Skip to main content
. 2021 Apr 28;27(16):1664–1690. doi: 10.3748/wjg.v27.i16.1664

Table 3.

Summary of key studies on artificial intelligence-assisted pathology in the gastroenterology and hepatology fields

Ref. Country Disease studied Design of study Application Number of cases Type of machine learning algorithm Outcomes (%)
Accuracy
Sensitivity/Specificity
Basic AI-based pathology: diagnosis
Tomita et al[118], 2019 United States BE and EAC Retrospective Detection and classification of cancerous and precancerous esophagus tissue Training: 379 images with 4 classes: normal, BE-no-dysplasia, BE-with-dysplasia, and adenocarcinoma; Testing: 123 images with 4 classes: normal, BE-no-dysplasia, BE-with-dysplasia, and adenocarcinoma CNNs Mean: 83; BE-no-dysplasia: 85; BE-with-dysplasia: 89; Adenocarcinoma: 88 Normal: 69/71 BE-no-dysplasia: 77/88; BE-with-dysplasia: 21/97; Adenocarcinoma: 71/91
Sharma et al[119], 2017 Germany GC Retrospective Classification and necrosis detection of GC 454 patients (6810 WSIs: 4994 for cancer classification and 1816 for necrosis detection) (HER2 immunohistochemical stain and HE stained) CNNs Cancer classification: 69.90; Necrosis detection: 81.44 NA/NA
Li et al[120], 2018 China GC Retrospective Detection of GC 700 images: 560 GC and 140 normal (HE stained) CNNs 100 NA/NA
Leon et al[121], 2019 Colombia GC Retrospective Detection of GC 40 images: 20 benign and 20 malignant CNNs 89.72 NA/NA
Sun et al[122], 2019 China GC Retrospective Diagnosis of GC 500 WSIs of gastric areas with typical cancerous regions DNNs 91.6 NA/NA
Ma et al[123], 2020 China GC Retrospective Classification of lesions in the gastric mucosa Training: 534 WSIs (1616713 images: 544925 normal, 544624 chronic gastritis, and 527164 cancer) (HE stained) Testing: 153 WSIs (399240 images: 135446 normal, 125783 chronic gastritis, and 138011 cancer) (HE stained) CNNs, RF Benign and cancer: 98.4; Normal, chronic gastritis, and GC: 94.5 Benign and cancer: 98.0/98.9; Normal, chronic gastritis, and GC: NA/NA
Yoshida et al[124], 2018 Japan Gastric lesions Retrospective Classification of gastric biopsy specimens 3062 gastric biopsy specimens (HE stained) CNNs 55.6 89.5/50.7
Qu et al[125], 2018 Japan Gastric lesions Retrospective Classification of gastric pathology images Training: 1080 patches: 540 benign and 540 malignant; Testing: 5400 patches: 2700 benign and 2700 malignant CNNs 96.5 NA/NA
Iizuka et al[126], 2020 Japan Gastric and colonic epithelial tumors Retrospective Classification of gastric and colonic epithelial tumors 4128 cases of human gastric epithelial lesions and 4036 of colonic epithelial lesions (HE stained) CNNs, RNNs Gastric adenocarcinoma: 97; Gastric adenoma: 99; Colonic adenocarcinoma: 96; Colonic adenoma: 99 NA/NA
Korbar et al[127], 2017 United States Colorectal polyps Retrospective Classification of different types of colorectal polyps on WSIs Training: 458 WSIs; Testing: 239 WSIs A modified version of a residual network 93 88.3/NA
Wei et al[128], 2020 United States Colorectal polyps Retrospective Classification of colorectal polyps on WSIs Training: 326 slides with colorectal polyps: 37 tubular, 30 tubulovillous or villous, 111 hyperplastic, 140 sessile serrated, and 8 normal; Testing: 238 slides with colorectal polyps: 95 tubular, 78 tubulovillous or villous, 41 hyperplastic, and 24 sessile serrated CNNs Tubular: 84.5; Tubulovillous or villous: 89.5; Hyperplastic: 85.3; Sessile serrated: 88.7 Tubular: 73.7/91.6; Tubulovillous or villous: 97.6/87.8; Hyperplastic: 60.3/97.5; Sessile serrated: 79.2/89.7
Shapcott et al[129], 2018 UnitedKingdom CRC Retrospective Diagnosis of CRC 853 hand-marked images CNNs 84 NA/NA
Geessink et al[130], 2019 Netherlands CRC Retrospective Quantification of intratumoral stroma in CRC 129 patients with CRC CNNs 94.6 91.1/99.4
Song et al[131], 2020 China CRC Retrospective Diagnosis of CRC Training: 177 slides: 156 adenoma and 21 non-neoplasm; Testing: 362 slides: 167 adenoma and 195 non-neoplasm CNNs 90.4 89.3/79.0
Wang et al[132], 2015 China Hepatic fibrosis Retrospective Assessment of HBV-related liver fibrosis and detection of liver cirrhosis Training: 105 HBV patients; Testing: 70 HBV patients SVM 82 NA/NA
Forlano et al[133], 2020 UnitedKingdom MAFLD Retrospective Detection and quantification of histological features of MAFLD Training: 100 MAFLD patients; Testing: 146 MAFLD patients K-means Steatosis: 97; Inflammation: 96; Ballooning: 94; Fibrosis: 92 NA/NA
Li et al[134], 2017 China HCC Retrospective Nuclei grading of HCC 4017 HCC nuclei patches CNNs 96.7 G1: 94.3/97.5; G2: 96.0/97.0;G3: 97.1/96.6; G4: 99.5/95.8
Kiani et al[135], 2020 United States Liver cancer (HCC and CC) Retrospective Histopathologic classification of liver cancer Training: 70 WSIs: 35 HCC and 35 CC Testing: 80 WSIs: 40 HCC and 40 CC SVM 84.2 72/95
Advanced AI-based pathology: prediction of gene mutations and prognosis
Steinbuss et al[136], 2020 Germany Gastritis Retrospective Identification of gastritis subtypes Training: 92 patients (825 images: 398 low inflammation, 305 severe inflammation, and 122 A gastritis) (HE stained) Testing: 22 patients (209 images: 122 low inflammation, 38 severe inflammation, and 49 A gastritis) (HE stained) CNNs 84 A gastritis: 88/89; B gastritis: 100/93; C gastritis: 83/100
Liu et al[137], 2020 China Gastrointestinal neuroendocrine tumor Retrospective Prediction of Ki-67 positive cells 12 patients (18762 images: 5900 positive cells, 6086 positive cells, and 6776 background from ROIs) (HE and IHC stained) CNNs 97.8 97.8/NA
Kather et al[138], 2019 Germany GC and CRC Retrospective Prediction of MSI in GC and CRC Training: 360 patients (93408 tiles); Testing: 378 patients (896530 tiles) CNNs 84 NA/NA
Bychkov et al[139], 2018 Finland CRC Retrospective Prediction of CRC outcome 420 CRC tumor tissue microarray samples CNNs, RNNs 69 NA/NA
Kather et al[140], 2019 Germany CRC Retrospective Prediction of survival from CRC histology slides Training: 86 CRC tissue slides (> 100000 HE image patches); Testing: 25 CRC patients (7180 images) CNNs 98.7 NA/NA
Echle et al[141], 2020 Germany CRC Retrospective Detection of dMMR or MSI in CRC Training: 5500 patients; Testing: 906 patients A modified shufflenet DL system 92 98/52
Skrede et al[142], 2020 3R23 Song 2020 CRC Retrospective Prediction of CRC outcome after resection Training: 828 patients (> 12000000 image tiles); Testing: 920 patients CNNs 76 52/78
Sirinukunwattana et al[143], 2020 UnitedKingdom CRC Retrospective Identification of consensus molecular subtypes of CRC Training: 278 patients with CRC; Testing: 574 patients with CRC: 144 biopsies and 430 TCGA Neural networks with domain-adversarial learning Biopsies: 85; TCGA: 84 NA/NA
Jang et al[144], 2020 South Korea CRC Retrospective Prediction of gene mutations in CRC Training: 629 WSIs with CRC (HE stained) Testing: 142 WSIs with CRC (HE stained) CNNs 64.8-88.0 NA/NA
Chaudhary et al[145], 2018 United States HCC Retrospective Identification of survival subgroups of HCC Training: 360 HCC patients’ data using RNA-seq, miRNA-seq and methylation data from TCGA; Testing: 684 HCC patients’ data (LIRI-JP cohort: 230; NCI cohort: 221; Chinese cohort: 166, E-TABM-36 cohort: 40, and Hawaiian cohort: 27) DL LIRI-JP cohort: 75; NCI cohort: 67; Chinese cohort: 69; E-TABM-36 cohort: 77; Hawaiian cohort: 82 NA/NA
Saillard et al[146], 2020 France HCC Retrospective Prediction of the survival of HCC patients treated by surgical resection Training: 206 HCC (390 WSIs); Testing: 328 HCC (342 WSIs) CNNs (SCHMOWDER and CHOWDER) SCHMOWDER: 78; CHOWDER: 75 NA/NA
Chen et al[11], 2020 China HCC Retrospective Classification and gene mutation prediction of HCC Training: 472 WSIs: 383 HCC and 89 normal liver tissue; Testing: 101 WSIs: 67 HCC and 34 normal liver tissue CNNs Classification: 96.0; Tumor differentiation: 89.6; Gene mutation: 71-89 NA/NA
Fu et al[147], 2020 UnitedKingdom EAC, GC, CRC, and liver cancers Retrospective Prediction of mutations, tumor composition and prognosis 17335 HE-stained images of 28 cancer types CNNs Variable across tumors/gene alterations NA/NA

AI: Artificial intelligence; BE: Barrett’s esophagus; EAC: Esophageal adenocarcinoma; CNN: Convolutional neural network; GC: Gastric cancer; WSI: Whole-slide image; NA: Not available; DNN: Deep neural network; RF: Random forests; RNN: Recurrent neural network; CRC: Colorectal cancer; HBV: Hepatitis-B virus; SVM: Support vector machine; MAFLD: Metabolic associated fatty liver disease; HCC: Hepatocellular carcinoma; CC: Cholangiocarcinoma; ROI: Region of interest; IHC: Immunohistochemistry; MSI: Microsatellite instability; dMMR: Mismatch-repair deficiency; TCGA: The Cancer Genome Atlas; DL: Deep learning.