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Macrophages are the key regulator of T-cell responses depending
on their activation state. C-C motif chemokine receptor-like 2 (CCRL2),
a nonsignaling atypical receptor originally cloned from LPS-activated
macrophages, has recently been shown to regulate immune re-
sponses under several inflammatory conditions. However, whether
CCRL2 influences macrophage function and regulates tumor immu-
nity remains unknown. Here, we found that tumoral CCRL2 expres-
sion is a predictive indicator of robust antitumor T-cell responses in
human cancers. CCRL2 is selectively expressed in tumor-associated
macrophages (TAM) with immunostimulatory phenotype in humans
and mice. Conditioned media from tumor cells could induce CCRL2
expression in macrophages primarily via TLR4, which is negated by
immunosuppressive factors. Ccrl2”~ mice exhibit accelerated mela-
noma growth and impaired antitumor immunity characterized by sig-
nificant reductions in immunostimulatory macrophages and T-cell
responses in tumor. Depletion of CD8" T cells or macrophages elimi-
nates the difference in tumor growth between WT and Ccrl2~~ mice.
Moreover, CCRL2 deficiency impairs immunogenic activation of mac-
rophages, resulting in attenuated antitumor T-cell responses and ag-
gravated tumor growth in a coinjection tumor model. Mechanically,
CCRL2 interacts with TLR4 on the cell surface to retain membrane
TLR4 expression and further enhance its downstream Myd88-NF-xB
inflammatory signaling in macrophages. Similarly, TIr4~~ mice exhibit
reduced CCRL2 expression in TAM and accelerated melanoma growth.
Collectively, our study reveals a functional role of CCRL2 in acti-
vating immunostimulatory macrophages, thereby potentiating an-
titumor T-cell response and tumor rejection, and suggests CCLR2 as
a potential biomarker candidate and therapeutic target for cancer
immunotherapy.
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The central role of T cells, particularly cytotoxic CD8" T cells
(CTL), in anti-tumor immunity has been highlighted by the
clinical success of cancer immunotherapies. Melanoma is known
as an immunogenic tumor with abundant tumor-infiltrating T cells
and is susceptible to immune checkpoint blockades (1). However,
many types of cancer are not responsive to immunotherapy, and
even for melanoma, less than 40% of patients could benefit from
these therapies, possibly due to insufficient activation of tumor-
specific CTL or their failure to infiltrate tumors (2).
Macrophages constitute the largest fraction of tumor-infiltrating
immune cells and act as an important regulator during cancer
progression (3-6). The abundance of tumor-associated macrophages
(TAM) is generally associated with impaired anti-tumor T-cell im-
munity and poor clinical outcome and response to treatment in solid
tumors (7-10). However, in some cases, macrophages can be asso-
ciated with a good prognosis; for example, high frequencies of HLA-
DR* macrophages within tumors have been associated with good
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outcomes (11-13). It has become clear that TAM consist of a
continuum of phenotypes, ranging from an immunostimulatory
M1-like phenotype to an immunosuppressive M2-like phenotype
(14, 15). Ml-like macrophages predominate at sites of early
oncogenesis, mediating anti-tumor effects including direct killing
and activation of anti-tumor T-cell immunity (5, 7, 16-18). Over
tumor progression, macrophages can be shifted toward M2-like
phenotype by responding to cues within the tumor microenvi-
ronment (TME) (19-21). M2-like macrophages predominate in
established tumors, mediating protumor effects including the
induction of immunosuppression, promotion of angiogenesis, and
tumor cell biology (5, 7). Thus, targeting macrophages has become
an attracting strategy to complement the existing cancer immu-
notherapy. Instead of depletion of all macrophages which contain
both anti- and protumor subsets, induction of immunostimula-
tory phenotype or reprograming TAM from protumor into anti-
tumor phenotype could be more efficient to control tumor pro-
gression primarily by enhancing anti-tumor T-cell responses (7).
Thus, identification of the key factors that regulate the activation
state of macrophages, particularly those enforcing anti-tumor
M1-like phenotype, could facilitate the development of new
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therapeutic targets to improve the efficacy of anti-cancer im-
munotherapy.

C-C motif chemokine receptor-like 2 (CCRL2) was originally
cloned from LPS-stimulated macrophages and first named as a
LPS inducible C-C chemokine receptor related gene (L-CCR)
(22). CCRL2 is absent in resting immune cells and induced in
activated myeloid cells, but not T cells, under certain pathological
conditions (23-27). CCRL2 was later identified as a nonsignaling
atypical receptor to enrich and present its ligand chemerin to the
functional receptor, CMKLR1 (24). Further studies demonstrated
that CCRL2 expressed in endothelial cells promotes CMKLR1-
dependent dendritic cell (DC) and natural killer (NK) cell trans-
migration (28, 29). In addition, CCRL2 expression in activated
neutrophils regulates CXCR2-dependent neutrophil chemotaxis
toward CXCLS8 (25). Surprisingly, the role of CCRL2 in macro-
phages remains unknown. Preclinical mouse studies demonstrated
that CCRL2 is involved in several inflammatory diseases (25, 27, 30).
However, the involvement of CCRL2 in tumors has been reported
until very recently. CCRL2 expression in nonhematopoietic cells in-
hibits lung tumors by facilitating NK cell migration (29), while CCRL2

expression in human breast cancer tissues positively correlates to
tumor-infiltrating immune cells (31).

Here, we demonstrate that CCLR2 expression is not only a
predictive indicator of robust anti-tumor immunity in human can-
cers but also plays a functional role in the activation of immunos-
timulatory macrophages via interacting with surface TLR4 and
amplifying its downstream inflammatory signaling, finally leading to
optimal anti-tumor T-cell responses.

Results

Tumoral CCRL2 Expression Is Positively Associated with Robust Anti-Tumor
T-Cell Inmunity in Cancer Patients. We first evaluated the clinical rel-
evance of tumoral CCLR2 expression and found that metastatic
melanoma (SKCM) patients with high tumoral CCRL2 expres-
sion (CCRL2") had significantly longer survival than those with
low CCRL2 expression (CCRL2'°Y) (Fig. 14). Moreover, CCRL2"
melanoma had significantly increased intratumoral anti-tumor im-
munity characterized by increased infiltrating CD8* T cells, acti-
vated CD4" T cells, activated NK cells, and M1 macrophages, but
decreased M2 macrophages. Of note, CD8" T cells were the most
obviously increased immune cell type in CCRL2" melanoma
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Fig. 1.

Tumoral CCRL2 expression is positively associated with robust anti-tumor T-cell immunity in cancer patients. (A) Overall survival rates of patients with

metastatic melanoma (SKCM) from The Cancer Genome Atlas (TCGA) database with high or low CCRL2 expression as defined by the median value, n = 369. (B)
Characterization of the immune cell composition in primary melanoma of TCGA datasets by CIBERSORT; data represent mean + SEM, n = 103. (C) The
heatmap showing the z-score normalized log-cpm values of signature immune gene sets based on CCRL2 expression levels. n = 103. (D) GSEA demonstrating
the enrichment of signature genes of T-cell activation and IFN-y responses in CCRL2" tumors. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
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(Fig. 1B). Consistently, strong correlation patterns were observed
for the up-regulation of genes involved in T-cell activation, innate
immunity, antigen presentation, and immune checkpoint related
pathway among CCRL2" melanoma, but not for those in tumor
progression (Fig. 1C). Gene Set Enrichment Analysis (GSEA)
also revealed that genes associated with T-cell activation and
IFN-y responses were highly enriched in CCRL2™ melanoma
(Fig. 1D). Similar results were obtained from patients with liver
cancer, bladder cancer, and lung cancer (Fig. 1D). Together,
these results suggest that tumoral CCRL2 expression could be a
useful marker for monitoring the magnitude of anti-tumor im-
munity in cancer patients.

CCRL2 Is Selectively Expressed in TAM with Inmunostimulatory Phenotype.
As expected, CCRL2 was undetectable in all investigated immune
cells from different sites of naive WT mice (SI Appendix, Fig. S14).
Since little is known about cellular distribution of CCRL2 and
how tumor growth influences its expression, we examined the
cellular expression pattern of CCRL2 in a murine B16F10 mel-
anoma model. Flow cytometric analysis revealed CCRL2 ex-
pression was detected in tumor-infiltrating macrophages, but not
in other types of immune cells including myeloid-derived sup-
pressor cells (MDSCs), DCs, NK cells, T cells, and B cells on days
6 and 14 after B16F10 cell inoculation (Fig. 2 A and B). CCRL2
was detected in CD45™ nonimmune cells at low levels, but not in
B16F10 cells (Fig. 2B and SI Appendix, Fig. S1B). CCRL2 ex-
pression was undetectable in circulating immune cells of tumor-
bearing mice (SI Appendix, Fig. S1C). Interestingly, we noted
lower CCRL2 levels in TAM on day 14 than those on day 6
(Fig. 2B). Given a significantly lower ratio of MHCII*CD206~
Mi1-like macrophages and MHCII"CD206™ M2-like macrophages
in tumors from day 14 (Fig. 2C), we speculated that lower CCRL2
expression could be due to the shift from immunostimulatory
M1-like to immunosuppressive M2-like macrophages over tumor
progression. MHCII* macrophages were previously reported to
exhibit immunostimulatory M1-like phenotype and positively corre-
late with tumor regression (32, 33). Accordingly, CCRL2 was pre-
dominately expressed in MHCII™ macrophages but not MHCII™
macrophages (Fig. 2D). Moreover, CCRL2 expression in TAM was
confirmed in human melanoma. As shown in Fig. 2E, CCLR2 was
expressed in tumor-infiltrating CD68* macrophages in human mel-
anoma tissue section. Furthermore, analysis of two independently
published single-cell RNA sequencing datasets of human melanoma
tumors (34, 35) showed high enrichment of CCRL2 expression in
macrophages from both studies (Fig. 2F).

The Immunostimulatory Factors Induce CCRL2 Expression in Macrophages,
which Is Antagonized by Immunosuppressive Factors. To investigate the
factors that regulate CCRL2 expression in macrophages, bone
marrow-derived macrophages (BMDM) were generated and
treated with different stimuli. CCRL2 expression was undetect-
able in resting BMDM (SI Appendix, Fig. S14) but induced by
LPS stimulation as early as 4 h and reached peak at 24 h followed
by returning to baseline levels at 72 h (Fig. 34). Notably, incu-
bation with conditioned media (CM) of B16F10 cells induced
CCRL2 expression in a similar pattern, albeit at relatively lower
levels (Fig. 34). CM from different types of murine tumor cell
lines also induced CCRL2 expression (Fig. 3B). The same phe-
nomenon was observed in human THP-1-derived macrophages
stimulated with CM from human melanoma cell lines (Fig. 3C).
In contrast to LPS being reported to induce CCRL2 expression in
DCs and neutrophils (25, 27), B16F10 CM failed (SI Appendir,
Fig. S1D), which was consistent with undetectable CCLR2 ex-
pression in tumor-infiltrating DC and MDSCs (Fig. 2B). More-
over, Tlr4~"~ BMDM had significantly decreased CCLR2 expression
in response to B16F10 CM (Fig. 3D), suggesting that some TLR4
ligands released by tumor cells could be responsible for CCRL2
expression in TAM. IFN-y slightly up-regulated CCRL2 expression,
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but together with LPS-induced significantly higher CCRL2 levels
in BMDM than those stimulated with LPS alone (Fig. 3E). In
contrast, IL-4 markedly abrogated LPS-induced CCRL2 expression,
which was absent in Stat6~"~ BMDM (Fig. 3F). Notably, significantly
higher CCRL2 levels were observed in Stat6™"~ BMDM regardless
of LPS stimulation (Fig. 3F), suggesting STAT6 as a negative reg-
ulator of CCRL2 expression. Acidosis was reported to be a char-
acteristic of tumors, including melanoma, and involved in the
induction of immunosuppressive macrophages (36). LPS-induced
CCRL2 expression in BMDM was significantly abrogated in cul-
ture media with pH6.8 (Fig. 3G). Interestingly, addition of IL-4 to
the culture of BMDM at 12 h following B16F10 CM stimulation
down-regulated the peak expression of CCRL2 at 24 h (Fig. 3H). In
contrast, addition of IFN-y to the culture of BMDM at 48 h fol-
lowing B16F10 CM stimulation prevented the reduction of CCRL2
expression to the baseline levels at 72 h (Fig. 3H). Together, these
results suggest that CCRL2 expression in macrophages is preferably
induced by immunostimulatory factors, particularly TLR4 ligands,
which could be antagonized by immunosuppressive factors.

Hematopoietic CCRL2 Is Responsible for Inhibiting Melanoma Growth
in a CD8* T Cell-dependent Manner. We next investigated whether
CCRL2 plays a causal role in murine melanoma growth. To this
end, we generated Ccri2™'~ mice, in which CCRL2 was not de-
tectable in lung stromal cells which were reported to constitu-
tively express CCRL2 (23), while CCRL2 was readily detected in
WT controls (SI Appendix, Fig. S1E). Ccrl2~~ mice are viable
and fertile and developed normally (S Appendix, Fig. S1 F-H).
We showed that tumors grew faster and larger in Ccrl2™'~ mice
than in WT mice (Fig. 44). Consistent with the previous findings
(24), increased serum chemerin levels were detected in Cerl2™/~
mice (SI Appendix, Fig. S1I). Previous studies from us and others
demonstrated chemerin, a reported ligand for CCRL2, inhibited
melanoma via CMKLR1-dependent NK cell recruitment (37,
38). However, we ruled out the possible involvement of chemerin
in the tumor-inhibitory effects of CCRL2, as chemerin overexpression
effectively inhibited melanoma growth accompanied by increased
frequencies of NK cells and CD8* T cells in Cerf27/~ mice (SI Ap-
pendix, Fig. S2 A-C). We further found that CCRL2 deficiency
markedly decreased frequencies of CD4™ T, CD8" T cells, and NK
cells, while possessing significantly increased macrophages, with no
effect on DCs and MDSCs in B16 tumors (Fig. 4B). CCRL2 defi-
ciency also caused less activated T cells, as evidenced by significant
decreases in frequencies of proliferating CD4* T cells and CD8™*
T cells, IFN-y-expressing CD4" T cells and CD8" T cells, and gran-
zyme B-expressing CD8™ T cells (Fig. 4 C-E). Consistently, markedly
decreased IFN-y levels were detected in Ccri2~~ tumor homogenates
(Fig. 4F). We also noted lower frequencies of PD-1-expressing CD4™*
and CD8* T cells in Ccri2”~ tumors (Fig. 4G), further confirming
insufficient T-cell activation in the absence of CCRL2. Consistently,
weakened intratumoral ovalbumin (OVA)-specific T-cell responses
were observed in Cerl2™'~ mice that were inoculated with OVA-B16
cells compared to WT controls (SI Appendix, Fig. S3)

Since we found that nonimmune cells also express CCRL2 in
B16F10 melanoma, bone marrow chimeras were generated to
determine whether the melanoma-inhibitory effect of CCRL2 is
mediated by hematopoietic or nonhematopoietic compartments
or both. Ccrl27”/~—=WT mice, which are deficient in hematopoi-
etic CCRL2, exhibited similar tumor growth to those observed in
Cerl2”~= Ccrl2”~ mice (Fig. 4H). In contrast, CCRL2
WT—Ccri2™~ mice, which are deficient in nonhematopoietic
CCRL2, exhibited similar tumor growth to those observed in
WT-WT mice (Fig. 4H). These results demonstrate that non-
hematopoietic CCRL2 expression is dispensable for controlling
melanoma growth in our model. We were then prompted to
investigate whether T cells are required by the tumor-inhibitory
effects of CCLR2. As expected, CD8"* T-cell depletion caused
faster tumor growth and larger tumor size in WT mice,
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confirming the critical role of CD8" T cells in controlling mel-
anoma growth (Fig. 4I). Notably, CD8* T-cell depletion com-
pletely eliminated the differences in tumor growth between WT
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and Ccrl2™~ mice (Fig. 4I). In contrast, CD4™ T-cell depletion
had no such effects, suggesting a dispensable role of CD4*
T cells (Fig. 4/). Together, these results demonstrate that the
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tumor-inhibitory effect of CCRL2 is dependent on CD8* T cell-
mediated anti-tumor immunity.

CCRL2 Deficiency Impairs Inmunostimulatory Phenotype of Macrophages
in Melanoma. Since CD8* T cells do not express CCRL2 but are
required by the melanoma-inhibitory effect of CCRL2, we reasoned
that CCRL2 could influence the activation state of macrophages,
thereby regulating intratumoral T-cell responses. To test it, we
first compared the expression of phenotype markers in WT and
Cerl2”~ TAM on day 6 when immunostimulatory M1-like macro-
phages were dominated. Comparable frequencies of total macro-
phages were detected in WT and Cerl2”~ tumors on day 6, which
were much lower than those detected in tumor on day 14 (Figs. 54
and 4B). Of note, an overall decrease in expression of immunosti-
mulatory surface markers but unchanged CD206 expression were
observed in Ccri2™~ TAM (Fig. 5B). Accordingly, Ccrl2™~ mice
had significantly lower frequencies of IFN-y-expressing CD4* T
and CD8" T cells (Fig. 5C), suggesting CCRL2 deficiency im-
pairs anti-tumor T-cell immunity at an early stage of melanoma
growth. Lower levels of PD-L1 were detected in Ccri2™/~ TAM
(Fig. 5B), which could have resulted from IFN-y, the potent
stimulus for PD-L1 expression, being down-regulated in the
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Ccrl2™~ tumor microenvironment. We also compared the acti-
vation state of macrophages in WT and Ccri2™'~ mice with de-
pleted CD8* T cells, in which tumor size were comparable to
exclude the potential influence on macrophage activation. De-
spite comparable frequencies of total macrophages in both
genotypes (Fig. 5D), macrophages from CD8* T cell-depleted
Ccrl2™~ mice had an overall decrease in expression of immu-
nostimulatory surface markers but unchanged CD206 expression
(Fig. 5E), suggesting that CCRL2 directly promotes the immu-
nostimulatory phenotypes of TAM. Consistently, positive cor-
relations between gene expression of CCRL2 and CD80, CDS86,
HLA-DR or PD-L1, but no correlation between CCRL2 and
CD206/MRC1, were found in melanoma patients (Fig. 5F). To-
gether, these results indicate that CCRL2 is involved in activation
of immunostimulatory macrophages, thereby facilitating subse-
quent activation of anti-tumor T cells in melanoma.

CCRL2 Promotes Activation of M1 Macrophages to Potentiate Anti-Tumor
CD8" T-Cell Responses. To seek the direct evidence that CCRL2
promotes immunostimulatory macrophage activation, we used
the classical in vitro M1 macrophage polarization model by stimu-
lating WT and Cerl2”~ BMDM with LPS/IEN-y. Ccrl2”~ BMDM
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Fig. 4. Hematopoietic CCRL2 is responsible for inhibiting melanoma growth in a CD8" T cell-dependent manner. (A) Tumor growth curve. (B) Average
percentages of different types of infiltrating immune cells in tumors of WT and Ccr/2~~ mice on day 14. (C and D) CD4* and CD8* T cells were gated and
examined for expression of Ki67 (C) and IFN-y (D). (E) Expression of Granzyme B. (F) The concentrations of IFN-y in tumor homogenates. (G) Expression of PD-
1. (H-J) Tumor growth curve in bone marrow chimeras (H), WT and Ccrl27~ mice treated with neutralizing antibodies (Abs) against CD8 (/) or CD4 (J). Data
represent mean + SEM (n = 5 to 7). Similar results were obtained from three independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.

exhibited markedly impaired M1 activation, as evidenced by sig-  expression of M2-related molecules were comparable to Ccri2™/~
nificantly reduced gene expression of proinflammatory mediators and WT BMDM (Fig. 6B). To investigate whether CCRL2 expres-
when compared to WT BMDM (Fig. 64). In contrast, CCRL2  sion in classically activated macrophages is required for reactivating
had no effect on IL-4—induced M2 macrophage polarization, as gene  antigen-specific CD8"* T-cell response, WT and Ccri2”~ BMDM
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Fig. 5. CCRL2 deficiency impairs immunostimulatory phenotype of macrophages in melanoma. (A-C) Average percentages of macrophages (A), represen-
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to 7). Similar results were obtained from three independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.

were first stimulated with LPS/IFN-y, and then pulsed with
OVA;s7.264 peptides followed by coculturing with splenocytes
from OVA-sensitized OT1 mice (Fig. 6C). Compared with
similarly-treated WT BMDM, Ccri2~/~ BMDM had decreased
ability to stimulate proliferation and effector function of CD8*T cells
(Fig. 6 D-G). We further investigated the anti-tumor effect of
CCRL2 expression in LPS/IFN-y-activated BMDM in vivo using a
coinjection model (SI Appendix, Fig. S44). Although coinjection of
LPS/IEN-y-activated WT or Ccrl2”~ BMDM both slowed down
B16F10 tumor growth in Ccrl2™~ mice, coinjection of Cerl27/~
BMDM had significantly diminished tumor-inhibitory effect and
decreased proliferation and activation of CD4* and CDS8*
T cells (SI Appendix, Fig. S4 B-F). To further determine whether
the anti-tumor effect of CCRL2 requires macrophages in vivo,
macrophages were depleted by injecting clodronate-conjugated
liposomes. Macrophage depletion completely eliminated the dif-
ference in tumor growth between WT and Cerl2™~ mice (Fig. 6H),
which caused no differences in the proliferation and activation of
CD8™ T cells (Fig. 6I). Together, these results demonstrate that
CCRL2 expression in macrophages is critical for restraining tumor
growth by potentiating anti-tumor T-cell response.

Yin et al.

CCRL2 promotes antitumor T-cell immunity via amplifying TLR4-mediated immunostimulatory

macrophage activation

CCRL2 Retains Membrane TLR4 Expression to Amplify Downstream
Myd88-NF-kB Signaling. We then sought to explore the underly-
ing molecular mechanism of how CCRL2 promotes immunosti-
mulatory macrophage activation. Ccri2™~ BMDM exhibited
reduced protein levels of Myd88 and phosphorylated p65 (p-p65)
but similar levels of p-STAT1 compared with WT controls in re-
sponse to LPS/IFN-y (Fig. 74), indicating that CCRL2 could am-
plify Myd88-NF«B signaling in classically activated macrophages.
Given the importance of membrane TLR4 in mediating Myd88-
NFkB signaling, we hypothesized that CCRL2 that is primarily in-
duced by TLR4 ligands may interact with surface TLR4 to influence
its downstream signaling. We first demonstrated the interaction
between CCRL2 and TLR4 in HEK 293T cells and BMDM stim-
ulated with B16F10 CM by coimmunoprecipitation assay (Fig. 7 B
and C and SI Appendix, Fig. S5). Such interaction was further
confirmed in live cells using NanoBit proximity assay system. As
shown in Fig. 7D, HEK 293T cells cotransfected with expression
vector LgBit-CCRL2 and SmBit-TLR4 showed an obviously el-
evated luminescence signal compared with negative control. We
then examined whether induced CCRL2 expression is able to retain
surface TLR4 expression in activated macrophages. Stimulation
with LPS or B16F10 CM both reduced surface TLR4 levels in
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BMDM over time, and the former caused the greater and faster
loss of surface TLR4 (Fig. 7E). Notably, significantly lower levels
of surface TLR4 levels were detected in Ceri2”’~ BMDM
(Fig. 7E). We also noted the differences in surface TLR4 levels
were more obvious between WT and Ccrl2~~ BMDM stimulated
with B16F10-CM, suggesting that CCLR2 may be more efficient
in retaining surface TLR4 expression in TAM. There were no dif-
ferences in surface TLR4 expression between WT and Cerl27/~
BMDM at least within 1 h after stimulation (Fig. 7F), which was
paralleled with undetectable CCRL2 expression at this time point
(SI Appendix, Fig. S64). Moreover, Ccrl2”~ TAM had significantly
less surface TLR4 levels than WT controls (Fig. 7F). Despite lower
surface TLR4 levels in Ccri2”~ BMDM, comparable TLR4 ex-
pressions at both mRNA and protein levels were detected in clas-
sically activated WT and Ccrl2~~ BMDM (SI Appendix, Fig. S6 B
and C), suggesting that decreased surface TLR4 is not due to the
transcription and translation. Moreover, the TLR signaling pathway
was enriched in human cancers with high CCRL2 expression,
underscoring the positive correlation between CCRL2 expression
and TLR4 signaling (Fig. 7G). Thus, these results demonstrate that
CCRL2 interacts with TLR4 to retain its surface expression, thereby
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amplifying downstream inflammatory Myd88-NF«kB signaling in
macrophages.

TLR4 Deficiency Reduces CCRL2 Expression in TAM and Anti-Tumor
T-Cell Responses in Murine Melanoma. Finally, we investigated the
direct effect of TLR4 on CCLR2 expression in TAM and anti-
tumor T-cell responses. Compared with WT controls, Tlr4~/~
mice had increased tumor growth (Fig. 84), which resembled
Ccrl27'~ mice. Importantly, significantly decreased CCRL2 ex-
pression was detected in 7lr4~~ TAM compared to WT controls
(Fig. 8B), which was consistent with the in vitro data (Fig. 3D). Ac-
cordingly, TLR4 deficiency resulted in significantly decreased prolif-
eration and activation of T cells in tumors (Fig. 8 C-E). Together,
these results demonstrate the presence of TLR4 could up-regulate
CCRL2 expression in TAM and facilitate anti-tumor T-cell immunity.

Discussion

Despite emerging evidence demonstrating the regulatory role of
CCLR2 in inflammatory diseases, little is known about its role in
anti-tumor immunity. Here, we report a positive association be-
tween tumoral CCRL2 expression and the intensity of anti-tumor
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T-cell immunity in human cancer. Moreover, CCRL2 is found to
be selectively induced in immunostimulatory M1-like macrophages
and functions to potentiate anti-tumor CD8* T-cell responses,
thereby restraining melanoma growth. Mechanistically, CCRL2
could interact with membrane TLR4 to retain its expression in cell
surface of classically activated macrophages, thereby amplifying
membrane TLR4-mediated inflammatory signaling to enhance their
immunostimulatory phenotype (Fig. 8F).

Our study revealed that CCRL2 is not only a predictive indi-
cator of robust anti-tumor T-cell immunity in cancer patients, but
functional in potentiating anti-tumor T-cell responses. In con-
trast to the recent finding that nonhematopoietic CCRL2 is crit-
ical for NK cell-mediated anti-tumor immunity (29), we found
that CCRL2 expression in hematopoietic cells, but not non-
hematopoietic cells, was required for inhibiting melanoma growth.
Moreover, the melanoma-inhibitory effect of CCRL2 is primarily
dependent on CD8* T cells via facilitating activation of immu-
nostimulatory macrophages. Among tumor-infiltrating leuko-
cytes, CCRL2 was exclusively expressed in TAM, particularly in
those with immunostimulatory phenotypes. We found that
B16F10 CM could induce CCLR2 expression in BMDM which
was primarily dependent on TLR4, suggesting that some danger
signals that serve as TLR4 ligands in the TME could be responsible.
Further investigation needs to identify the specific factors that up-
regulate CCRL2 expression in TAM. In contrast to CCLR2 ex-
pression in neutrophils and DCs in several inflammatory diseases
(22, 25, 27), we failed to detect its expression in tumor-infiltrating
DCs and neutrophils or B16F10 CM-stimulated DCs and neutro-
phils. The differential cellular distribution of CCRL2 in models of
tumor and immune-related inflammatory disease could be due to
the differences in the nature or the intensity of inflammatory
signaling that are present in the microenvironment. Further, we
demonstrated that CCRL2 is functional in the activation of
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immunostimulatory macrophages, thereby potentiating anti-
tumor T-cell responses. This is supported by several lines of
evidence. First, impaired activation of M1-like immunostimula-
tory macrophages was observed in Ccrl2™~ tumors, which was
independent of tumor size or T-cell responses. Second, Ccri2™/~
BMDM had impaired LPS/IFN-y-induced M1 macrophage po-
larization with decreased ability to reactivate antigen-specific
OT1 CD8* T cells in vitro or to stimulate anti-tumor T-cell re-
sponses and restrain tumor growth in Ccri2”~ mice. Lastly, macro-
phage depletion completely eliminated the differences in tumor growth
and anti-tumor CD8* T-cell responses between WT and Ccri2™/~
mice. Together, our results reveal a nonredundant role of CCRL2 in
activation of immunostimulatory macrophages and subsequent stimu-
lation of anti-tumor T-cell immunity. Thus, the induction and main-
tenance of CCRL2 expression in macrophages within the TME could
be a promising strategy to potentiate anti-tumor immunity.
Accumulating evidence has demonstrated that various factors
influence cancer progression by regulating the balance between
Ml-like and M2-like macrophages gS, 7). Although increased total
macrophages were found in Ccrl2”” tumors on day 14, a tumor-
inhibiting effect of CCRL2 is unlikely due to the limitation of im-
munosuppressive M2-like macrophage activation. In support of it,
we demonstrated that IL-4-induced M2 activation was intact in
Ccrl27~ BMDM. We also found lower PD-L1 expression in Cerl2 ™~
TAM, indicating weaker anti-tumor T-cell responses being initiated
in Ccrl2™~ mice. Interestingly, induced CCRL2 expression in
immunostimulatory M1-like macrophages could be negated by the
immunosuppressive factors, which may represent a strategy used
by tumors to antagonize the immunostimulatory states of TAM.
Together, these data suggest that increased immunosuppression in
established Cerl27/~ tumors could result from aggravated tumor
growth secondary to impaired activation of immunostimulatory
M1-like macrophages during early onset of tumor growth.
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Finally, we elucidated the underlying molecular mechanism of
how CCRL2 contributes to classical activation of immunosti-
mulatory macrophages. We found that CCRL2 interacted with
membrane TLR4, which was important for retaining amounts of
cell surface TLR4. CCRL2 deficiency caused greater loss of
surface TLR4 expression in Ccrl2™~ TAM or classically activated
BMDM, leading to decreased membrane TLR4-dependent MydS88-
NF«B signaling and proinflammatory cytokine expression. The
enhancement of TLR4 signaling in innate immune response is
known to be important for potentiation of anti-tumor T-cell re-
sponse (39). We further demonstrated that /4=~ mice had obvi-
ously decreased CCRL2 expression in TAM and impaired anti-
tumor T-cell responses, suggesting the important role of TLR4 in
orchestrating host anti-tumor immune responses. This is consistent
with a recent study showing that TLR4 activation in macrophages is
important to control tumor growth (40). Therefore, we propose that
CCRL2 that is induced by TLR4 agonists could in turn facilitate the
retainment of surface TLR4 expression in macrophages, thereby
amplifying membrane TLR4-mediated downstream inflammatory
signaling, finally leading to optimal activation of immunostimulatory
macrophages. Given a previous study that reported that CCRL2
interacting with CXCR2 on the surface of neutrophils increased
their chemotactic activity toward CXCL-8 (25), cell surface expres-
sion of nonsignaling CCRL2 is likely involved in the regulation of
different immune cell functions via interacting with corresponding
functional surface receptors in a cell context-dependent way.

In summary, our study identifies CCRL2 as a predictive indi-
cator of robust anti-tumor immunity in human cancers and further
reveals the functional role of CCRL2 in activation of immunosti-
mulatory macrophages and subsequent anti-tumor T-cell response.
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