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Many social and biological systems are characterized by endur-
ing hierarchies, including those organized around prestige in
academia, dominance in animal groups, and desirability in online
dating. Despite their ubiquity, the general mechanisms that
explain the creation and endurance of such hierarchies are not
well understood. We introduce a generative model for the dynam-
ics of hierarchies using time-varying networks, in which new
links are formed based on the preferences of nodes in the cur-
rent network and old links are forgotten over time. The model
produces a range of hierarchical structures, ranging from egal-
itarianism to bistable hierarchies, and we derive critical points
that separate these regimes in the limit of long system memory.
Importantly, our model supports statistical inference, allowing for
a principled comparison of generative mechanisms using data. We
apply the model to study hierarchical structures in empirical data
on hiring patterns among mathematicians, dominance relations
among parakeets, and friendships among members of a fraternity,
observing several persistent patterns as well as interpretable dif-
ferences in the generative mechanisms favored by each. Our work
contributes to the growing literature on statistically grounded
models of time-varying networks.

dominance hierarchies | dynamical systems | statistical inference |
critical transitions | network science

H ierarchies—stable sets of dominance relationships among
individuals (1–3)—structure many human and animal soci-

eties. Among animals, hierarchical rank may determine access
to resources such as food, grooming, and reproduction (4).
Among humans, rank shapes the epistemic capital and employ-
ment prospects of researchers (5, 6), susceptibility of adolescents
to bullying (7), messaging patterns in online dating (8), and
influence in group decision-making (9).

A central question concerns how enduring hierarchies shape
and are shaped by interactions between individuals. Empirical
studies have indicated the presence of a “winner effect”: An
individual who participates in a favorable interaction, such as
winning a fight or receiving an endorsement, increases their like-
lihood of being favored in future interactions (10, 11). Both
theoretical work (12–20) and controlled experiments in humans
(21) suggest that winner effects are sufficient (though not nec-
essary) to form stable hierarchies. Mechanistic explanations of
winner effects vary. A common approach postulates that each
individual possesses an “intrinsic strength,” which may depend
on factors such as size, skill, or aggression levels. For instance,
physiological mechanisms, such as changes in hormone levels fol-
lowing confrontational interactions (22), can alter an individual’s
strength, causing the strong to get stronger.

However, intrinsic strengths are not necessary to produce win-
ner effects. If a politician endorses a rival candidate, the latter
does not become intrinsically more fit for office; instead, the
endorsee builds support for their candidacy that may lead to
future endorsements. The fame of the endorser is key: The
better-known the endorser, the more valuable the endorsement.
We refer to such prestige by proxy as “transitive prestige.” Since

transitive prestige enables hierarchical rank to flow through
interactions between individuals, networks provide a natural lens
through which to study its role. Recent empirical studies have
emphasized the networked nature of hierarchy in biological and
social groups (2, 3, 23–25). Several theoretical studies (26–29)
have also investigated reinforcing hierarchy using time-varying
network models called “adaptive networks” (30, 31). In this class
of models, edges, representing interactions, evolve in response
to node states and vice versa. Edges tend to accrue to important
or highly central nodes, leading to self-reinforcing hierarchical
network structures. Despite their recent uses, adaptive net-
works are often difficult to analyze analytically or compare to
empirical data.

We present a flexible adaptive network model of social hierar-
chy that addresses these challenges. Winner effects in our model
are driven entirely by social reinforcement, rather than intrinsic
strengths. We allow arbitrary matrix functions to determine rank
or prestige of nodes in the network and introduce parameters
governing the behavior of individuals in response to rank. A key
feature of our model is that it is amenable both to mathematical
analysis and to statistical inference. We analytically characterize
a critical transition separating egalitarian and hierarchical model
states for several choices of ranking function. We also explore
hierarchical patterns in four biological and social datasets, using
our model to perform principled selection between compet-
ing ranking methods in each dataset, and highlight persistent
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macroscopic patterns. We conclude with a discussion of potential
model extensions and connections to recent work on centrality in
temporal networks.

Modeling Emergent Hierarchy
In our adaptive network model, new directed edges are formed
based on existing, node-based hierarchy, after which they decay
over time. We conceptualize a directed edge i→ j as an
“endorsement,” in which i affirms that j is fit, prestigious, or oth-
erwise of high quality. For example, endorsements could capture
contests won by j over i , retweets of j by i , or comparisons in
which a third party ranks j above i . We collect endorsements in
a weighted directed network on n nodes summarized by its adja-
cency matrix A∈Rn×n , where entry aij is the weighted number
of interactions i→ j . The matrix A evolves in discrete time via
the iteration

A(t + 1) =λA(t) + (1−λ)∆(t) . [1]

Here, the “update matrix” ∆(t) contains new endorsements at
time t . The “memory parameter” λ∈ [0, 1] represents the rate
with which memories of old endorsements decay; the smaller the
value ofλ, the more quickly previous endorsements are forgotten.

The new endorsements in ∆(t) depend on previous endorse-
ments through a ranking of the n nodes, which we call the “score
vector” (or simply “score”) s∈Rn . The score vector is the output
of a “score function” σ : A 7→ s∈Rn , which may be any rule that
assigns a real number to each node.

We consider three score functions chosen for analytical
tractability and relevance in applications. Let Din and Dout be
diagonal matrices whose entries are the weighted in- and out-
degrees of the network, i.e., Din

ii =
∑

j Aij and Dout
ii =

∑
j Aji .

First, the Root-Degree score is the square root of the in-
degree—the weighted number endorsements—of each node i ,
defined as si =

√
Din

ii . The Root-Degree score function does not
model transitive prestige, since only the number of endorsements
is considered, not the prestige of the agents from which they
come. Second, PageRank (32) is a recursive notion of rank, in
which high-rank nodes are those whose endorsers are numerous,
and themselves high rank. The foundational algorithm used by
Google in ranking web pages, PageRank computes a value for
each node interpretable as the proportion of time that a random
surfer following the network of endorsements would spend on
that node. We define PageRank score s as the PageRank vector
of AT , which is the unique solution to the system[

αpAT (Dout)−1 + (1−αp)n−1e eT
]
s = s [2]

up to scalar multiplication. Here, αp ∈ [0, 1] is the so-called tele-
portation parameter, for which we use the customary value αp =
0.85. We normalize the PageRank vector so that eT s =n , where e
is the vector of ones. Finally, SpringRank (33) is another recursive
definition of rank, in which endorsers are ranked one unit below
endorsees, and disagreements are resolved by using an analogy to
a physical system of springs: The ranking of nodes minimizes the
total energy of the system. Mathematically, the SpringRank score
s is the unique solution to the linear system (33)[

Din + Dout− (A + AT ) +αsI
]
s =

[
Din−Dout

]
e , [3]

with the identity matrix I and a regularization parameter αs > 0,
which ensures the uniqueness of s. Unlike the Root-Degree
score, both PageRank and SpringRank scores model transitive
prestige: The impact of an endorsement depends on the prestige
of the endorser. These three score functions can all be inter-
preted as rankings or centrality measures, although this property
is not required of score functions in our model.

Given score vector s, new endorsements ∆ are chosen using a
random utility model, a standard framework in discrete choice
theory that has recently been applied in models of growing
networks (34). At time step t , node i is selected uniformly at ran-
dom. We suppose that endorsing j has utility uij (s) for i , which
depends on the current scores. In this work, we focus on utilities
of the functional form

uij (s) =β1sj +β2(si − sj )
2 , [4]

where we generally assume that β1> 0 and β2< 0. The param-
eter β1 captures a “preference for prestige”; a positive value of
β1 indicates a tendency to endorse others with high scores. The
parameter β2 captures a “preference for proximity”; a negative
value of β2 indicates a tendency to endorse others with scores
relatively similar to their own. Many other choices of utility func-
tions are possible; we prove a stability theorem for a large class
of these functions in SI Appendix.

In the random utility model, node i observes all possible utilities
subject to noise. Traditionally, this noise is chosen to be Gumbel-
distributed, in which case the probability that endorsing j yields
the greatest utility is given by the multinomial logit (35)

pij (s)=
euij (s)∑n
j=1 e

uij (s)
. [5]

We collect m ∈N endorsements in an update matrix ∆, where
the entry ∆ij gives the number of times that i endorses j in
the time step. More complex random utility models can lead to
more realistic structures in networks with a growing number of
nodes (36); we do not pursue these complications here because
our model does not focus on network growth and because these
complications obstruct analytical insight.

Eq. 5 can also be derived from an alternative model, in which
node i makes a randomized choice among n nodes to endorse.
In this model, the option to endorse j is assigned a determin-
istically observed weight proportional to euij (s). In this case,
β1 and β2 signify inverse temperatures that tune the degree of
randomness in this choice, with lower values corresponding to
greater randomness. Although this alternative model—in which
node i makes a noisy choice between deterministically observed
utilities—and the random utility model—in which node i makes
a deterministic choice between noisily observed utilities—are
mathematically equivalent, the two formulations can lead to
different interpretations of system behavior. In the case of insti-
tutional faculty hiring discussed below (Hierarchies in Data), the
random utility model assumes that a hiring committee makes
imperfect observations of the utilities of the institutions from
which they could hire and then deterministically chooses the
highest of these imperfectly observed qualities. In contrast, the
alternative framework assumes that the committee makes a per-
fect observation of the utilities, but then chooses among them
with some degree of randomness, which may reflect dissen-
sion on the hiring committee, search-specific priorities, or other
factors.

Eqs. 1 and 5 capture key features of our model. First, the
dynamics in Eq. 1 imply that past interactions decay geometri-
cally at rate λ. This global, gradual decay contrasts with another
rank-based relinking model, in which single edges fully disappear
within each time step (26). Second, Eq. 5 implies that the likeli-
hood of a node being endorsed at a given time step depends only
on the distribution of previous endorsements and not on intrinsic
strength or desirability. Those who receive more endorsements
and therefore obtain higher scores are more likely to be endorsed
in the future—a mechanistic instantiation of winner effects via
social reinforcement.

Fig. 1 schematically illustrates model dynamics with m = 1
endorsement per time step. At time t = 1, the model is initialized
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Fig. 1. Schematic illustration of our model dynamics. Nodes are initialized
at time t = 1 with a set of pre-existing endorsements logged in A (solid
arrows), and the score s =σ(A) is computed (vertical axis). Then, a new edge
logged in ∆ is added (dashed line). In the next time step t = 2, old interac-
tions decay by a factor of λ (gray arrows). The new endorsement and decay
of previous endorsements lead to an updated score function, which then
informs the next time step.

with a small number of endorsements logged in A. The score
function takes A as an input and outputs the score vector s,
which, in turn, determines a new interaction according to Eq.
5. Logged in ∆, this new interaction is weighted by 1−λ and
added to the previous endorsements, which are discounted by λ.
This process repeats over time with new endorsements gradually
replacing old ones in the system’s memory, sequentially updating
the score vector s. Fig. 1 also depicts in stylized fashion the oper-
ation of both a winner effect (β1> 0), in which endorsements
tend to flow in the direction of increasing score, and a proxim-
ity effect (β2< 0), in which endorsements tend to flow between
nodes of similar scores. The net effect is that most endorsements
are “short hops” up the hierarchy. As we will discuss, this is a
common pattern in empirical data.

Despite its simplicity, the model displays a wide range of
behaviors. To observe them, we define a “rank vector” γ,
whose j th entry γj =n−1 ∑

i pij gives the likelihood that a new
endorsement flows to j . We say that the system state is “egali-
tarian” when all ranks γj are equal and “hierarchical” otherwise.
Fig. 2 illustrates representative behaviors when the SpringRank
score is used. When β1 is relatively small, winner effects are
overtaken by noise, and the system settles into an approximately
egalitarian state (Fig. 2 A and B). When β1 is relatively large,
persistent hierarchies emerge (Fig. 2 C–F). Moreover, the distri-
bution and stability of ranks depend on the strength of proximity
effects, modeled by the quadratic term in the utilities. For β2 = 0
(no proximity preference), a single node garners more than half
of endorsements in a hierarchy with significant fluctuations (Fig.
2 C and D). Adding a proximity preference leads to a marginally
more equitable hierarchy with ranks that are nearly constant in
time (Fig. 2 E and F).

The Long-Memory Limit
The behavior observed in Fig. 2 suggests the presence of qual-
itatively distinct regimes depending on prestige preference β1.
For small β1 (Fig. 2A), the winner effect is weak, and approx-
imate egalitarianism prevails. For larger β1, a stronger winner
effect enforces a stable hierarchy. We characterize the boundary
between these regimes analytically in the “long-memory limit”
λ→ 1 by defining a function f, which is analogous to a deter-
ministic time-derivative for the dynamics of our discrete-time
stochastic process. Let

f(s, A) = lim
λ→1

E[σ(λA + (1−λ)∆)]− s
1−λ , [6]

where the expectation is taken with respect to ∆. If f(s, A) = 0
for all A, the score vector s is a fixed point of the model dynam-
ics in expectation. Our choices of Root-Degree, PageRank, and
SpringRank score functions admit closed-form expressions for f,
allowing us to analytically derive the conditions for the stability
of egalitarianism in the limit of long memory.

Theorem 1. For each of the Root-Degree, PageRank, and
SpringRank score functions, f has a unique egalitarian root. This
root is linearly stable if and only if β1<βc

1 , where

βc
1 =


2

√
n

m
Root-Degree,

1/αp PageRank,

2 +αs
n

m
SpringRank.

In SI Appendix, we prove Theorem 1, as well as a generaliza-
tion to arbitrary smooth utility functions. In each case, the proof
of uniqueness exploits the algebraic structure of the score func-
tion, and the critical value βc

1 is obtained via the linearization of
f about the egalitarian state. Interestingly, only β1 plays a role in
the stability of the egalitarian root. While proximity preference
β2 does not determine where the hierarchical regime begins, it

A B

C D

E F

HG

Fig. 2. Representative dynamics of the proposed model. Each column
shows a population of n = 8 nodes simulated for 2,000 time steps using
the SpringRank score function with m = 1 update per time step, varying
the preference parameters β1 and β2. A, C, E, and G show the simulated
rank vector γ over time; different colors track the ranks of different nodes.
B, D, F, and H show the adjacency matrix A at time step t = 2,000 for the
corresponding parameter combinations. See SI Appendix, Fig. S1 for addi-
tional examples with SpringRank; SI Appendix, Fig. S2 for examples with
PageRank; and SI Appendix, Fig. S3 for examples with Root-Degree. See SI
Appendix, Fig. S4 for the dependence of rank variance on β1 and β2 jointly.
Parameters: λ = 0.995, αs = 10−8.
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does influence the structure of and the transient dynamics toward
nonegalitarian equilibria (Fig. 2 E and G).

Fig. 3 illustrates the destabilization of egalitarianism predicted
by Theorem 1 in the case of n = 8 nodes. Although not required
by Theorem 1, we fix β2 = 0 for simplicity. Curves show fixed
points of the model dynamics in the long-memory limit. We show
only fixed points in which nodes separate into two groups, each
of which have identical rank. For β1<βc

1 , the egalitarian regime
is stable, and the long-run state deviates from egalitarianism only
slightly. For β1>βc

1 , in contrast, the long-run state switches to an
inegalitarian, stable fixed point.

In the Root-Degree and PageRank models, there is a sin-
gle stable inegalitarian equilibrium with one node absorbing
nearly all endorsements (Fig. 3 A and B). Interestingly, there
is a bistable regime in which both egalitarian and inegalitarian
states are attracting. Whether the system converges to one or
the other depends on initial conditions. The SpringRank model
displays qualitatively distinct behavior (Fig. 3 C and D). Past
βc
1 , we observe staggered multistable regimes. As β1 increases,

equilibria with multiple elite (i.e., highly ranked) nodes become
sequentially unstable until eventually only a single elite node
remains. The long-term behavior of the system again depends
on initial conditions, but now there are many more possible sta-
ble states. This behavior would seem to make the SpringRank
score function especially appropriate for modeling empirical sys-
tems with multiple distinct hierarchical regimes and sensitivity to
initial conditions, an intuition that we confirm empirically in the
following section.

Hierarchies in Data
In addition to being amenable to analytical treatment, our model
has a tractable likelihood function, described in SI Appendix.
This allows us to study hierarchical structures in empirical data

A B

C D

Fig. 3. Bifurcations in models with Root-Degree (A), PageRank (B), and
SpringRank (C and D) score functions with β2 = 0 and m = 1 update per
time step. Points give the value of the rank vector γ averaged over
the final 500 time steps of a 5× 104-step simulation with n = 8 nodes,
memory parameter λ= 0.9995, and varying β1 specified by the horizon-
tal axis. Solid curves show stationary points of the long-memory dynamics
obtained by numerically solving the equation f(s, A) = 0, subject to the
restriction that nodes separate into two groups with identical ranks in
each. Black curves are linearly stable, while gray curves are unstable. Sta-
bility was determined by studying the spectrum of the Jacobian matrix of
f. Vertical lines give the critical value βc

1, at which the egalitarian solu-
tion becomes linearly unstable, according to Theorem 1. Parameters: αp =

0.85, αs = 10−8.

using principled statistical inference. The likelihood function not
only supports maximum-likelihood parameter estimates of λ, β1,
and β2, but also enables direct comparisons of different score
functions in a statistically rigorous framework: Score functions
with higher likelihoods provide more predictive low-dimensional
summaries of observed interactions. This, in turn, allows us to
explore the relative value of competing mechanistic explanations
of observed data.

Several mathematical features of the model facilitate the
exploration of real data. First, the predictive distribution Eq.
5 is in the linear exponential family, making the estimation of
β a convex optimization with a unique solution. Second, the
estimation problem in λ̂ is, in general, nonconvex, but can be
tractably solved via first-order optimization methods with mul-
tiple starting points. Finally, while model likelihoods evaluated
on training data may, in principle, be inflated due to overfitting,
our model uses only three parameters to fit hundreds or thou-
sands of observations, suggesting that overfitting is not a major
concern.

We conducted a comparative study of model behavior on four
datasets: an academic exchange network in math, two networks
of parakeet interactions, and a network of friendships among
members of a fraternity. The Math PhD Exchange dataset is
extracted from The Mathematics Genealogy Project (37–39).
Nodes are universities. An interaction i→ j at time t occurs
when a mathematician who received their degree from univer-
sity j at time t supervises one or more PhD theses at university
i . This event is a proxy for university i hiring a graduate from
university j at a time near t . We view this as an endorse-
ment by j that graduates of i are of high quality (5). We
restricted our analysis to the activity of the 70 institutions that
placed the most graduates between 1960 and 2000. Doing so
helped to avoid singularities produced by institutions with no
placements early in the time period and to minimize temporal
boundary effects associated with the beginning and end of data
collection.

The two Parakeet datasets (3, 40) record aggression events in
two distinct groups of birds studied over four observation quar-
ters (weeks). An interaction i→ j at time t occurs when parakeet
i loses a fight to parakeet j in period t . Since there are just
four observation periods, estimates of the memory parameter λ
should be approached with caution.

Lastly, the Newcomb Fraternity dataset was collected by the
authors of refs. 41 and 42 and accessed via the KONECT
network database (43, 44). The dataset documents friendships
among members of a fraternity at the University of Michi-
gan. Each week during a fall semester, excluding a week for
fall break, each of 17 cohabiting brothers ranked every other
brother according to friendship preference, with ranks 1 and 16
referring to that brother’s most and least preferred peers, respec-
tively. An endorsement i→ j is logged when brother i ranks j
among his top k = 5 peers (small changes to k did not signifi-
cantly alter the results). While friendship is often viewed as a
symmetric relationship, expressed friendship preferences may be
asymmetric (45).

We studied these data using the Root-Degree, PageRank, and
SpringRank score functions. Table 1 summarizes our results,
including parameter estimates, SEs (obtained by inverting the
numerically calculated Fisher information matrix), and opti-
mized log-likelihoods for each combination of score and dataset.
Several features stand out. In all four datasets and across all
three score functions, we find β̂1> 0 and β̂2< 0. This suggests a
persistent pattern in time-dependent hierarchies: While endorse-
ments do flow upward (β̂1> 0), nodes are more likely to endorse
those close to them in rank (β̂2< 0). Endorsements tend to flow
a few rungs up the ladder—not directly to the top. The rea-
sons for this pattern likely vary across datasets. In the Math PhD
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Table 1. Parameter estimates and likelihood scores using each of
three score functions for the four datasets described in
Hierarchies in Data

Root-Degree PageRank SpringRank

Math PhD Exchange
(N = 6,019)
λ̂ 0.87 (0.01) 0.96 (0.01) 0.91 (0.01)
β̂1 1.28 (0.02) 0.74 (0.01) 2.99 (0.04)
β̂2 −0.18 (0.01) −0.07 (0.00) −1.12 (0.04)
L −14,379 −15,001 −14,927

Parakeets (G1)
(N = 838)
λ̂ 0.97 (0.08) 0.59 (0.08) 0.67 (0.14)
β̂1 0.84 (0.05) 1.82 (0.08) 3.03 (0.16)
β̂2 −0.12 (0.01) −0.50 (0.03) −1.74 (0.12)
L −1,106 −1,053 −964

Parakeets (G2)
(N = 961)
λ̂ 0.42 (0.07) 0.13 (0.03) 0.40 (0.06)
β̂1 0.62 (0.03) 0.82 (0.04) 2.86 (0.14)
β̂2 −0.06 (0.01) −0.12 (0.01) −1.46 (0.12)
L −975 −1,029 −924

Newcomb Fraternity
(N = 1,428)
λ̂ 0.56 (0.13) 0.81 (0.19) 0.71 (0.14)
β̂1 0.95 (0.05) 1.21 (0.07) 2.33 (0.14)
β̂2 −0.08 (0.03) −0.25 (0.05) −0.86 (0.16)
L −1,850 −1,865 −1,841

Parenthetical values are SEs for each parameter estimate. For each dataset,
the largest log-likelihood L is indicated in bold. All parameter estimates are
statistically distinct from zero at 95% confidence. N gives the total number
of interactions in the data. See SI Appendix, Fig. S5 for simulated trajectories
with the inferred parameters

Exchange, this may indicate that low-ranked schools struggle to
recruit graduates of high-ranked ones due to a limited supply
of elite candidates. In parakeet populations, proximal aggression
may facilitate inference of dominance hierarchies through tran-
sitive inference (3). In Newcomb’s Fraternity, we postulate that
implicit social norms may encourage friendships between those
of similar standing. Similar results have been reported in static
social-network data among adolescents (24). Thus, while we do
not attribute this pattern in the parameter estimates to a uni-
versal mechanism, we suggest its persistence as an interesting
observation worthy of future study.

Because different score functions capture distinct qualitative
features of the data, quantitative comparisons yield insights into
the generating mechanisms at work. In general, parameters from
models using differing score functions should not be directly
compared, since these parameters are sensitive to the scale of the
score vector. However, we can compare models on the basis of
their likelihoods. In the Math PhD Exchange, the Root-Degree
model was strongly favored over either SpringRank or PageR-
ank. In the context of this dataset, the Root-Degree score is a
measure of faculty production: A school that places more can-
didates has a higher score, regardless of the prestige of the
institutions at which the candidates land. The strong fit from the
Root-Degree score is consistent with previous findings that raw
faculty production plays a major role in structuring the hierarchy
of academic hiring within computer science, business, and history
(5). As the authors of ref. 5 note, transitive prestige also plays an
important role. It would be of significant interest to extend our
study to include multiple score functions, enabling an inferential
analysis of the relative roles of production and transitive prestige.

In contrast, the SpringRank score was favored by large mar-
gins in both Parakeet datasets and by a smaller margin in the

Newcomb Fraternity dataset, suggesting that transitive prestige
plays a more prominent role. Among parakeets, it may matter
not only how many confrontations one wins, but also against
whom, with victories over high-ranking birds counting more
toward one’s own prestige. This finding is consistent with those
of ref. 3, which found, using different methodology, that para-
keet behavior suggests the ability to draw sophisticated, transitive
inferences about location in the hierarchy. Similarly, in New-
comb’s Fraternity, friendships with highly ranked brothers may
confer greater prestige than those with lower-ranked ones.

In addition to the likelihoods, we can also compare the mem-
ory estimate λ̂ across models and datasets. Since the model
assumes that the impact of past endorsements decays at rate
λ, the quantity t1/2 =− log(2)/ log(λ̂) represents the half-life of
system information according to the inferred dynamics, in units
of observation periods. In the Math PhD data, the favored Root-
Degree score gave a half-life of t1/2≈ 5 y. In the Parakeets data,
the half-life estimated under SpringRank is t1/2≈ 1.7 wk for the
first group and t1/2≈ 0.8 wk for the second. The small num-
ber of observation periods implies that these estimates should
be approached with caution. Finally, in the Newcomb Frater-
nity data, the SpringRank half-life was t1/2≈ 2 wk. This suggests
that the friendships in this dataset evolved on timescales much
shorter than the full semester. This likely reflects the fact that
the brothers did not know each other prior to data collection,
requiring them to form their social relationships from scratch.
An important caveat in interpreting these estimated half-lives
is that the indirect influence of an interaction may extend far
beyond its direct influence. In the Math PhD data, for instance,
while the half-life indicates that only a quarter of hiring events
will be directly “remembered” in the system after a decade, those
events will have influenced 10 cycles of hiring, which may further
reinforce the patterns established by the earlier events.

As described in Theorem 1, in the long-memory limit, our
model has distinct egalitarian and hierarchical regimes, sepa-
rated by a critical value βc

1 . The model’s estimate of β1 allows
us to roughly locate empirical systems within these regimes.
There are two necessary points of caution. First, when the
estimate λ̂ is far from the idealized long-memory limit, hierar-
chical and egalitarian regimes may not be sharply distinguished.
Second, in the Math PhD and Parakeet data, the number of
updates m varies between time steps. Here, a reasonable approx-
imation is to use the average number of updates m̄ per time
step. Using this average and Theorem 1, we computed an
approximate long-memory critical value βc

1 for each empirical
system.

Comparing the data-derived preference estimates β̂1 to the
approximate critical values βc

1 reveals that all four empirical sys-
tems are in or near the hierarchical regime (Table 2). The Root-
Degree estimates of β1 tend to be very close to the approximate
critical point. For the Math PhD data, in which Root-Degree
is the preferred model, the estimate of β1 is slightly, but sta-
tistically significantly, below the critical value. In each of the
other three datasets, the estimate is slightly above the critical
value, and significantly so in the two Parakeet groups. Given
the presence of a bistable regime in the Root-Degree model
(Fig. 3A), the estimate of β1 for the Math PhD data is consis-
tent with persistent hierarchy, despite the fact that the estimate
falls slightly below the critical threshold. Indeed, simulations with
the inferred parameters produce persistent hierarchical structure
similar to that observed in the data (SI Appendix, Fig. S5). The
PageRank estimates behave similarly to Root-Degree, although
the finding in Parakeets (G2) is reversed. The presence of a
bistable regime in the PageRank model (Fig. 3B) indicates that
these findings are consistent with persistent hierarchy in any of
these datasets (see SI Appendix, Fig. S5 for simulated dynam-
ics). Finally, in the SpringRank model, which obtains the highest
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Table 2. Estimates of β1 (identical to those in Fig. 1) compared
to the mean critical value βc

1 for each system

Root-Degree PageRank SpringRank

Math PhD Exchange
βc

1 1.36 1.18 2.00
β̂1 1.28∗ (0.02) 0.74∗ (0.01) 2.99† (0.04)

Parakeets (G1)
βc

1 0.55 1.18 2.00
β̂1 0.84† (0.05) 1.82† (0.08) 3.03† (0.16)

Parakeets (G2)
βc

1 0.49 1.18 2.00
β̂1 0.62† (0.03) 0.82∗ (0.04) 2.86† (0.14)

Newcomb Fraternity
βc

1 0.89 1.18 2.00
β̂1 0.95 (0.05) 1.21 (0.07) 2.33† (0.14)

We calculate βc
1 as in Theorem 1, using as m the mean number of

interactions per time-step in the observed data. As in Table 1, the param-
eters corresponding to the highest log-likelihood are shown in bold. See SI
Appendix, Fig. S5 for simulated trajectories using the inferred parameters.
∗Estimates that are smaller than the approximate critical value by two SEs.
†Estimates that exceed the approximate critical value by two SEs.

likelihood for both Parakeet datasets and the Newcomb Frater-
nity dataset, the estimated values of β1 significantly exceed the
estimated critical values and tend to lie in or near the range [2, 3].
In summary, all three models suggest that the system correspond-
ing to each dataset is in or near the regime of self-reinforcing
hierarchy.

Our model also assigns interpretable, time-dependent ranks
to empirical data (Fig. 4). For the Math PhD Exchange net-
work, for example, the raw placement share (Fig. 4A) and
Root-Degree model (Fig. 4B) show strong qualitative agree-
ment, with institutions that place the most candidates occupying
higher ranks. Due to the relatively large estimates λ̂, both the
Root-Degree and PageRank models (Fig. 2 B and C) produce
smoother rank trajectories than the purely descriptive placement
share with 8-y rolling average. In contrast, the SpringRank score
generates qualitatively different trajectories that are less sensi-
tive to raw volume (Fig. 4D). For instance, SpringRank places
Harvard at the top over most of the time period, while the
other scores prefer MIT. This difference reflects SpringRank’s
sensitivity to where Harvard’s graduates were placed, a
consideration that Root-Degree entirely ignores. Similarly,
SpringRank places Chicago and Yale noticeably higher than
Wisconsin–Madison, despite all three having similar numbers of
placements.

Discussion
We have proposed a simple and flexible model of persistent
hierarchy as an emergent feature of networked endorsements
with feedback. When the preference for high status exceeds
a critical value, egalitarian states destabilize, and hierarchies
emerge. The location of this transition depends on the struc-
ture of the score function and of the node’s preferences. Our
findings emphasize that winner effects do not require inter-
nal, rank-enhancing feedback mechanisms. Social reinforcement
through prestige preference is sufficient to generate social
hierarchies.

Crucially, our model has a tractable likelihood function, sup-
porting principled statistical inference of parameters—for both
preferences and memory strength—from empirical data. In the
four datasets analyzed, we found that links are typically formed
in alignment with the hierarchy (β̂1> 0), but that they are pref-
erentially created to other nodes with similar ranks (β̂2< 0).
The likelihood also opens the door to model selection to deter-

mine relevant score functions. We found that networked ranking
methods that capture transferable prestige are preferred over
nonnetworked methods in some, but not all, systems. Due to its
flexibility, our framework can be applied to additional datasets,
score functions, and/or preference models to test the generality
of these empirical observations.

There are limitations to our approach. First, we specified a
fixed parametric form for the utilities with Eq. 4 and Gumbel-
distributed noise with Eq. 5. Other choices may be more jus-
tified in particular applications, ideally informed by domain-
specific considerations. Importantly, our inferential framework
allows for quantitative evaluation and comparison of these
choices. Taking advantage of this, future work could systemat-
ically explore the most appropriate functional forms in systems
from diverse scientific domains. Second, our model assumes
that all nodes use identical preference parameters β1,β2 and
score vector s when computing utilities. The latter is an espe-
cially strong assumption, since it requires each node to have
global knowledge of the endorsement network, or at least of
the score vector. This is unlikely to be true in real systems
and should be regarded as a modeling device. Future work,
along the lines of ref. 3, could explore the interplay between
the cognitive capabilities of individuals represented by nodes
and the information available to them in the formation of social
hierarchies.

Our model points to several other avenues for further work.
A crucial step would be to extend extant network-based mod-
els (26, 27, 29) so that their parameters could be statistically
learned from data. This would enable comparative validation
of different modeling frameworks. Studies of the relationship
between measures of time-dependent centralities (38, 46, 47) and
dynamic models of hierarchy would also be valuable. In particu-
lar, the theory of time-dependent centralities faces an important
methodological issue: Different reasonable ranking methods can
yield directionally different orderings of nodes when applied to
the same dataset (48). Their performance on external validation
tasks, such as the prediction of central nodes in spreading

A B

DC

Fig. 4. Visualization of evolving ranking functions in the Math PhD
Exchange. (A) Fraction of all placements (number of graduates hired) from
each school, shown as a moving average with bin-width 8 y for visualization
purposes. (B) Inferred rank vector γ as a function of time using the Root-
Degree score function. (C and D) As in B, with PageRank and SpringRank
score functions, respectively. Parameters for B–D are shown in the first
section of Table 1.
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processes (49), may also vary significantly. Because the theo-
ries of centrality and generative networks have evolved largely
separately, evaluating the suitability of a centrality metric for a
given dynamic system can be difficult. Our inferential approach
offers a candidate validation task to overcome this challenge:
Good centrality metrics are those that most effectively pre-
dict the future evolution of the system. This approach enables
us to not only compare different score and utility functions
in a principled manner, but also explore their relative impor-
tance in observed networks. For instance, one could study the
relative influence of degree-based and SpringRank scores by
incorporating both into our model and then analyzing their dis-
tinct coefficients. Further work in this direction could reveal
how different forms of centrality combine to govern the evo-
lution of interaction networks. We anticipate that a fruitful
dialogue between centrality theory and generative models of
time-varying networks will deepen our understanding of the
feedback mechanism between local interactions and hierarchical
structures.

Data Availability. A repository containing all data used in
our analyses, model implementation, and figure-generation
scripts is available at GitHub (50). Raw data are available
at https://sites.google.com/site/danetaylorresearch/data (Math
PhD Exchange), https://datadryad.org/stash/dataset/doi:10.5061/
dryad.p56q7 (Parakeets G1 and G2), and http://vlado.fmf.uni-
lj.si/pub/networks/data/ucinet/ucidata.htm#newfrat (Newcomb
Fraternity).
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