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Abstract

Social scientists are frequently interested in identifying latent subgroups within the pop-
ulation, based on a set of observed variables. One of the more common tools for this
purpose is latent class analysis (LCA), which models a scenario involving k finite and
mutually exclusive classes within the population. An alternative approach to this prob-
lem is presented by the grade of membership (GoM) model, in which individuals are
assumed to have partial membership in multiple population subgroups. In this respect, it
differs from the hard groupings associated with LCA. The current Monte Carlo simula-
tion study extended on prior work on the GoM by investigating its ability to recover
underlying subgroups in the population for a variety of sample sizes, latent group size
ratios, and differing group response profiles. In addition, this study compared the per-
formance of GoM with that of LCA. Results demonstrated that when the underlying
process conforms to the GoM model form, the GoM approach yielded more accurate
classification results than did LCA. In addition, it was found that the GoM modeling
paradigm yielded accurate results for samples as small as 200, even when latent sub-
groups were very unequal in size. Implications for practice were discussed.
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Researchers in the social sciences are frequently interested in identifying underlying

groups within the population. Such mixtures within the population are taken to rep-

resent conceptually coherent subgroups of individuals who exhibit meaningful dif-

ferences between one another on one or more measured variables, and in turn who

cohere on these variables. These mixtures can differ in terms of the means of the

measured variables, as well as with respect to parameters in linear models, general-

ized linear models, latent variable models, and growth models. Mixture modeling

has been used in a variety of subject areas, including psychology (Klonsky &

Olino, 2008; Lotzin et al., 2018; Magee et al., 2019), education (Gerick, 2018;

Urick, 2016), sociology (Christens et al., 2015; Rid & Profeta, 2011), business

(Crouch et al., 2016), and the health sciences (Lasry et al., 2018; Sadiq et al.,

2018), among others.

There exist a variety of tools to identify underlying subgroups in a population.

Common methods include k-means cluster analysis, model based clustering, and

latent class analysis. Although they differ in terms of their statistical mechanisms,

each of these approaches has the common goal of identifying unobserved mixtures

in the population. Furthermore, all these methods presuppose that an individual

belongs to a single population subgroup. In practice, individuals have associated

probabilities of membership for each group and are assigned to the one for which

they have the largest such value. The individual is then taken to be a member of

that group only.

There is an alternative model for expressing latent groups that allows an individ-

ual to belong to multiple groups to varying degrees. For each member of a sample,

this grade of membership (GoM) model has an associated degree of membership

with each of the population subgroups, as is described in more detail below. As an

example, a researcher might find that an individual is associated with latent group 1

for a 60% share, with latent group 2 for a 30% share, with latent group 3 with a 0%

share, and with latent group 4 for a 10% share. The goal of this Monte Carlo simula-

tion study was to expand on earlier research examining the performance of the GoM

model under a variety of conditions and to compare its performance with another

very commonly used tool for identifying underlying population subgroups, latent

class analysis (LCA). Prior work has examined the performance of GoM modeling

with very large samples (5,000), and with a limited array of relative sizes for these

groups (e.g., Erosheva, 2003; Erosheva & Fienberg, 2005; Erosheva et al., 2007).

The current work expands on these conditions, as well as on the relationship of the

observed variables to group membership. In addition, prior published work has not

compared the performance of LCA with that of GoM. Therefore the current study

will expand on the literature in that regard as well. The remainder of the article is

organized as follows. First, GoM models and LCA are described. Next, the goals of

this study are described, and the study methodology is outlined. The results of the

Monte Carlo simulation are then presented, followed by a discussion of these results,

and in particular, implications for practice and directions for future work.
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Latent Class Analysis

LCA is a model-based approach to identifying latent subgroups within the popula-

tion, based on responses to set of observed variables (Lazarsfeld & Henry, 1968). Let

y = y1, y2, . . . , ykð Þ be a latent class membership vector such that yk = 1 for a member

of class k, and 0 for all other classes. The probability density function of y is defined

as follows:

f yð Þ = pk , if yk = 1

0, otherwise

�
:

The relationship between the probability of an individual being a member of a spe-

cific latent class, and the responses pattern I on the set of J observed variables can

then be written as

pr x = I jyð Þ=
XK

k = 1
pk

YJ

j = 1
lkjIj

ð1Þ

where lkjIj
= conditional probability of response pattern I for the J indicators when

membership probability for class k = 1

This model posits that responses to the observed indicators are independent of

one another, conditional on latent class membership; that is, local independence.

Estimation of the model is typically carried out using maximum likelihood, with the

parameters being the probability of response profile given latent class membership,

and the probability of an individual being in a particular latent class.

Perhaps the primary decision that needs to be made by researchers using LCA is

the number of classes to retain. In a typical exploratory LCA application, multiple

models, featuring different numbers of classes, are fit to the data. The fit of these

models are then compared with one another using statistics such as the Akaike infor-

mation criterion (AIC), the Bayesian information criterion (BIC), or the bootstrap

likelihood ratio test (McLachlan & Peel, 2000). The optimal model is that which

yields relatively good fit, and that is substantively meaningful in terms of how indi-

viduals are grouped together (Bauer & Curran, 2004). Although it is used frequently

in the context of mixture modeling, we should note that the regularity conditions

underlying the BIC are violated in the context of mixture modeling (Drton &

Plummer, 2017). Thus, researchers working in this context may want to consider

investigating the adjusted BIC for use with singular model selection.

Grade of Membership Model

The GoM model represents a generalization of the latent class model where

membership in multiple classes can take values larger than 0. Recall that for LCA,

the membership probability for one class, yk , was 1, and was 0 for all other classes.

In contrast, GoM allows partial membership in multiple classes, which are known

as extreme profiles. The vector of partial membership random variables is
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g = g1, g2, . . . , gkð Þ. Multiple value of g can be nonzero, and
P

gk = 1. The GoM

model is then written as

pr x = I jgð Þ=
YJ

j = 1

XK

k = 1
gklkjIj

� �

where lkjIj
= conditional probability of response I to the J indicators when member-

ship probability for class k = 1 and gk = latent partial membership in class k, wherePK
k = 1 gk = 1.

The GoM model is simply a generalization of the LCA model with the constraint

that one element of y = 1, and all others are 0 is been relaxed. The two model frame-

works are equivalent when one element of g is 1 and the others are 0.

As an example of how the GoM model works, consider the case of four latent sub-

groups within the population. A given individual will have a portion of their member-

ship assigned to each of these subgroups, and the sum of these portions (expressed as

probability) will be 1. The larger an individual’s apportionment to a subgroup, the

more strongly the individual is associated with that group. The vector of this mixed

membership parameter corresponds to g, above. If the values of g are set such that

each individual in the sample has a value of 1 for one subgroup, and 0 for the others,

then the GoM model is equivalent to the LCA model.

GoMs can be estimated using a variational EM algorithm, which overcomes com-

putational difficulties associated with using maximum likelihood estimation

(Erosheva & Fienberg, 2005). We will not go into the details here about how this

estimator works, but the interested reader is referred to Beal (2003) for a full discus-

sion of this approach. It is important, however, to note a few points with regard to

the use of the variational estimation approach. In particular, the use of priors is key

to working with this method. For g the most commonly used prior is

g;Dirichlet að Þ:

The hyperparameter a takes the form

a = a0 � j1, ..., a0 � jK

� �

where

a0 . 0

j = j1, . . . , jKð Þ:

Each element of j represents the expected proportion of observed variable values

generated by the extreme profile for group k; that is, the relative importance of

extreme profile k in determining the observed variable values. The parameter a0 rep-

resents the degree of concentration of the probability distribution around the expected

value, with larger values of a0 indicate a greater degree of such concentration. In

other words, larger values of a0 suggest that individuals are more closely associated
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with the extreme values of the population subgroups. Finally, the prior distribution

for ljk is Dirichlet (1nj
, or a uniform distribution over the simplex Dnj�1), where nj is

the number of individuals endorsing item j.

A number of strategies for determining the optimal number of extreme profiles to

retain in the context of GoM models have been suggested, including the truncated

sum of squared Pearson residuals (x2
tr), Bayesian variants of the Akaike information

criterion (AICM), the Bayesian Information Criterion (BICM), as well as the

deviance information criterion (DIC). Simulation research has demonstrated that the

x2
tr statistic performed better than the various information indices in terms of cor-

rectly identifying the number of extreme profiles that should be retained (Erosheva,

et al., 2007). The x2
tr is calculated as the difference between the expected frequencies

for response patterns of the observed indicators and the observed frequencies

(Bishop et al., 1975).

Goals of the Current Study

The purpose of this study was to expand earlier work (e.g., Erosheva et al., 2007) by

examining the performance of a variational EM algorithm estimator for the GoM

using a simulation study design. This earlier work demonstrated that the GoM was

able to accurately recover the latent structure underlying a set of observed dichoto-

mous variables for a sample size of 5,000. However, it is unclear the extent to which

these results are applicable to the smaller samples that are more typical of applied

social science research. Thus, the current study sought to ascertain how well the

GoM could recover the latent structure with samples of between 200 and 1,600 indi-

viduals, using dichotomous indicator variables. This study also expands on earlier

work by including a wider array of conditions for the proportion of individuals asso-

ciated with each of the extreme profiles, and the relationship between group mem-

bership and responses to the observed variables. The current study also examined

estimation accuracy of the a0 parameter, as well as the number of classes selected by

the procedure, as outcomes of interest. The latter has certainly been a feature of pre-

vious research but the latter has not been. Finally, in addition to the GoM model,

LCA was also included in this study in order to determine how well it worked in

terms of identifying the extreme response profiles when the underlying latent struc-

ture was generated based on both the GoM and LCA models. This latter question

was of interest because many researchers are familiar with, and use LCA, and thus

may apply it in some situations where the GoM model actually generated the data.

Likewise, researchers may also employ the GoM model when the underlying struc-

ture actually conforms to the LCA framework. Thus, it is of interest to know how

well (or poorly) both LCA and GoM work when the underlying data generating

model is both similar to and different from the estimating model.

Based on the study design, which is described below, as well as prior research,

several hypotheses were made regarding the performance of the GoM and LCA

approaches. First, it was hypothesized that the GoM model would be more accurate
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than LCA at correctly identifying the number of extreme latent profiles when the

underlying model was GoM, and LCA would be more accurate than GoM when the

underlying model was LCA. Second, the rates of classification accuracy was expected

to be higher for the model estimation algorithm that corresponded to the data generat-

ing process; that is, GoM should provide more accurate classification when the under-

lying model was GoM, and vice versa for the LCA estimation and data generating

models. Third, estimation accuracy for the a0 parameter was expected to be higher

for larger samples.

Method

In order to address the aforementioned study goals, a Monte Carlo simulation study

was conducted, with 1,000 replications per combination of study conditions. The

data were generated from either the GoM or LCA models under a variety of condi-

tions. Specifically, one set of simulation results was generated using the rmixedMem
function in the mixedMem library within the R software package, Version 3.6.2

(R Development Team, 2019) to generate GoM model data. Then both the GoM and

LCA models were fit to the data. Separately, model were also generated from the

LCA model using the poLCA.simdata function in the poLCA R library. Once again,

both the GoM and LCA models were then applied to the data generated from the

LCA model. For both data generating conditions, the observed indicators were gener-

ated to be dichotomous in nature. The purpose for using both data generating

approaches was to ascertain the extent to which performance of each estimation

model was affected by the underlying model form in terms of correctly identifying

the latent structure present in the data. The following conditions were manipulated in

this study.

Number of Observed Indicators

A total of 5, 10, or 20 dichotomous indicators were generated in this study. Prior

simulation work examined 10 and 16 dichotomous items (Erosheva et al., 2007), and

thus the current study builds on this earlier work by including a wider range of

indicators.

Sample Size

Sample sizes for this study were set at 200, 400, 800, and 1,600. Previous simulation

work examining the performance of GoM with dichotomous indicators included a

total sample size of 5,000 individuals. Given that much research in the social sciences

involves smaller samples than that, the current study sought to extend on prior work

by examining the performance of the GoM model with samples that are somewhat

more typical of much published research (e.g., Klonsky & Olino, 2008; Klug et al.,

2019; van Lier et al., 2003; Zhou et al., 2018).
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Number of Latent Extreme Profiles and Profile Ratios

Data were simulated to have two or four extreme latent profiles. For the two extreme

profiles case, the ratios of the two groups’ sizes were 0.5/0.5, 0.75/0.25, and 0.9/0.1.

In the case of four extreme profiles, the group size ratios were 0.25/0.25/0.25/0.25,

0.4, 0.2, 0.2, 0.2, 0.7/0.1, 0.1, 0.1, and 0.91/0.03/0.03/0.03. The value of a0 was set

at 0.25, meaning that responses to the dichotomous items came primarily from a sin-

gle profile for each individual. In other words, each member of the sample was pri-

marily (though not totally) a member of a single profile.

Differences in Extreme Profiles’ Conditional Response Probabilities

Three different conditions were simulated with regard to differences in the condi-

tional responses probabilities of the extreme profiles. The population differences in

conditional response probabilities for the dichotomous indicators were 0.10, 0.20, or

0.3. For a given condition these differences held across all indicators.

Estimation Procedures

For each replication across all conditions, the GoM model was fit to the data using

the mixedMemModel and mmVarFit functions in the mixedMem R library (Wang &

Erosheva, 2015a, 2015b). Per the results of Erosheva et al. (2007), the x2
tr test

described above was used to ascertain the best fitting model for each simulation

replication, as was the BICM. Results of this simulation demonstrated that x2
tr was

consistently more accurate than the BICM at identifying the correct number of

extreme profiles to retain, which is in keeping with the prior work of Erosheva et al.

(2007) Therefore, in the results described below, only those for the x2
tr are presented.

The mixedMem library uses the variational EM algorithm to estimate the GoM model

parameters. This methodology, which is described in (Jaakkola & Jordan, 2000), pro-

vides inference on the approximate posterior distribution of l from Equation 1, and a

pseudo-likelihood approach to estimate a and the group specific observed variable

response parameters. The prior for u was the dirichlet(0.5) distribution, and a was initi-

alized with 0.2 for each class. A set of preliminary simulations was conducted using a

variety of values for these hyperparameter and initialization factors, and the results were

found to be largely insensitive to their choice. The selected values resulted in somewhat

higher convergence rates, and thus were retained, in keeping with recommendations for

practice (Wang & Erosheva, 2015a, 2015b). Several software default settings were used

to fit the GoM, including a maximum of 500 total iterations, and a convergence criter-

ion value of 0.000001. A total of five random restarts in the estimation algorithm were

employed.

In addition to the GoM model, the LCA model was also estimated for the data

using the poLCA function that is part of the poLCA library in R. Both AIC and BIC

were used to determine the optimal number of latent classes to retain for each repli-

cation. For both GoM and LCA, models including from 1 to 6 latent groups were fit
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to the data. The appropriate statistics were then used to determine the optimal num-

ber of extreme profiles/latent classes to retain.

Outcomes of Interest

This study examined several outcomes of interest, including the mean number of

extreme profiles/latent classes retained by each method, the overall accuracy rate of

classifications for the correct number of profiles, and the sensitivity and specificity rates

for each method, where the first extreme profile served as the target groups. The mean

number of extreme profiles/latent classes recovered by each approach was selected as

an outcome for this study because it reflects the ability of the methods to accurately

identify the latent structure underlying the observed data, which is typically of primary

interest to researchers using these techniques. Likewise, the classification accuracy

metrics were included in the simulation study because they also provide information

regarding how well each approach was able to classify individual cases into the correct

underlying group. Researchers using these tools will want to know not only whether

each method is able to ascertain the correct number of underlying groups but also

which individuals belong in which of these groups. High levels of accuracy on both

fronts (number of and membership in the latent classes) means that the methods were

able to accurately uncover the underlying latent structure of the data.

Overall classification accuracy was calculated as the proportion of simulated indi-

viduals who were generated to be in the same category and who were also placed in

the same category by the algorithm. Likewise, sensitivity was calculated as the propor-

tion of simulated individuals in the target group who were correctly classified together

in the target group. Finally, specificity was the proportion of individuals who were

simulated not to belong to the target group who were in fact correctly classified as not

belonging to the target group. In addition to the classification accuracy and number of

recovered latent classes, for the GoM model, relative bias for the a0 parameter based

on the posterior mean of the sample distribution for each replication. Relative bias was

calculated as the ratio of the difference between the population value and the estimate,

divided by the population value. Recall that a0 indicates the degree of extreme profile

concentration inherent in the distribution of the observed indicators, and is thus of inter-

est in understanding the ability of the GoM model to recover the underlying extreme

profiles. Analysis of variance (ANOVA) was used to identify the main effects and

interactions among the manipulated factors that were related to the outcomes of interest.

In addition to statistical significance, the h2 effect size was used to characterize the

impact of manipulated study factors on each outcome. The overall Type I error rate

across the ANOVAs was controlled through the use of the Bonferroni correction.

Results

Two Latent Classes

When two extreme latent classes were present in the population, ANOVA identified

the interaction of data generating model by estimation method by sample size by the
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difference in conditional probability of item endorsement (F7, 12 = 12:73, p\0:001,

h2 = 0:84) to be significantly related to the number of extreme latent classes that were

identified by each method. The mean number of extreme profiles identified by esti-

mation method, sample size, difference in observed variable endorsement probability,

and underlying model appear in Figure 1. For the GoM generating model (Panel 1),

when the groups’ response probabilities on the indicators differed by 0.2 or 0.3 the

GoM and both LCA based approaches accurately identified the number of extreme

profiles (2) that simulated in the data. However, when the item endorsement probabil-

ities differed by only 0.1, LCA using AIC tended to overestimate the number of pro-

files for samples of 800 and 1,600. The GoM model and LCA using BIC to identify

the optimal number of profiles correctly identified 2 as being present. When the data

generating model was LCA (Panel 2), both LCA based approaches accurately identi-

fied the number of latent classes, whereas GoM consistently overestimated the num-

ber of extreme profiles present.

ANOVA results indicated that the interaction of data generating model by estima-

tion method by group size ratio by difference in conditional item endorsement prob-

ability was related to the overall classification accuracy (F5, 12 = 6:89, p = 0:01,

h2 = 0:731), as was the interaction of method by sample size (F4, 12 = 9:22, p\0:001,

h2 = 0:744). GoM was consistently more accurate in terms of classifying individuals

than was LCA (Table 1) when the data generating model was GoM. In addition,

whereas sample size did not affect GoM accuracy, LCA was somewhat more accu-

rate for larger samples. When the underlying model was LCA, the GoM model

yielded slightly more accurate overall classification accuracy than did LCA for a

sample size of 200. However, for the other sample sizes, LCA had somewhat higher

accuracy rates with the difference in the two methods increasing concomitantly with

larger samples.

In terms of the group size ratio and differences in conditional probability of item

endorsement when the data generating model was GoM (Figure 2, Panel 1), accuracy

rates of GoM were largely consistent, whereas LCA yielded more accurate overall

classification rates when the difference in the probability of item endorsement was

larger, and when the groups were of unequal sizes. LCA yielded the least accurate

classification results for the combination of a 50/50 group size ratio coupled with a

difference in the conditional item probability of 0.1; that is, when the group differ-

ences in item response probability were least pronounced. When the data were gener-

ated by the LCA model (Panel 2), the two methods performed similarly across the

group size ratio conditions.

In terms of sensitivity, the interaction of data generating model by estimation

method by group size ratio by difference in conditional item endorsement probability

was found to be statistically significant (F5, 12 = 5:11, p = 0:01, h2 = 0:613). As with

overall classification accuracy, when the data generating model was GoM, the GoM

estimator yielded higher sensitivity rates than did LCA, and appeared to be largely

impervious to the group size ratio or differences in conditional response probabilities

among the groups (Figure 3, Panel 1). When the groups’ conditional item response
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Figure 1. Mean number of extreme latent profiles by total sample size, difference in
conditional item endorsement probability, and estimation method: Two extreme latent
profiles. Panel 1: GoM generating model. Panel 2: LCA generating model.
Note. GoM = grade of membership; LCA = latent class analysis.
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probabilities differed by 0.1 or 0.2, LCA exhibited the highest sensitivity for cases

where the groups were of the same size. However, when the group differences in

conditional probability of item endorsement were at their largest (0.3), the group size

ratio did not appear to affect LCA sensitivity. When the underlying model was LCA

(Panel 2), the two estimation methods yielded very comparable sensitivity results

across group size ratios, and differences in conditional item response probabilities.

As was true of sensitivity, specificity rates were significantly associated with the

interaction of data generating model by estimation method by group size ratio by the

difference in conditional item endorsement probability (F5, 12 = 16:91, p\0:001,

h2 = 0:674). The pattern of results for specificity, with respect to sample size, group

size ratio, and difference in conditional probability for both GoM and LCA generated

data was very similar to that for sensitivity (Figure 4). The GoM model had consis-

tently higher specificity rates than did LCA in the GoM data generating condition

(Panel 1). On the other hand, when the data generating model was LCA, the two

methods yielded very similar specificity results (Panel 2).

The final outcome to be investigated in this study was the relative bias in the a0

parameter estimate. The ANOVA results identified the main effects of sample size

(F1, 12 = 575:354, p\0:001, h2 = 0:99) and group size ratio (F3, 12 = 82:214, p\0:001,

h2 = 0:95) as significantly related to a0 bias. Estimation bias for a0decreased conco-

mitantly with increases in sample size (Table 2). Furthermore, this decline in bias

appears to have slowed for samples of 800 or more. With regard to the group size

ratio, bias in a0 was lower when the group size ratio was 50/50, and increased conco-

mitantly with larger differences in the group sizes.

Four Latent Classes

The ANOVA results revealed that the interactions of data generating model by esti-

mation method by group size ratio (F7, 18 = 9:33, p\0:001, h2 = 0:592), data generat-

ing model by method by difference in conditional item endorsement probability

(F5, 18 = 7:41, p\0:001, h2 = 0:407), and data generating model by estimation method

by sample size (F7, 18 = 4:99, p = 0:019, h2 = 0:333) were all significantly related to

Table 1. Overall Classification Accuracy by Sample Size, Estimation Method, and Data
Generating Model: Two Extreme Latent Profiles.

GoM generating model LCA generating model

Sample size GoM LCA GoM LCA

200 0.94 0.85 0.91 0.89
400 0.95 0.87 0.92 0.93
800 0.94 0.88 0.92 0.95
1,600 0.94 0.91 0.93 0.96

Note. GoM = grade of membership; LCA = latent class analysis.
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Figure 2. Overall classification accuracy by estimation method, group size ratio, and
difference in group conditional probability of item endorsement: Two extreme latent profiles.
Panel 1: GoM generating model. Panel 2: LCA generating model.
Note. GoM = grade of membership; LCA = latent class analysis.
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Figure 3. Sensitivity by estimation method, group size ratio, and difference in group
conditional probability of item endorsement: Two extreme latent profiles. Panel 1: GoM
generating model. Panel 2: LCA generating model.
Note. GoM = grade of membership; LCA = latent class analysis.
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Figure 4. Specificity by estimation method, group size ratio, and difference in group
conditional probability of item endorsement: Two extreme latent profiles. Panel 1: GoM
generating model. Panel 2: LCA generating model.
Note. GoM = grade of membership; LCA = latent class analysis.

536 Educational and Psychological Measurement 81(3)



the number of extreme latent groups that were identified by the various methods.

Table 3 includes the mean number of extreme groups identified by method, sample

size, group size ratio, and difference in conditional item endorsement probability for

the GoM data generating model. The combination of LCA with AIC yielded more

accurate results across all simulation conditions, when compared with the LCA BIC

approach. In addition, GoM and LCA were both more accurate in terms of identify-

ing the number of extreme latent groups for larger samples, more equal group sizes,

and larger group differences in the conditional item response probabilities. Among

the three approaches, GoM was generally the least affected by the conditions manipu-

lated in this study when the underlying model was GoM, with smaller differences in

its most and least accurate estimates of the number of extreme latent groups present

in the data. When the underlying model was LCA, the GoM model tended to overes-

timate the number of latent classes across sample sizes, group size ratios, and differ-

ences in the conditional item response probabilities (Table 4). Conversely, both LCA

based methods had the mean number of estimated classes within 0.1 of the actual

value across study conditions.

In terms of classification accuracy, ANOVA identified the interactions of data

generating model by estimation method by group size ratio by difference in condi-

tional probability (F7, 18 = 7:14, p\0:001, h2 = 0:688) and data generating model by

method by group size ratio by sample size (F10, 18 = 6:31, p\0:001, h2 = 0:743) as

being statistically significant. Overall accuracy rates for the GoM data generating

model by method, sample size, and extreme class size ratio appear in Figure 5, Panel

1. When the ratios were equal, or 0.4/0.2/0.2/0.2, classification accuracy rates for the

two methods were very similar for samples of 200 and 400, and were slightly higher

for LCA for N = 800 and 1,600. However, when the group sizes were more unequal,

GoM exhibited higher overall classification accuracy rates than did LCA. In contrast,

when the data generating model was LCA (Panel 2), the two methods had very simi-

lar overall classification accuracy rates across conditions.

Table 2. Relative Estimation Bias of a0 by Sample Size and Group Size Ratio With Grade of
Membership (GoM) Generating Model.

Study condition Bias

Sample size
200 0.38
400 0.15
800 0.05
1,600 0.04

Group size ratio
50/50 0.07
25/75 0.14
10/90 0.25
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Table 3. Mean Number of Extreme Latent Profiles by Total Sample Size, Difference in
Conditional Item Endorsement Probability, Group Size Ratio, and Estimation Method: Four
Extreme Latent Profiles With GoM Generating Model.

Study condition GoM LCA AIC LCA BIC

Sample size
200 3.3 2.8 2.1
400 3.4 3.5 2.4
800 3.5 3.7 2.6
1,600 3.7 3.8 3.1

Group size ratio
0.25/0.25/0.25/0.25 3.7 3.9 2.9
0.4, 0.2, 0.2, 0.2 3.5 3.7 2.8
0.7/0.1, 0.1, 0.1 3.4 3.2 2.4
0.91/0.03/0.03/0.03 3.3 2.6 2.2

Difference in conditional item response probability
0.3 3.6 3.6 3
0.2 3.4 3.5 2.5
0.1 3.4 3.3 2.2

Note. GoM = grade of membership; LCA = latent class analysis; AIC = Akaike information criterion;

BIC = Bayesian information criterion.

Table 4. Mean Number of Extreme Latent Profiles by Total Sample Size, Difference in
Conditional Item Endorsement Probability, Group Size Ratio, and Estimation Method: Four
Extreme Latent Profiles With LCA Generating Model.

Study condition GoM LCA AIC LCA BIC

Sample size
200 4.2 3.9 3.9
400 4.2 3.9 3.9
800 4.3 4.1 4.0
1,600 4.4 4.0 4.0

Group size ratio
0.25/0.25/0.25/0.25 4.1 4.0 4.0
0.4, 0.2, 0.2, 0.2 4.2 4.1 4.0
0.7/0.1, 0.1, 0.1 4.3 4.0 3.9
0.91/0.03/0.03/0.03 4.4 4.1 4.0

Difference in conditional item response probability
0.3 4.3 4.0 4.0
0.2 4.2 4.1 4.0
0.1 4.1 3.9 3.9

Note. GoM = grade of membership; LCA = latent class analysis; AIC = Akaike information criterion;

BIC = Bayesian information criterion.
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Figure 5. Overall classification accuracy by estimation method, group size ratio, and sample
size: Four extreme latent profiles. Panel 1: GoM generating model. Panel 2: LCA generating
model.
Note. GoM = grade of membership; LCA = latent class analysis.
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Figure 6. Overall classification accuracy by estimation method, group size ratio, and
difference in group conditional probability of item endorsement: Four extreme latent profiles.
Panel 1: GoM generating model. Panel 2: LCA generating model.
Note. GoM = grade of membership; LCA = latent class analysis.

540 Educational and Psychological Measurement 81(3)



Figure 6 includes overall classification accuracy rates by data generating model,

estimation method, difference in extreme class conditional probability of item endor-

sement, and class size ratio. These results are quite similar to those in Figure 5. In

the GoM data generating case, the two methods performed similarly when the groups

were of equal size or in the 0.4/0.2/0.2/0.2 condition. However, for the most unequal

group sizes, GoM yielded more accurate overall classification rates. When the data

were generated from the LCA model, the two methods yielded very similar classifi-

cation accuracy rates across group size ratio and differences in conditional item

response probabilities.

With regard to sensitivity for the first group, the ANOVA results indicated that

the interactions of data generating model by estimation method by sample size

(F4, 18 = 9:93, p = 0:001, h2 = 0:580), and data generating model by estimation method

by group size ratio by difference in group probability of item endorsement

(F7, 18 = 4:96, p = 0:029, h2 = 0:512) were statistically significant. Table 5 includes the

sensitivity rates by data generating model, estimation method, and sample size for

the four extreme profiles case. Across sample sizes, when the data were generated

using the GoM model, the GoM estimator had higher sensitivity rates than did LCA.

In addition, the impact of sample size was more marked for GoM, with higher sensi-

tivity being associated with larger samples. In contrast, when the data were generated

from the LCA model, the LCA estimator exhibited higher sensitivity rates than did

the GoM approach, regardless of sample size.

Sensitivity rates by data generating model, estimation method, group size ratio,

and group difference in item endorsement probability appear in Figure 7. These

results were very similar to those for overall accuracy for both data generating

model. Namely, when the data generating model was GoM, the methods performed

similarly for the All 0.25 and 0.4/0.2/0.2/0.2 conditions, and GoM had higher sensi-

tivity rates for the two most unequal group size ratio conditions. When the underly-

ing model was LCA, the sensitivity rates were slightly higher for LCA vis-à-vis

GoM, across class size ratios, and differences in class conditional probabilities of

item endorsement.

Based on the ANOVA results, specificity rates were only statistically significantly

affected by the interaction of data generating model by estimation method,and group

Table 5. Sensitivity by Sample Size and Estimation Method: Four Extreme Latent Profiles.

GoM generating model LCA generating data

Sample size GoM LCA GoM LCA

200 0.84 0.80 0.81 0.83
400 0.86 0.81 0.84 0.87
800 0.88 0.82 0.86 0.89
1,600 0.89 0.82 0.86 0.90

Note. GoM = grade of membership; LCA = latent class analysis.
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Figure 7. Sensitivity by estimation method, group size ratio, and difference in group
conditional probability of item endorsement: Four extreme latent profiles. Panel 1: GoM
generating model. Panel 2: LCA generating model.
Note. GoM = grade of membership; LCA = latent class analysis.
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size ratio (F4, 18 = 4:83, p = 0:007, h2 = 0:41). Given the results appearing in Table 6,

when the data generating model was GoM, the largest difference in specificity among

the estimation methods occurred for the most extreme difference in the class sizes,

with GoM having a slightly higher specificity rate than LCA. When the underlying

model was LCA, the LCA estimator consistently yielded higher specificity rates than

was the case for GoM.

The relative bias in estimation of a0 was found to be statistically significantly

related to the interaction of sample size and group size ratio (F9, 18 = 5:675,

p = 0:001, h2 = 0:74). Relative estimation bias by sample size and extreme class size

ratio appears in Figure 8. Regardless of the ratio, bias was smaller for larger samples.

Likewise, regardless of the sample size, bias was lower for a more equal distribution

of the extreme group sizes. This result mirrors that for the two-class case, as

described above. The statistically significant interaction appears to be the result of

the decline in the relative differences in bias among the ratio conditions as sample

size increased. In other words, for larger sample sizes, the difference in relative bias

was smaller across the group size ratio conditions. Taken together, these results sug-

gest that GoM provides the most accurate estimate of a0 when it has maximum

information available about each of the groups; that is, for relatively large and

equally sized samples in each group.

Discussion

As stated above, the goal of this research was to investigate the performance of the

GoM model under conditions that had not been heretofore examined, particularly

with smaller samples, very unequal extreme latent class sizes, and an underlying

LCA model. In addition, this study was also designed to compare the performance of

the GoM model with that of perhaps the most popular latent group estimation

approach, LCA. As was hypothesized, when the data were generated using the GoM

model, GoM performed better than did LCA in terms of correctly classifying individ-

uals into the appropriate latent classes. On the other hand, when the data were gener-

ated using the LCA model, the two approaches performed similarly for two latent

Table 6. Specificity Rates by Extreme Class Size Ratio and Estimation Method: Four Extreme
Latent Profiles.

GoM generating model LCA generating model

Class size ratio GoM LCA GoM LCA

0.25/0.25/0.25/0.25 0.84 0.84 0.83 0.86
0.4/0.2/0.2/0.2 0.84 0.83 0.82 0.85
0.7/0.1/0.1/0.1 0.83 0.83 0.82 0.84
0.91/0.03/0.03/0.03 0.84 0.81 0.81 0.82

Note. GoM = grade of membership; LCA = latent class analysis.
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classes but with LCA yielding somewhat more accurate results in the four subgroups

case. One exception to this pattern of results, however, was that when two extreme

classes were present in the population, LCA using BIC to identify the optimal model

did perform as well as GoM in terms of identifying the number of classes to retain.

Taken together, these results suggest that when the underlying model is based on

GoM, the GoM approach will perform better that LCA, overall, though the results

provided by LCA were also relatively close to that in the population. On the other

hand, when the underlying model was LCA, and particularly with four latent classes

present, then the LCA estimation approach generally yielded somewhat more accu-

rate results than GoM, particularly when four classes were present. Again, this set of

findings was hypothesized and thus does not come as a great surprise.

Of perhaps more interest than the direct comparison of LCA and GoM, was that

the GoM model performed well and consistently across a variety of underlying popu-

lation conditions, including even when the underlying model was LCA. Previous

research had demonstrated that this model would accurately recover the number of

extreme latent classes well for a sample size of 5,000, and when the classes were rel-

atively equal in size. The current study extended this work by demonstrating that

when the underlying data came from the GoM model, the GoM approach generally

identified the correct number of underlying extreme latent classes for much smaller

samples, and when the groups were of very different sizes. In addition, these results

Figure 8. Estimation bias of a0 by sample size and group size ratio: Four extreme latent
profiles.
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demonstrate that the estimator’s ability to do so was largely impervious to the num-

ber of extreme latent classes, sample size, group size ratio, or differences among the

groups in the probability of endorsing the items in the set. In other words, researchers

making use of the GoM model can have confidence in its ability to consistently

recover the underlying latent structure for samples as small as 800 when the group

size ratio was as unequal as 0.91/0.03/0.03/0.03 in the four latent classes case.

Furthermore, when the underlying extreme groups are equal in size, the ability of the

GoM model to accurately identify the number of underlying latent classes is high for

samples as small 200 individuals. This latter result is most pronounced for the two

extreme class case, but it also holds when four subgroups are present in the

population.

When the underlying model was based on the LCA, GoM provided group classifi-

cation results that were very comparable to those of LCA, when two subgroups were

present in the population. However, GoM also had a tendency to overestimate the

number of latent classes when the data were generated using LCA. Thus, researchers

using the GoM should carefully consider the mixing parameter estimates, and if they

seem to support the presence of extreme latent profiles rather than mixed profile

membership for most individuals in the sample, then LCA may be preferable for

characterizing the latent structure of the data. This latter recommendation is particu-

larly trenchant when more latent subgroups are found to be present.

In terms of estimation bias for the a0 parameter, the results of this study demon-

strated that larger samples and more equal group sizes are preferable. Specifically, in

order for relative bias to be 0.05 or lower, samples need to be 400 or more, coupled

with equal extreme latent class sizes. When the sample was 200, the relative bias was

quite large for both the two and four group cases. This bias was exacerbated when the

groups were also of different sizes, and generally smaller when two groups were pres-

ent in the population, as opposed to four.

Implications for Practice

Given these results, several recommendations for practice can be made. First, if the

researcher is reasonably confident that the underlying model is GoM (i.e., individuals

in the population probably contain a mixture of the underlying subgroups) and there

are only two extreme latent groups present in the data, then the GoM model estima-

tor will perform well in terms of accurately identifying the number of groups, and

placing individuals within these groups for samples as small as 200, even when the

group size ratios are as extreme as 10/90. When extreme profiles are more likely, as

with an underlying LCA model, then the GoM approach may tend to overestimate

the number of classes present in the population.

A second recommendation is that when more extreme latent classes are believed

to be present (e.g., four), then the researcher may need samples upward of 800, par-

ticularly if the subgroup sizes are unequal. However, if it is believed that the extreme
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latent classes are of approximately the same size, then samples of 400 may be large

enough for researchers expecting to find approximately four such groups in the data.

Third, the determination of the underlying model appears to be more important

when more latent classes are present in the data. The GoM model did not generally

perform as well as LCA when the underlying model was LCA, and vice versa.

Therefore, researchers should carefully consider both the theoretical likelihood of

which model is more likely, as well as carefully examine the membership probability

estimates. If it appears that most members of the sample belong to only a single

group, then LCA will likely be the preferred approach for fitting the model.

A fourth implication for practice to come from this study is that performance of

the GoM is largely unaffected by the degree to which the extreme latent classes differ

in terms of their response probabilities on the dichotomous indicators, at least down

to a difference of 0.1. Thus, its ability to accurately identify the number and individ-

ual memberships of these classes will generally be good, even for differences in the

groups’ probabilities of item endorsement of 0.1. Finally, researchers who are inter-

ested in accurately estimating the a0 parameter, which expresses the degree to which

individuals are concentrated in the extreme latent classes, will need to have samples

of 800 or more, and relatively equal group sizes. Estimation accuracy for this para-

meter can be reasonably high for smaller samples, but only when the extreme classes

are of the same size, which in practice may not be reasonable to expect.

Directions for Future Research

As with all research, the current study has limitations that need to be addressed in

future work. Perhaps first and foremost, a wider array of extreme latent class size

conditions is necessary, in conjunction with the smaller samples included in this

study. Prior investigation into the performance of the GoM model (Erosheva et al.,

2007) used as many as seven such classes in conjunction with a sample size of 5,000.

Thus, future studies should examine more than four latent classes but with samples

comparable to those included here. A second direction for future work in this area is

to examine the performance of the GoM estimator with varying levels of extreme

group concentration. In the current study, the data were simulated so that concentra-

tion in the extreme groups was relatively high. Future work should examine how well

the GoM estimator works when the extreme group concentration is lower, and the

sample sizes and group size ratios are similar to those included in this study. A third

area for future research would be to examine how well the GoM estimator works

when the indicator variables are not dichotomous in nature but rather polytomous or

continuous. This research should also compare the performance of the two modeling

paradigms in those cases.
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