Skip to main content
. 2021 Apr 18;21(8):2846. doi: 10.3390/s21082846

Table 1.

Proposed convolutional neural network (CNN) model architecture.

Layer (Type) Output Shape Parameters
input_1 (Input Layer) (None, 180, 180, 3) -
conv_1 (Conv2D) (None, 180, 180, 64) 1792
batch_norm_1 (Batch Normalization) (None, 180, 180, 64) 256
max_pool_1 (MaxPooling2D) (None, 90, 90, 64) 0
conv_2 (Conv2D) (None, 90, 90, 128) 73,856
conv_3 (Conv2D) (None, 90, 90, 128) 1,47,584
batch_norm_2 (Batch Normalization) (None, 90, 90, 128) 512
max_pool_2 (MaxPooling2D) (None, 45, 45, 128) 0
conv_4 (Conv2D) (None, 45, 45, 256) 2,95,168
conv5 (Conv2D) (None, 45, 45, 256) 5,90,080
batch_norm_3 (Batch Normalization) (None, 45, 45, 256) 1024
max_pool_3 (MaxPooling2D) (None, 22, 22, 256) 0
conv_6 (Conv2D) (None, 22, 22, 384) 8,85,120
conv_7 (Conv2D) (None, 22, 22, 384) 13,27,488
batch_norm_4 (Batch Normalization) (None, 22, 22, 384) 1536
max_pool_4 (MaxPooling2D) (None, 11, 11, 384) 0
conv_8 (Conv2D) (None, 11, 11, 480) 16,59,360
conv_9 (Conv2D) (None, 11, 11, 480) 20,74,080
batch_norm_5 (Batch Normalization) (None, 11, 11, 480) 1920
max_pool_5 (MaxPooling2D) (None, 5, 5, 480) 0