Skip to main content
. 2021 Apr 20;23(4):485. doi: 10.3390/e23040485

Table 1.

Abbreviations, acronyms, notations, and symbols employed in the present document.

Abbreviations/Acronyms Notations/Symbols
ANN artificial neural networks distributed as
CLU clustering k number of nearest neighbors
CP community poverty index n sample size
DT decision trees l=β0+β1x log-odd
EDM educational data mining o=bβ0+β1x odd
EM ensemble models β0,β1 regression coefficients
FN false negative X independent variable or feature
FP false positive Y dependent variable or response
HE higher education p=P(Y=1) probability function of LR
IG information gain =exp(β0+β1x)exp(β0+β1x)+1
KNN k-nearest neighbors =11+exp(β0β1x)
LR logistic regression P(Y=cX=x) probability Y given X
ML machine learning P(Y=c)P(X=xY=c)P(X=x) Bayes conditional probability
NB naive Bayes X=(X1,,Xp) vector of independent variables
NEM secondary educational score (x1,Y1),,(xn,Yn) instances
(notas enseñanza media) c number of classes
PSU university selection test x norm of a point x
(prueba selección universitaria) s number of folds in cross-validation
RAM random access memory w normal vector to the hyperplane
RF random forest TP/(TP + FP) precision
SVM support vector machines κ=(pape)/(1pe) κ-statistic
TF true negative pa % of agreement classifier/ground truth
TP true positive pe agreement chance
UCM Catholic University of Maule Q=12nc(c+1)j=1cr¯·jc+122 Friedman statistic
(Universidad Católica del Maule) {xij}n×c n×c data matrix
SMOTE synthetic minority {rij}n×c n×c rank matrix
over-sampling technique r¯·j=1ni=1nrij rank average of column j
KDD knowledge discovery Pχc2Q p-value
in databases χc2 chi-squared distribution
with c degrees of freedom