errors of
the low-precision POS. Secondly, by setting the oriented images as the reference, the
discrepancy between the depth maps derived from SfM and the raw laser scans was
iteratively minimized to achieve accurate registration between the images and the LiDAR
point clouds.

3.2. Pair-Wise Registration

The DEM-ICP method proposed in this paper mainly includes the following three
steps: spatial filtering, ground point interpolation, and pair-wise registration of DEM.
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3.2.1. Spatial Filtering

Terrain features are a unique sign of the undulating ground surface. To obtain the
characteristics of the terrain, it is necessary to filter out the non-ground points and reserve
the ground points.

In recent decades, many studies on airborne LiDAR point cloud filtering have been
carried out, which can be divided into two types: those based on point entities and those
based on segment entities [41]. However, the method only using one entity cannot easily
achieve a good filter result in various complex scenes [42]. Fortunately, the combination of
different entities (e.g., points and segments) can achieve better filtering results.

In this study, the two-step adaptive extraction method proposed by Yang et al. [43]
was used to acquire the ground points, which first classifies the points into a set of segments
and one set of individual points, and then extracts the breaklines from the ground points
to generate a high-quality DEM. This method has good filtering performance and can filter
out non-ground points while retaining ground points to the maximum extent, which is
convenient for subsequent interpolation of ground points.

3.2.2. Ground Point Interpolation

Due to the filtering out of the non-ground points, many holes exist in the filtered
ground data. The continuous and complete DEM data should be used for registration, so it
is necessary to interpolate the ground points. In this study, the DEM data was organized
by raster. The quality of the interpolation algorithm will affect the accuracy of registration.
Commonly used high-quality interpolation methods are kriging [44], natural neighbor
interpolation (NNI) algorithm [45], etc.

After comparing different interpolation algorithms, NNI was adopted to interpolate
the ground points due to its best performance in the experiments. The NNI algorithm
is a local interpolation method based on the Voronoi diagram, in which the value of an
interpolation point depends on the value of its natural neighbor points. Let the interpolation
point x have n natural neighbor points, which are p1, p2, . . . , pn. Then the value of f (x) can
be expressed as:

f (x) =
n

∑
i=1

wi f (pi) (1)

where wi is the weight of the corresponding point pi, f (pi) denotes the value of the natural
neighbor point pi.

It should be noted that during the interpolation, because the value of the points to be
interpolated in the edge of DEM can only be predicted by the data in one direction, the
interpolation result is often incorrect (as shown in Figure 2). The existence of these wrong
edge points will affect the registration of DEM. It is a simple but effective method to remove
a certain width of the edge from the interpolated DEM data. Doing so will not reduce
the range of the experimental data, because the range of DEM data after interpolation
will be larger than that before interpolation. In other words, only the extra part due to
interpolation is cropped. The specific cutting width needs to be determined according to
the situation of the DEM.
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Figure 2. Illustration of the DEM interpolation. Blue points are ground points, green and red points
are points to be interpolated. Here, raw data exist around the green point, so a more accurate
prediction can be obtained during interpolation. On the contrary, the red point can only rely on the
data in the lower right corner to make predictions. There is no original data in the upper left corner,
so it is difficult to obtain correct predictions.

3.2.3. Pair-Wise Registration of DEM

Compared with the disordered massive point cloud, DEM data has the characteris-
tics of small data quantities and ordered arrangement, which can effectively express the
topographic features. Therefore, using DEM instead of the raw points for registration
of point cloud in mountainous areas can improve efficiency. To acquire a more robust
registration result [46], the point-to-plane ICP algorithm was adopted to register DEM data,
which first estimates the normal vector of the target point cloud, and then replaces the
point-to-point distance in the ICP algorithm with the point-to-plane distance, resulting in
better robustness and faster convergence. The point-to-plane ICP is a commonly employed
strategy, whose error function E(R, t) is calculated as Equation (2).

E(R, t) =
1
n

n

∑
i=1
‖ηi[qi − (Rpi + t)]‖2 (2)

where n is the number of the nearest neighbor point pairs, qi is a point in the source cloud
Q, pi is a point in the target cloud P, the corresponding nearest point of qi. ηi is the normal
vector of the tangent plane of a point pi. t denotes the translation vector, which can be
expressed as

[
tx, ty, tz

]T . R is a 3 × 3 rotation matrix.
For the point clouds without scaling, the registration between adjacent strips only

needs to consider the rotation and translation in three-dimensional space. The rotation and
translation transformation between adjacent LiDAR strips can be directly represented by a
4 × 4 transformation matrix T:

T =

[
R t
0T 1

]
(3)

It has been found that the overlap between strips is an important factor affecting the
registration results. Hence, the selection of registration methods based on the overlap
is important for good results. The DEM-ICP method proposed in this paper can obtain
better registration results when the overlapping area has distinctive terrain features and
the overlap is more than or equal to 20% (this threshold derives from the overlap test
results in Section 4.2.1). To this end, different registration strategies are chosen according
to the overlap of adjacent strips. When the overlap of adjacent strips is more than 20%, the
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DEM-ICP method is preferred; when the overlap is relatively small, but there is a good
initial alignment between adjacent strips, they are directly registered by ICP algorithm.

The maximum search distance (MSD) is a key parameter for registration. Regarding
two points located in the source and the target point clouds, if the distance between
them is greater than the MSD, they will not be used as a corresponding point pair. If the
initial registration parameters are inaccurate, the MSD should be set larger to prevent
local optimization.

There are two stop criteria of the registration, as follows:

• Let Rn and tn be the rotation matrix and translation vector obtained by the nth iteration.
Then, if ‖tn − tn−1‖ < t0 and tr

(
RT

n−1·Rn
)
< r0 tr(·) is the trace of a matrix), the

iteration will be stopped. Here, t0 and r0 are two thresholds, whose empirical values
are 0.05 m and 1 × 10−3◦, respectively.

• Let K be the maximum number of iterations. When the ICP algorithm iterates K times,
the registration is stopped.

3.3. Graph-Based Optimization

During registration, each pair of adjacent LiDAR strips can be effectively registered
once to obtain a transformation matrix T (as shown in Figure 3). In the problem of strip
adjustment without control points, only n − 1 necessary registrations (green arrow in
Figure 3) are needed to register n strips together. When the registration relationship between
strips can form one or more loops, there will be redundant registration relationships (red
arrow in Figure 3). Therefore, we can use the graph-based optimization method to adjust
the registration results to gain more reasonable results.
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Graph-based optimization solves global adjustment problems using a graph [47]. A
graph consists of several vertices and edges. The vertices represent optimization variables
and the edges represent error terms. After gaining the transformation matrix T between
adjacent strips by registration, a graph can be constructed by taking the pose of each point
cloud as the vertex and the registration relationship between them as the edge, and then
the solution can be solved by graph-based optimization.

In the problem of strip adjustment without control points, the pose of a strip can be
set as a unit matrix I4×4, then the pose of other strips can be obtained by the registration
relation T between adjacent strips:

Pn = T(n−1)n·Pn−1 (4)

where Pn denotes the pose of the nth strip, a 4 × 4 matrix of the same form as T shown in
Equation (3). T(n−1)n represents the transformation matrix gained by registering the nth

strip to the (n − 1)th strip.
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The aim of the optimization is to minimize the following equation:

minF(x) =
n

∑
k=1

ek(xk)
TΩkek(xk) (5)

where F(x) is the function to be optimized, ek(x k) denotes the error of the kth edge xk,
and Ωk is the information matrix, which is the inverse of the covariance matrix. After
constructing the graph, the nonlinear least-squares problem can be solved by gradient
descent algorithms such as the Levenberg–Marquardt method [48,49].

Graph-based optimization is a global method to minimize the discrepancies between
all strips. If there is a big difference between the result of a strip after graph-based op-
timization and that before optimization, it means that there are outliers in the pairwise
registration. Let mij be the MSD of strip i and strip j during registration, the point cloud
after registration as the source point cloud, and the point cloud after graph-based optimiza-
tion as the target point cloud. Then, each point pk in the target point cloud searches for
its nearest point in the source point cloud, and calculates the distance dk between them.
If dk < mij, this pair of points is marked as a valid point pair. Then D = D + dk, n = n + 1,
where D is the sum of the distance of the valid point pairs, and n is the number of the valid
point pairs. The initial values of D and n are both 0. Then, calculate the average distance of
the valid point pairs: Dmean = D/n. If Dmean < D/n; thus, the adjustment result of strip i
and strip j is valid. Here, D0 is a threshold to be set according to the quality of strips. If
all strips are valid, it means that the result of strip adjustment is good and can be further
evaluated and applied. Otherwise, identify the wrong strips and adjust again.

4. Results

The experimental platform is Lenovo ThinkPad E450, made in China. The configu-
ration of the experimental platform is as follows: Intel (R) Xeon (TM) E-2224G 3.50 GHz
CPU, 16 GB memory, and Windows 10 operating system. The development platform was
Microsoft Visual Studio 2019 C++. This study used the ICP algorithm provided by the
PCL (Point Cloud Library) [50], and the version used was PCL 1.8.1. For all of the follow-
ing experiments, in pair-wise registration, the thresholds t0 and r0 for the termination of
the iteration took the empirical thresholds 0.05 m and 1 × 10−3◦, respectively. The g2o
library [51] was utilized to solve the graph-based optimization.

The experimental data (the relevant information is listed in Table 2) were collected
by the Luojia Qilin Cloud II UAV [52], which is independently developed by the Dynamic
Mapping Group of the State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing (LIESMARS) of Wuhan University.

Table 2. The equipment information used to collect the experimental data, and the relevant informa-
tion of strip data.

Item Value Item Value

Date 22 April 2019 Area Coverage 980 × 260 m

Place Guangzhou City, Guangdong
Province, China Point Density 80 pts/m2

Laser Scanner Surestar R-Fans-16 Total Points 28,397,938
IMU Xsens MTi-300 Number of Strips 8

Flight Height 80 m Heading Overlap 8%
Flight Velocity 5 m/s Lateral Overlap 55%

4.1. Experiment of Strip Adjustment

Based on the workflow described in Section 3, the experiment of strip adjustment was
carried out on the experimental data described in Figure 4. In the step of strip registration,
the lateral data strip has a large overlap, so the DEM-ICP method was employed for
registration, where the length of the DEM grid is 1 × 1 m. The heading strip overlap is low,
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but it has a good initial alignment. Therefore, the classic ICP algorithm was directly used
for the registration of heading strips. The result after strip adjustment and the comparison
of some details are shown in Figure 5. From the adjusted data, the road, toll station,
high-voltage power line, and other objects can be seen clearly.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 4. Strip data and serial number after preprocessing. There are continuous hills, undulating terrain, an expressway, 
an ordinary road, a high-voltage power line, and a toll station (in red rectangles). A more complete experimental region 
can be seen in Figure 5. The green line is the flight trajectory of the unmanned aerial vehicle (UAV) and the black rectangles 
mark the position of the planes used to calculate the root-mean-square error (RMSE) in subsequent experiments. 

Figure 4. Strip data and serial number after preprocessing. There are continuous hills, undulating terrain, an expressway,
an ordinary road, a high-voltage power line, and a toll station (in red rectangles). A more complete experimental region can
be seen in Figure 5. The green line is the flight trajectory of the unmanned aerial vehicle (UAV) and the black rectangles
mark the position of the planes used to calculate the root-mean-square error (RMSE) in subsequent experiments.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 5. The result after strip adjustment and the comparison of some details. 

4.1.1. Qualitative Evaluation 
For the purpose of evaluating the results of the strip adjustment experiment, one lat-

eral slice and one heading slice were performed for each pair of registered lateral point 
clouds (as shown in Figure 6). because one lateral slice and one heading slice can “fix” the 
registration result well, the accuracy of registration can be qualitatively assessed in all 
three directions (X, Y, Z). The undulating parts in Figure 6 demonstrate that the strip ad-
justment method proposed in this paper has good adjustment performance. 

 
(a) 

Figure 5. The result after strip adjustment and the comparison of some details.



Sensors 2021, 21, 2782 11 of 20

4.1.1. Qualitative Evaluation

For the purpose of evaluating the results of the strip adjustment experiment, one
lateral slice and one heading slice were performed for each pair of registered lateral point
clouds (as shown in Figure 6). because one lateral slice and one heading slice can “fix” the
registration result well, the accuracy of registration can be qualitatively assessed in all three
directions (X, Y, Z). The undulating parts in Figure 6 demonstrate that the strip adjustment
method proposed in this paper has good adjustment performance.
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4.1.2. Quantitative Evaluation

In addition, to evaluate the adjustment results quantitatively, planes in the overlapping
area of the experimental strips were selected for plane fitting, and then the RMSE was
calculated. The calculation formula of RMSE is as follows:

RMSE =

√
1
n

n

∑
i=1

(xi − x)2 (6)

where xi is the elevation value of the point i, x is the true value, and n is the total number
of points in the plane.

There were 19 planes used to calculate RMSE, whose distribution is shown in the
black rectangles in Figure 4. Because the experimental region is mountainous, most of the
selected planes are expressways in the overlapping area between adjacent strips, and only
plane 9© and plane 10© are the roof planes of buildings. Two examples of the selected planes
are shown in Figure 7, where Figure 7a is the expressway plane and Figure 7b is the roof
plane. Among these, the overlapping area between lateral strips is large, 3–4 planes were
selected, and the RMSE was the average value; the overlapping area between heading
strips is small, so only a long and narrow plane of the expressway was selected for each
pair of registrations to calculate the RMSE, which is marked with letters in Figure 4. It
should be noted that plane A, plane B, and plane C were all calculated twice because they
fall in the overlapping area of two different heading strips.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 21 
 

 

There were 19 planes used to calculate RMSE, whose distribution is shown in the 
black rectangles in Figure 4. Because the experimental region is mountainous, most of the 
selected planes are expressways in the overlapping area between adjacent strips, and only 
plane ⑨ and plane ⑩ are the roof planes of buildings. Two examples of the selected 
planes are shown in Figure 7, where Figure 7a is the expressway plane and Figure 7b is 
the roof plane. Among these, the overlapping area between lateral strips is large, 3–4 
planes were selected, and the RMSE was the average value; the overlapping area between 
heading strips is small, so only a long and narrow plane of the expressway was selected 
for each pair of registrations to calculate the RMSE, which is marked with letters in Figure 
4. It should be noted that plane A, plane B, and plane C were all calculated twice because 
they fall in the overlapping area of two different heading strips. 

  
      (a)                                       (b) 

Figure 7. Planes used to calculate the RMSE, where green is Strip 3, and red is Strip 6: (a) plane ⑦ with 73,619 points; (b) 
plane ⑨ with 54,758 points. 

Because the accuracy of the collected strips is related to the accuracy of the acquisition 
equipment, the range of the experimental region, the scale of the data, and other factors, 
it is difficult to give a unified standard to evaluate the adjustment results. However, we 
can register the strips manually, and take the results as the ground truth. The performance 
of the proposed method can be reflected by comparing its adjustment results with the 
ground truth. The RMSE calculation results of the original strips, the proposed method, 
and the ground truth are shown in Figure 8. 

Figure 7. Planes used to calculate the RMSE, where green is Strip 3, and red is Strip 6: (a) plane 7© with 73,619 points;
(b) plane 9© with 54,758 points.

Because the accuracy of the collected strips is related to the accuracy of the acquisition
equipment, the range of the experimental region, the scale of the data, and other factors, it
is difficult to give a unified standard to evaluate the adjustment results. However, we can
register the strips manually, and take the results as the ground truth. The performance of
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the proposed method can be reflected by comparing its adjustment results with the ground
truth. The RMSE calculation results of the original strips, the proposed method, and the
ground truth are shown in Figure 8.
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As illustrated in Figure 8, compared with the original, the RMSE value between the
lateral strips decreased from 1.52–1.62 m to 0.35–0.41 m after adjustment, indicating a
4.2-fold increase in average accuracy; initial alignment between the heading strips was
good, but the accuracy was also improved after adjustment. Overall, the average plane
fitting RMSE value of the whole experimental strips was less than 0.4 m after adjustment,
which is only 0.015 m higher than that of the ground truth, indicating that the proposed
method has high accuracy. In the experiment, the initial accuracy of the lateral strip was
much lower than that of the heading strip, but after adjustment with our method, the
accuracy was equivalent to that of the heading strip. This experimental result demonstrates
that the proposed method performs well in adjusting the UAV point clouds in complex
mountainous scenes.

4.2. Evaluation of the Proposed DEM-ICP Method

In a further effort to evaluate the performance of the proposed DEM-ICP method,
Strip 3 and Strip 6 were chosen, which include artificial buildings such as toll stations that
facilitate the evaluation of results.

4.2.1. Robustness to Overlap

Strip 3 and Strip 6 were cropped so that they overlapped by 50%, 40%, 30%, and
20%, as calculated by Equation (7), where OA represents the overlapping area between
two adjacent strips, and TA represents the total area of both strips. The DEM-ICP method
was used for registration, and the influence of the overlap was tested. The registration
results are illustrated in Figure 9. For the sake of quantitatively evaluating the registration
results, planes 7©–10© as shown in Figure 4 were selected for plane fitting for each pair of
registrations, and the average RMSE of four planes is listed in Table 3.

overlap =
2 ∗OA

TA
(7)
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Figure 9. Registration results of different degrees of overlap. The colored point cloud displayed by
elevation is Strip 3, and the purple point cloud is Strip 6.

Table 3. RMSE calculation results before and after registration.

Overlap Before Registration (m) After Registration (m)

50% 1.58 0.425
40% 1.58 0.434
30% 1.58 0.451
20% 1.58 0.454

It can be seen from Table 3 that although the registration accuracy of the DEM-
ICP method decreases with the reduction of overlap, the accuracy of the method is not
significantly reduced, and it is maintained at a low value, which means that the proposed
method has strong robustness to the degree of overlap. The conclusion can be roughly
drawn from this experiment that the DEM-ICP method has good performance when there
are distinct topographic features and the overlap between neighboring scans is more
than 20%.

4.2.2. Performance Comparison

Generally, the horizontal accuracy of point clouds collected by a low-cost UAV is
relatively low [21]. For this reason, Strip 6 was rotated horizontally around the origin of
the coordinate system by Equation (8).

RZ(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (8)

where θ denotes the rotation angle, and RZ(θ) is the horizontal rotation matrix. In this
experiment, the values of θ were −3◦, −2◦, −1◦, 1◦, 2◦, and 3◦. The transformed results
are shown in the purple point clouds marked “Initially” in Figure 10.
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The experimental group utilized the DEM-ICP method, and the control group used
the method of point-to-plane ICP. Experiment parameters are listed in Table 4 and the
experimental results are shown in Figure 10. Eight points of building roof corners were
selected from each group of registration results, and the RMSE of the points was calculated.
The calculation results are shown in Table 5. In addition, to compare the registration results
more intuitively, we also sliced the point clouds before and after registration, as shown in
Figure 11.
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Table 4. Comparison of registration parameters. Here, MSD represents the maximum search distance
for corresponding points during registration, which is an important registration parameter. In other
words, two different points located on two point clouds; if the distance between them is greater than
the MSD, then they will not be recognized as a pair of corresponding points.

Rotation
Angle θ

DEM-ICP Point-to-Plane ICP

MSD (m) Iterations Time (s) MSD (m) Iterations Time (s)

−3◦ 10 9 0.801 8 28 368.835
−2◦ 8 5 0.559 6 24 309.035
−1◦ 6 2 0.375 5 18 252.738
1◦ 6 3 0.419 4 20 266.204
2◦ 8 5 0.546 6 36 445.117
3◦ 10 9 0.828 8 97 1299.33

Table 5. RMSE of selected points in the three directions of XYZ.

Rotation
Angle θ

DEM-ICP Point-to-Plane ICP

X (m) Y (m) Z (m) X (m) Y (m) Z (m)

−3◦ 0.49 0.46 0.49 1.54 1.17 0.53
−2◦ 0.34 0.50 0.35 0.25 0.49 0.54
−1◦ 0.30 0.47 0.31 0.30 0.33 0.35
1◦ 0.21 0.44 0.39 0.44 1.46 0.53
2◦ 0.37 0.46 0.43 1.34 2.60 0.58
3◦ 0.41 0.48 0.39 1.78 3.32 0.70
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In this study, only eight points were selected to calculate the RMSE. This was mainly
because the experimental area is mountainous, lacking reliable corresponding points. The
RMSE was calculated in order to have an index to quantitatively evaluate the registra-
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tion accuracy in the three directions of XYZ. Furthermore, both Figures 10 and 11 can
qualitatively indicate the superiority of the proposed DEM-ICP method.

Analyzing and comparing the registration results of the two methods, we can draw
the following conclusions:

1. DEM-ICP is robust, and not sensitive to the accuracy of the initial data. In the above
experiments, regardless of the initialization of the given point cloud, the proposed
DEM-ICP method can always achieves a satisfactory result. This is because, compared
with the unordered point cloud, DEM is well organized, and has higher robustness
during pair-wise registration. In comparison, it is difficult for the classic point-to-
plane ICP method to converge correctly, especially when the two point clouds are
close to each other at the beginning (for example, when the rotation angle is 2◦ and
3◦ in Figures 10 and 11, the discrepancies of the registration results are obvious).
The unsatisfactory results of the point-to-plane ICP method are attributable to the
following factors. Firstly, there will be intersections when two point clouds are
close to each other, especially in mountainous areas with large vegetation coverage.
Then, when the point-to-plane ICP algorithm is applied, these intersecting parts
can incorrectly identify the nearest corresponding points, so they may converge to
a local minimum or even be non-convergent, and fail to obtain correct results. In
addition, it should be noted that these discrepancies cannot be easily eliminated by
only increasing the iteration.

2. DEM-ICP has a high time efficiency. The points in Strip 3 and Strip 6 number 4,126,302
and 4,159,645, respectively, whereas the points of Strip 3 and Strip 6 converted into
the DEM number only 42,793 and 46,132, respectively. As shown in Table 4, the
number of iterations required for the DEM-ICP method is less than 10, which takes
less than 1 s in all cases, indicating the rapid convergence speed of DEM-ICP. In
contrast, the maximum number of iterations required for point-to-plane ICP is 97 and
the time taken is 1299 s; even so, this method still cannot achieve the correct results.
In this experiment, the average time cost of a single iteration of the point-to-plane ICP
method is about 13.2 s, whereas it is about 0.1 s in the DEM-ICP method; that is, the
time incurred in DEM-ICP is only 1/132 times that of point-to-plane ICP.

3. The accuracy of DEM-ICP method is higher. As shown in Table 5, in all cases, the
RMSEs of DEM-ICP method in the three directions of XYZ are all less than 0.5 m;
these satisfactory results can be seen in Figures 10 and 11. By comparison, when
the rotation angle is small (such as −1◦), the point-to-plane ICP algorithm has good
registration accuracy, but with the increase in rotation angle, the horizontal accuracy
of the point-to-plane ICP algorithm is significantly lower than the vertical accuracy.
When the rotation angle is ±3◦, the maximum RMSE of point-to-plane ICP is as high
as 3.32 m, indicating that the registration cannot converge.

5. Conclusions

This paper proposes a data-driven strip adjustment method considering point clouds
obtained by UAV-borne LiDAR, which mainly includes three steps: data preprocessing,
DEM-ICP registration, and graph-based optimization. Experiments show that the proposed
method is suitable for strip adjustment in mountainous areas. The main step, DEM-ICP
registration, is an improvement of the point-to-plane ICP algorithm. By only using the
DEMs generated from ground points, the proposed DEM-ICP has the advantages of
good robustness, high registration accuracy, and fast convergence speed, which can be
demonstrated from the comparison with point-to-plane ICP method. In addition, this
study also verified that DEM-ICP is not sensitive to the overlap between adjacent strips in
the case of having obvious topographical features.

However, because the proposed method relies on terrain features, it may not be able
to achieve ideal results in flat areas without sufficient topographic features. Scholars have
conducted a large number of studies on strip adjustment in urban scenes, but these methods
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cannot easily handle the data of mountainous areas. Therefore, the method proposed in
this paper can be a good supplement for the existing methods.

The workflow of the proposed strip adjustment method is simple and easy to imple-
ment, can be used in the strip adjustment of UAV-borne LiDAR data in a large range of
mountainous areas, and has practical value in engineering. Because terrain features should
be extracted for registration, ground filtering and spatial interpolation are the key steps of
the proposed method. Therefore, we believe that our method will perform better if better
methods are developed to generate DEMs with higher quality from point clouds. This
development deserves further study. In addition, different registration methods [53,54]
can also be compared and applied to the proposed method to improve the accuracy and
efficiency of pair-wise registration.
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