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Abstract

Many approaches have been proposed to jointly analyze item responses and response
times to understand behavioral differences between normally and aberrantly behaved
test-takers. Biometric information, such as data from eye trackers, can be used to
better identify these deviant testing behaviors in addition to more conventional data
types. Given this context, this study demonstrates the application of a new method
for multiple-group analysis that concurrently models item responses, response times,
and visual fixation counts collected from an eye-tracker. It is hypothesized that differ-
ences in behavioral patterns between normally behaved test-takers and those who
have different levels of preknowledge about the test items will manifest in latent char-
acteristics of the different data types. A Bayesian estimation scheme is used to fit the
proposed model to experimental data and the results are discussed.
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The rapid shift toward a digitally reliant society necessitates the continual updat-

ing of the environments in which students learn. To improve the effectiveness and

efficiency of learning, technology-enhanced learning infrastructures and approaches,

such as artificial intelligence–enhanced and virtual reality–based learning, are called

with greater frequency to bridge this gap (see, e.g., Ercikan & Pellegrino, 2017; Hao

et al., 2016; Jiao & Lissitz, 2018; Man & Harring, 2019; Mislevy, 2011). In the

technology-enhanced learning system (TELS), students’ learning status regarding

biological and psychological reactions are continuously recorded in a formative man-

ner via integrated detectors (e.g., eye-tracker, motion detectors, and virtual reality

goggles) within the environment. This intensively collected, spontaneous biological

and psychological information can be further used by practitioners to (1) better

understand the learners, (2) improve their instruction and design, (3) monitor stu-

dents’ learning, and (4) secure online-delivered exams, which could in turn, promote

increases in students’ learning outcomes. And highly relevant to the recent global

pandemic, the TELS can help transfer knowledge remotely like online-teaching,

which makes the learning experience independent of space, pace, and time.

The tremendous amount of real-time data collected by the TELS are of different

types and come in different forms, which can be modeled differently in terms of their

functionalities. Outcome data (e.g., item responses and total scores) can be modeled

to show students’ responding accuracy either at the item- or test-level. Traditionally,

item response theory (IRT) models were created to explain the association between a

test-taker’s observed binary correct/incorrect responses and their latent ability—the

latter of which is consider either to have a unidimensional or multidimensional struc-

ture (see, e.g., Birnbaum, 1968; Lord, 1952; Rasch, 1960; Reckase, 1972).

Because of its availability with emergent technologies, process data (e.g., response

times, keystrokes) can augment information about the test-taker above and beyond

what item responses afford in isolation. As De Boeck and Jeon (2019) state, ‘‘abilities

refer to levels of performance, whereas processes are the activities involved in reach-

ing a performance outcome’’ (p. 1). Bergner and von Davier (2019) describe the pro-

cess in process data and its relation to outcome measures in the following ways:

1. The process is irrelevant or at least ignorable given the outcome.

2. The process is auxiliary to the outcome.

3. The process is essential to understanding the outcome.

4. The outcome, and process scores are derived from an expert rubric, in the

sense of a holistic rating.

5. The process is the outcome, and process scores are derived from a measure-

ment model that accounts for dependencies in sequential data.

Among various types of process data, response times (RTs), the time a respondent

takes to answer an individual item or task, have been frequently modeled to either

show individuals’ working efficiency or to account for the speed-accuracy trade-off

by jointly modeling them with item responses (e.g., Bolsinova et al., 2017; Man
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et al., 2019; Molenaar et al., 2015; Man et al., 2020; van der Linden, 2006). In addi-

tion, RTs can be used as a motivation indicator to identify aberrant item-responding

behaviors such as carelessness and guessing (Guo et al., 2016; Wise & DeMars, 2006).

By collecting, analyzing, and reporting process data (e.g., RTs) in large-scale assess-

ment, process data, as a means to an end of understanding how a outcome had been

reached as a result of sequences of actions, can be essential in evaluating and diagnos-

ing task-performers’ weaknesses and strengths in solving problems (Wang et al., 2018).

Biometric data (e.g., eye-tracking, heart rate recording, electroencephalography),

a subcategory of process data, are only beginning to be used in educational assess-

ments. Although its importance in understanding the complexities of the learning

process, notwithstanding integration and modeling of biometric data in practice has

been slow because these data must be captured concurrently in real-time with other

more conventional data types (Man, 2020). One type of biometric data that is emer-

ging is eye-tracking data (Bergner & von Davier, 2019). Eye-tracking data has been

used in various disciplines for some time and different attributes of eye-movement

such as visual fixation counts (VFCs) have proven to be conducive in understanding

many cognitive processes (Poole et al., 2004). The collected eye-tracking data can be

used to address questions related to cognition such as: Where does a test-taker or task

performer gaze? When does blinking occur? How does the pupil react to different

stimuli? What information does a task-taker ignore during the performance causing

failure? The answers to these questions (among the many others that could be asked)

can potentially provide finer-grained diagnostic information regarding how high-

order cognitive constructs are used in performing a task—information that would be

unattainable by depending solely on the analysis of item responses or/and RTs.

Many methods have been proposed to analyze the different types of process data

independently (e.g., Fox & Marianti, 2016; Lu et al., 2020). However, few attempts

have been made to evaluate, in a more panoramic manner, task-takers’ abilities with

process information, which analyzes outcome and process indicators in a single

model. A two-factor hierarchical structure model proposed by van der Linden (2007)

for jointly modeling item responses and RTs with random item and person para-

meters could be an ideal foundation for jointly modeling various process indicators.

This method can provide interpretable parameter estimates, which can reveal not

only the underlying behavioral patterns reflecting the trade-off between responding

accuracy and working efficiency but item characteristics such as item difficulty.

Moreover, this modeling framework has been used to timely calibrate online ren-

dered items in the computer-based adaptive learning system with marginal maximum

likelihood estimation making this type of joint-modeling method computationally

feasible with large datasets (Kang et al., 2020). An interesting extension of this joint

modeling is to a model with general linear factors that have a multilevel, multigroup

structure. The multilevel–multigroup (ML-MG) model provides a general framework

that considers more latent constructs than ability and work speed, and as we will

demonstrate shortly, this ML-MG structure allows for the comparison of differences
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in both item characteristics and behavioral patterns across groups such as cheaters

and noncheaters.

In the field of test security, many methods (e.g., Lu et al., 2020; van der Linden,

2007) have been proposed to evaluate cheating behavior by modeling item response

and RTs jointly or separately. Yet no study that we are aware of has proposed a mod-

eling framework that also incorporates eye-tacking indicators (e.g.,VFCs) to assess

the behavioral pattern differences between the cheaters and noncheaters. Studies

have shown that VFCs can be used to demonstrate cognitive information process

efficiency and difficulty (Schaeffer et al., 2019). In addition, VFCs can show how

familiar a person is with a visual target (Constantinides et al., 2019). Coupled with

item responses and RTs, it is just this type of biometric data that we hope to demon-

strate helps uncover aberrant test-taking behavior.

In this study, a ML-MG three-way factor model is proposed for jointly modeling

item responses, RTs, and VFCs across three groups using experimental data from a

study in which participants were randomly assigned to treatment conditions. The

models allows for the investigation of the association among latent factors: ability,

working speed, and test engagement, underlying item responses, RTs, and VFCs,

respectively. The proposed ML-MG joint modeling approach is an extension of the

Bayesian multilevel modeling framework proposed by van der Linden (2007). In this

three-way ML-MG joint modeling approach, the Rasch model, an RT model, and a

VFCs model are specified at the measurement level. The variance–covariance struc-

tures of the person-side and item-side parameters are specified at level two. Bayesian

estimation is used to estimate the proposed three-way ML-MG joint model. An

empirical example using data collected in an eye-tracking lab is provided. The find-

ings from the real data analyses are discussed.

Multilevel–Multigroup Model Specification

Level-1: Measurement Models Across Different Groups
Item Response Model. A one-parameter logistic (1-PL MG; or Rasch MG) model, the

multiple group version of the conventional 1-PL model (Lord, 1952), was selected to

model the relation between latent ability reflecting the responding accuracy and item

responses, and was fitted to each group. The model is specified as

P(uijg = 1jujg; big) =
1

1 + e�(ujg�big)
, ð1Þ

where P(uijg = 1j ujg; big) is the probability of a correct response to item i

(i = 1, . . . , I), by person j (j = 1, . . . , J ), in group g (g = 1, . . . , G); big is the difficulty

parameter (location) for item i answered by persons in group g, and ujg is a general

latent trait for person j in group g. The item slopes (discrimination parameters) are

each fixed to unity.

On the person-side, using the I-PL MG model can manifest an individual’s latent

ability to solve the test items and reveal systematic differences between groups in
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responding accuracy. On the item-side, item difficulties can be estimated for differ-

ent groups of test-takers.

Response Time Model. In addition to the 1-PL MG model, a log-normal RT model

(van der Linden, 2006) with MG structure is used to describe a test-taker’s working

speed. Specification of the log-normal MG RT model extends the basic form out-

lined by van der Linden (2006) to G groups,

f (tijgjtjg, nig, big) =
nig

tijg
ffiffiffiffiffiffi
2p
p � 1

2
½nigfln tijg � (big � tjg)g�2

� �
, ð2Þ

where tijg denotes the RT of test-taker j in group g on item i. The latent parameter,

tjg 2 <, represents working speed for test-taker j in group g. The item parameter

big 2 < denotes time intensity, or simply, the average of ln(tijg) when tjg is 0.

Parameter nig 2 < is an item time discrimination parameter reflecting the dispersion

of tijg for item i answered by persons in group g. The mean value of ln (tijg) is para-

meterized as mijg = big � tjg.

Similar to the 1-PL MG model, the person-side parameters can be used to demon-

strate how efficient a person was working on the test items. And, this parameter

would be jointly modeled with latent ability and visual engagement at level-two, the

structural model. Besides, the differences in overall working efficiencies between

groups can be manifested as well. In terms of item parameters, time intensities could

be used to show how much time effort was required for each item.

Visual Fixation Counts Model. VFCs are fitted using a negative binomial fixation

(NBF) model proposed by Man and Harring (2019), which describes the relation

between observed VFCs and latent test visual engagement.1 The NBF model is speci-

fied as:

P(C = cijgj sig, mig, vjg) =
G(cijg + sig)

cijg!G(sig)
3

sig

exp (mig + vjg) + sig

� �sig

3
exp (mig + vjg)

sig + exp (mig + vjg)

� �cijg

,

ð3Þ

where parameter mig, an item-side parameter, denotes the visual intensity for item i

answered by persons in group g. The presumption is that this parameter reflects the

averaged amount of visual engagement for a group of test-takers to finish answering

an item. A person-specific parameter, vjg, for each of the j (j = 1, . . . , J ) test-takers

in group g (g = 1, . . . , G), denotes the overall test engagement level and is assumed

to be constant across all the items. Furthermore, a discrimination parameter, aig, for

item i in group g is defined as aig = 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m:ig + m2

:ig=sig

q
, where u:ig =

PI
i = 1 uijg=I ,

reflecting the dispersion of the fixation counts on item i.
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Level 2: Multigroup Item Domain and Person Domain Models

The second-level models incorporate two variance–covariance structures, named as

person-domain and item-domain structures separately, to account for the dependen-

cies of both item and person parameters jointly. These are estimated from the Level-

1 models for different groups.

Person-Domain Parameters. In this joint modeling approach, the person domain of

each group covers three latent person-side parameters: (1) latent ability u, (2) work-

ing speed t, and (3) visual engagement v. These three latent variables for the popula-

tion of test-takers of a specific group is hypothesized to follow a multivariate normal

distribution such that

Θpg = (ug, tg, vg)T ;MVN(mpg
, Spg

), ð4Þ

with mean vector, mpg
= (mug

, mtg
, mvg

)T , and covariance matrix

Spg
=

s2
ug

sutg
s2

tg

suvg
stvg

s2
vg

0
B@

1
CA: ð5Þ

The parameters on the diagonal of the Spg
denote the variances of the latent con-

structs. The off-diagonal parameters represent the covariances between any pairs of

latent constructs. For example, the parameter, sutg
is the covariance between latent

ability and speediness of test-takers in group g.

Item Domain Parameters. A multivariate normal distribution is also assumed for the

item parameters such that

NIg = (bg, bg, mg)T ;MVN (mIg
, SIg

): ð6Þ

The mean vector and symmetric covariance matrix, mIg
and SIg

, are defined respec-

tively as mIg
= (mbg

, mbg
, mmg

)T and

SI =

s2
bg

sbbg
s2

bg

sbvg
sbmg

s2
mg

0
B@

1
CA: ð7Þ

By estimating the two structural variance–covariance matrices, the associations

among item parameters and the relationships among person parameters can be mani-

fested across groups. Those structural nuances across groups represent distinct test-

taking behavioral patterns among individuals who have preknowledge of test items.
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The impact of having preknowledge can be evaluated by measuring the magnitude

of drifts in the associated parameters, such as item difficulties and time intensities.

The model constraints will be illustrated in the estimation section.

Testing Item Parameter Drift Across Groups

Item drift occurs when items function differently for various groups of test-takers.

Usually, item drift was caused by the presence of new construct or irrelevant traits

(e.g., test-takers have preknowledge on items) affecting the individuals’ responding

accuracy, which violates the unidimension assumption of testing (Hambleton et al.,

1991; Smith & Prometric, 2004). Therefore, the distributions of additional traits/con-

structs differ across groups. One group of test-takers might have lower probabilities

to answer the items correctly. To evaluate whether item parameter drift exists across

experimental groups, pairwise differences among the same set of item parameters are

defined as follows:

The drift in item difficulties: Dbi(m, n) = Dbi(m) � Dbi(n);Normal(mDbi(m, n)
, s2

Dbi(m, n)
),

i = 1, . . . , I , m 6¼ n, m 2 (1, . . . , G), n 2 (1, . . . , G), G means group. For instance,

Db1(1, 2) describes the drift in difficulties for Item 1 between experimental conditions

1 and 2.

In terms of time intensities, the drift in time intensities are defined as: Dbi(m, n) =

Dbi(m) � Dbi(n);Normal(mDbi (m, n)
, s2

Dbi (m, n)
), i = 1, . . . , I , m 6¼ n, m 2 (1, . . . , G),

n 2 (1, . . . , G). Similarly, the drifts in visual intensities are defined as:

Dmi(m, n) = Dmi(m) � Dmi(n);Normal(mDmi (m, n)
, s2

Dmi(m, n)
), i = 1, . . . , I , m 6¼ n;

m 2 (1, . . . , G), n 2 (1, . . . , G):

To summarize the uncertainty of the posterior distribution of the different item

drift differences, standardized Wald-statistics are defined for difficulties, time inten-

sities, and visual intensities, separately:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WDbi (m, n)

q
=

m̂Dbi (m, n)

ŝDbi (m, n)

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WDbi(m, n)

q
=

m̂Dbi (m, n)

ŝDbi(m, n)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WDmi (m, n)

q
=

m̂Dmi (m, n)

ŝDmi (m, n)

:

The calculated W statistics will be compared with corresponding critical values:

61:96 based on that the probability of incorrectly rejecting the true hypothesis equals

.05. If a calculated W statistic is less extreme than the critical values, it indicates that

the posterior probability of existing item drift is less than .05. Otherwise, it indicates

existence of item drift with high probability.

Figure 1 displays the graphical representation of the ML-MG joint model of item

response, response time, and VFCs.
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Bayesian Estimation Using MCMC Sampling

Bayesian estimation was used for model parameter estimation in Just Another Gibbs

Sampler (Plummer, 2015), which is housed in the R2jags package (Su & Yajima,

2015). Convergence is assessed via the coda package. Four chains using 60,000 total

iterations with thinning of 4 to reduce autocorrelation among draws were executed.

Model parameter estimates and standard deviations were summed up dependent on

the posterior densities using the final 10,000 iterations after burning-in 50,000. The

potential scale reduction factor was used for assessing convergence for all model

parameters (Gelman et al., 2003). For the present study, a potential scale reduction

factor value of 1.2 or less for each model parameter was used as the arbiter indicat-

ing convergence.

Model Identification

To properly identify the scales of the latent variables, model constraints are needed

either on the item side (fixing the summation of item thresholds to zero) or the

person-side (fixing the expectation of the latent ability parameter to zero). In this

study, the model identification scales were fixed on the person-side by following the

convention used for IRT model estimation (Volodin & Adams, 1995; Wu et al.,

1998).

Within each group g, the population mean of the latent ability for the 1-PL model,

u, was set to 0 (Lord, 1952), and, the item discrimination parameter for each item

was fixed as one. For the log-normal RT model, the population mean of latent

Figure 1. Multilevel–multigroup (ML-MG) three-way joint model approach of item response,
response time, and visual fixation counts. mIg

, mean vector of item parameters; SIg ,
covariance of item parameters; mPg

, mean vector of person parameters; SPg
, covariance of

person parameters. g indicates different groups: g = 1, . . . , G.
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speediness, t, was constrained to 0 as well (van der Linden, 2006). For the NBF

model, the population mean of the latent person-side visual engagement parameter O
is fixed as 0 as well (Man & Harring, 2019).

mvg
= mug

= mtg
= 0 for g = 1, ::, G ð8Þ

Prior Distributions

Weak informative priors are preferentially used in this study to increase the general-

izability of our code by imposing vague prior beliefs on estimating parameters.

The setting of priors in this way was also implemented in Man et al. (2020) and

Man and Harring (2019). uijg;Bernoulli(P(uijg = 1)), log(Tijg;N (big � tjg, nig))

Cijg;NB(exp(mig + vjg, sig)):
The prior distribution of item parameters, NIg

referring to Equation 6, for the pro-

posed model is assumed to be trivariate normal. And, nig, defined as the inverse of

the variances of the log-times on different items, follows IG(1, 1). In addition, the

fixation dispersion parameter for each item [i.e., sig;IG(1, 1), i = 1, :::, I � is

assumed to follow an inverse Gamma distribution as well. Hyperpriors are defined as

mdg
;N (0, 0:5), mbg

;N (4:0, 0:5), mmg
;N (3:5, 1) SIg

;IW IIg
, n

� �
,

where IIg
is an 3 by 3 identity matrix, and n is the degree of freedom, which in this

case is equal to 3.

Similarly, the prior specification for the person parameters, Θpg
refering to

Equation 4, of the three-way joint model follows a trivariate normal distribution.

Where the mIg
fixed as 0s. And,

Spg
=

s2
ug

sugtg
s2

tg

sugvg
stgvg

s2
vg

0
B@

1
CA;IW IPg

, ng

� �
:

The joint posterior probability for the proposed model can be represented as

p(Ypg
, NIg
jug, log (Tg), cg)}

YI

i = 1

YJ

j = 1

p (uijg, log (Tijg), cijgjYjg, Nig)p(Yjgjmpg, Spg)

p(NigjmIg, SIg)p(mdg
)p(mbg

)p(mmg
)p(SIg

jng)p(mpg
j0, Spg

)p(Spg
jng),

where p(:j:) indicates the conditional density function.

Posterior Predictive Model Checking

In this study, posterior predictive model checking (PPMC) was used for evaluating

whether the proposed model adequately accounted for the variability existing in the
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data. Specifically, PPMC was used to check our model-data fit (see, e.g., Gelman

et al., 1996; Levy et al., 2009; Rubin, 1996; Sinharay et al., 2006).

Introduction of the Method

Let c = (ΘT
p , NT

I )T be the vector of unique parameters we are interested in estimating,

and let y be the set of observed data (e,g., item responses, RTs, and VFCs). Thus, the

likelihood based on the conditional distribution of the data given model parameters

could be expressed as p(yjc), and the prior distributions of all the model parameters

could be denoted as p(c). By applying Bayes’ rule, the posterior distribution for a

given set of parameters could be expressed as

p(cjy)[
p(yjc)p(c)Ð

c
p(yjc)p(c)dc

: ð9Þ

To check the model-data fit by PPMC, predicted data are generated from the joint

posterior distribution. The generated replicated dataset is denoted as ypred
r for r = 1,

2, . . ., R; where R indicates the number of draws from the joint posterior distribution.

The distribution of predicted data, named as the posterior predictive distribution of

predicted data (see, Equation 9), could be used for checking the data model fit.

p(ypred jy) =

ð
p(ypred jc)p(cjy)dc: ð10Þ

Model fit is evaluated by comparing the differences between the predicted data

ypred
r for r = 1, 2, . . ., R, and the observed data, y. A small difference would be indi-

cative of satisfactory data-model fit. Instead of directly comparing the predicted data

and the observed data, a discrepancy measure, T ( � ), a function of data and model

parameters, is usually computed, which summarizes the data and the corresponding

model parameters (Gelman et al., 1996).

The model-data fit can be evaluated by comparing the difference between the

T (ypred , c) and T (y, c), which are calculated based on predicted and realized data,

respectively. In practice, a posterior predictive p value (PPP-value) is defined as the

probability of obtaining the predicted data that is more extreme than the observed

data. The estimated PPP-value is the proportion of T (ypred , c) equal to or larger than

T (y, c) over the R draws. A PPP-value close to 0 or 1 is indicative of poor model–

data fit since the predicted data ypred
r is more extreme than the observed data, y. The

PPP-value is defined as

p = p(T (ypred , c) � T (y, c)) = IT (ypred , c)�T(y, c)p(ypred jc)p(cjy)dypreddc, ð11Þ

where I: is the indicator function. To compute the data–model fit for the proposed

model by applying the PPMC method, Sinharay et al. (2006) suggested the following

three-step procedure outlined in Patz and Junker (1999):
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1. Draw the item parameter and person parameter estimates for the proposed

model from the posterior distribution (see, Equation 9).

2. Draw ypred from the proposed model given by Equation 10 based on the

drawn item parameter and person parameter estimates in Step 1.

3. Compute the values of observed and predictive discrepancy measures (e.g.,

item-fit statistics or descriptive statistics only based on data) from the above

draws of parameters and data set.

The data–model fit can be evaluated based on the computed PPP-values, which are

given by the Equation 11. Figure 2, a modification of a schematic presented by

Sinharay et al. (2006), graphically demonstrates the detailed procedure of using the

PPMC method to evaluate the data-model fit.

A posterior predictive probability (PPP) value near .5 indicates that there are no

systematic differences between the realized and predictive values, and thus an ade-

quate fit of the model (Sinharay et al., 2006). In the results section, the item-wise

data–model fit for the item responses, RTs, and VFCs will be calculated by aver-

aging over all the persons’ PPP-values for each item, and the results will be reported

in a table later.

Real Data Analysis

The proposed ML-MG three-way joint model of item responses, RTs, and VFCs

were fitted to the data. Parameter estimates of the Level-1 measurement models were

reported. In addition, the trade-offs of the person-side and item-side parameters at

Figure 2. Graphical demonstration of posterior predictive model checking (PPMC) method.
y, observed data; ypred, predicted data; c, model parameters; p(c), prior distributions of
model parameters; p(cjy), posterior distributions of model parameters; T( � ) discrepancy
measures.
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the Level-2 were discussed by summarizing the corresponding variance–covariance

estimates.

Data Description

Data were collected in an eye-tracking lab setting at a large university with IRB

approval. A total of N = 335 university students who had normal or corrected vision

were recruited for the study. Students were asked to take a test consisting of I = 10

questions related to verbal reasoning. The test material used for the current study fol-

lowed the structure of a high-stakes credentialing exam. Data from subjects who did

not complete the designed tasks were excluded from the following analysis, leaving

N = 298 participants in the study. Table 1 lists the numbers of subjects in each

condition.

Students were invited to a room and seated approximately 80 cm away from a 17

monitor with an eye-tracking device, Gazepoint, placed under the screen. Gazepoint

is an accessible and reliable experimental eye-tracker with 60 Hz sampling rate and

0.5-1 degree of visual angle accuracy, which is commonly used for conducting eye-

tracking research. Students were asked to take a test consisting of I = 10 questions

related to verbal reasoning. The test structure followed the structure of one section of

a high-stakes credentialing exam. Item responses were recorded, and RTs and gaze

fixation counts of the area of interest, were measured simultaneously as the partici-

pants answered the assessment questions. The position–variance method (Jacob &

Karn, 2003) was the default algorithm for processing fixation counts. The interested

reader can visit the Gazepoint website for tutorials (https://www.gazept.com/tutorials/)

about usage and setup as well as a listing of peer-reviewed publications (https://

www.gazept.com/about-us-page-2/publications/) that used the eye-tracking hardware to

gather data for the research projects. Figure 3 displays the collected item response

(transferred into the proportions of correctness), item response times, and VFCs side-

by-side for the ten items.

Data Visualization Across Different Experimental Conditions

Based on the descriptive statistics of the collected data, it is not hard to gain insights

about the group differences by comparing the means for each variable across three

Table 1. Number of Subjects in Each Condition.

Condition 1 Condition 2 Condition 3

Number of subjects 93 98 107

Note. Condition 1: Participants in the control condition who did not receive any test preparation

materials. Condition 2: Participants received items that were similar to their exam. Condition 3:

Participants in the third condition would receive similar exam questions and the answer key.
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experimental conditions. To have better understanding about the data and to properly

model it for accurate inferences, the collected data was explored by showing the

bivariate scatterplots of the major variables, which are quite useful and straightfor-

ward for interpreting trends and the associations among the key variables. All scatter-

plots were created based on the total scores for each individual, see Figure 3. For

instance, on the top left of Figure 3, the total scores were calculated by summing up

the 10 item scores. Visualizing the key variables is helpful to understand the most

appropriate means for answering our research questions.

In Condition 1, distribution of each variable (listed on the diagonal of the plot

matrix) was relatively normal. In addition, by looking at the bivariate normal density

contours (listed on the off diagonal), the correlation between total score and total

time, and the one between total score and total gaze are expected to be relatively

weak due to its round contours. In contrast, the correlation between total gaze and

total time is expected to be positive due to its up-tilted elliptical contour. In terms of

Condition 2, their panel plots show bimodal and skewed distributions, which are dif-

ferent from those shown in Condition 1. The bimodal distribution may indicate a mix

of two groups of test-takers with different test-taking strategies, responding to the

items in different ways. In addition, the total gaze and total RTs are skewed to the

right, which means, on average, test-takers tend to spend a shorter time finishing the

items on their tests. Regarding Condition 3, generally speaking, all the distributions

listed on the diagonal are relatively more skewed with less variability. The distribu-

tions are very skewed with high peaks, which indicate the responding behavioral pat-

terns of test takers under Condition 3 are dramatically different from test-takers in the

other conditions. The results show that test-takers in this group correctly answered

the items more rapidly with less visual attention. Also, all the test-takers in Condition

3 behaved more alike.

Accessing Data Model fit based on PPMC Method

Table 2 shows the item-wise PPP-values for assessing data model fits across condi-

tions. The PPP-values were summarized based on 10,000 iterations after dropping

burn-in iterations with thinning of 4. On comparison of the PPP-values for the three

models across 10 items, in general, most of the PPP-values were close to .5 for I-PL,

RT, and NBFM model, indicating satisfactory fit of all three measurement models.

One thing to note, the PPP-values for Condition 3 were more extreme than the ones

in Conditions 1 and 2. Yet all of them are within the range between 0.05 and 0.95.

To understand and evaluate the pattern differences in test-taking behaviors across

distinct experimental conditions, a multiple-group joint three-way factor model of

item responses, RTs, and VFCs were fitted separately to the data in different condi-

tions. Parameter estimates of the Level-1 measurement models across the three con-

ditions were reported. Moreover, the distinctions of the associations of the person-

side and the item-side parameters were reported by showing the corresponding cov-

ariance estimates across the contrasting experimental conditions.
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Impact of Having Preknowledge of Test Items on Item Characteristics

To evaluate the impact of having preknowledge of test questions on the properties of

test items (see Figure 4), Table 3 displays a comparison of item parameter estimates

of the proposed model with regard to the three experimental conditions. In general,

item difficulties (b̂), time intensities (b̂), and visual intensities (m̂), on average, tend

to show lower values in the Condition 3 than the other two conditions (see Table 3).

This is potentially attributable to the fact that test-takers tend to spend less time and

less visual effort on a test with which they were more familiar by practicing the simi-

lar items in advance.

Item Difficulty Estimates Across Conditions. In general, items, on average, appeared to

be much easier in Condition 3 than the other two conditions. Across item difficulties,

b̂ ranged from 21.06 to 0.99 in the Condition 1, varied from 21.55 to 0.79 in the

Condition 2, and fluctuated from 24.09 to 20.24, which is demonstrated in Table 3.

To test the significance of item drifts in difficulties due to the preknowledge effect

across items, Table 4 presents the differences in difficulties Db(, ), standard deviations

SDDb(, )
, and, Wald statistics WDb(, )

across items. Intriguingly, the difference (Db(1, 2))

in item difficulties between the Condition 1 and Condition 2 is not as large as the dif-

ference (Db(1, 3)) between Conditions 1 and 3 (see Figure 4). This was also supported

by Wald statistics, which showed insignificant drifts in difficulties between

Conditions 1 and 2, except the Item 2 (WDb(1, 2)
= 2.904, Zcritic = 1.96). This might

indicate that practicing items beforehand without knowing the answer keys has lim-

ited impact on item difficulties. In contrast, the item difficulties (Db(2, 3)) would

Figure 4. Scatterplots for item parameter estimates. A loess nonparametric smoothed
curve is plotted for each scatterplot.
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decrease greatly if the test-takers practice the equivalent items with keys. All item

drifts were significant between Conditions 1 and 3, and between Conditions 2 and 3

by comparing with the cutoff values: 61.96.

Time Intensity Estimates Across Conditions. Similarly, test-takers who practiced the

items or knew the answer keys beforehand tended to take less time to finish their

tests. By averaging the time intensities across the 10 items,
�̂
b (the averaged time

intensity) is 3.21 in Condition 1; 2.367 in Condition 2, and 2.102 in Condition 3 (see

Table 3. Item Parameter Estimates Across Different Experimental Conditions.

Model

1-PL RT NBFM

Condition Item b SD b SD v SD m SD a SD

C1 1 21.05 0.24 1.92 0.05 0.43 0.03 3.20 0.03 0.19 0.012
2 20.52 0.24 2.65 0.03 0.21 0.02 3.85 0.02 0.14 0.006
3 20.6 0.23 2.59 0.03 0.24 0.02 3.80 0.02 0.13 0.011
4 0.31 0.22 3.02 0.04 0.36 0.03 4.27 0.04 0.04 0.003
5 0.97 0.24 3.57 0.03 0.21 0.02 4.76 0.02 0.07 0.007
6 20.14 0.22 3.08 0.04 0.33 0.02 4.42 0.03 0.05 0.004
7 0.50 0.22 2,67 0.04 0.36 0.03 4.02 0.03 0.07 0.005
8 0.99 0.24 3.98 0.03 0.18 0.01 5.27 0.01 0.06 0.007
9 0.6 0.22 3.97 0.02 0.21 0.02 5.26 0.02 0.03 0.003

10 0.09 0.23 4.14 0.02 0.18 0.01 5.42 0.01 0.05 0.005
C2 1 20.67 0.24 1.81 0.06 0.44 0.03 3.07 0.06 0.12 0.011

2 21.55 0.29 1.81 0.06 0.39 0.03 3.03 0.05 0.13 0.012
3 20.48 0.22 1.99 0.05 0.34 0.03 3.22 0.05 0.12 0.010
4 0.13 0.23 2.43 0.06 0.45 0.03 3.73 0.06 0.05 0.005
5 0.64 0.24 2.74 0.06 0.42 0.03 4.01 0.05 0.05 0.004
6 20.21 0.23 2.34 0.06 0.42 0.03 3.66 0.05 0.06 0.005
7 0.78 0.24 2.21 0.06 0.42 0.03 3.48 0.06 0.07 0.006
8 0.66 0.23 2.90 0.07 0.56 0.04 4.32 0.06 0.03 0.002
9 0.79 0.24 2.78 0.08 0.63 0.05 4.38 0.07 0.02 0.002

10 20.17 0.23 2.66 0.08 0.62 0.05 4.17 0.07 0.02 0.002
C3 1 24.09 0.55 1.69 0.06 0.4 0.03 2.98 0.06 0.13 0.012

2 23.76 0.51 1.51 0.06 0.41 0.03 2.80 0.06 0.15 0.014
3 21.91 0.31 1.92 0.08 0.59 0.04 3.36 0.07 0.05 0.005
4 21.72 0.28 2.29 0.08 0.73 0.05 3.82 0.08 0.03 0.003
5 21.92 0.29 2.46 0.06 0.41 0.03 3.77 0.06 0.05 0.004
6 21.81 0.30 2.16 0.06 0.43 0.03 3.52 0.06 0.07 0.006
7 21.23 0.28 2.11 0.06 0.41 0.03 3.40 0.06 0.08 0.007
8 22.39 0.33 2.32 0.07 0.52 0.04 3.80 0.06 0.04 0.004
9 20.24 0.25 2.23 0.07 0.56 0.04 3.76 0.07 0.04 0.004

10 20.81 0.28 2.33 0.07 0.55 0.04 3.84 0.07 0.04 0.004

Note. 1-PL = one-parameter logistic model; RT = log-normal response time model; NBF = negative

binomial visual fixation counts model.
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Table 3). By taking the exponential of each averaged time intensity estimate, the unit

of
�̂
b were converted into seconds. On average, test-takers in Condition 1 took about

25 seconds to finish an item, those in Condition 2 used about 11 seconds, and those

in Condition 3 took about 8 seconds. The results show that, on average, test-takers in

Condition 3 who were practicing items beforehand with answer keys worked three

times faster than those in Condition 1 who did not receive any test preparation mate-

rials on answering an item. In addition, the Wald statistics demonstrated in Table 4

of testing item drifts in time intensities WDb(, )
confirm that the mean differences Db(, )

Table 4. Impact of Having Preknowledge of Test Items on Item Drifts.

Par. Drift Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10

Db (1,2) 20.381 0.996 20.101 0.168 0.319 0.071 20.308 0.294 20.196 0.225

SDDb(1,2) 0.337 0.343 0.319 0.325 0.339 0.317 0.331 0.330 0.324 0.314

WDb (1,2) 21.131 2.903 20.317 0.518 0.941 0.225 20.931 0.890 20.606 0.718

Db(1,3) 3.088 3.253 1.356 2.042 2.892 1.700 1.717 3.362 0.856 0.888

b SDDb (1,3) 0.640 0.553 0.377 0.370 0.396 0.370 0.349 0.416 0.348 0.345

WDb (1,3) 4.824 5.882 3.597 5.519 7.304 4.596 4.919 8.082 2.459 2.574

Db(2,3) 3.469 2.257 1.457 1.874 2.573 1.629 2.025 3.068 1.052 0.662

SDDb(2,3) 0.630 0.569 0.381 0.378 0.384 0.374 0.368 0.410 0.346 3.470

WDb(2,3) 5.506 3.967 3.825 4.956 6.702 4.355 5.503 7.483 3.041 0.191

Dm(1,2) 0.141 0.833 0.590 0.547 0.764 0.762 0.553 0.960 0.979 1.258

SDDm(1,2) 0.065 0.060 0.058 0.073 0.061 0.067 0.068 0.066 0.076 0.074

WDm(1,2) 2.167 13.888 10.175 7.497 12.522 11.374 8.129 14.538 12.879 17.006

Dm(1,3) 0.235 1.074 0.458 0.479 1.011 0.923 0.641 1.501 1.516 1.595

m SDDm(1,3) 0.065 0.064 0.076 0.090 0.061 0.067 0.067 0.069 0.072 0.067

WDm(1,3) 3.609 16.779 6.026 5.321 16.577 13.772 9.566 21.748 21.060 23.805

Dm(2,3) 0.094 0.241 20.132 20.068 0.247 0.161 0.088 0.541 0.538 0.337

SDDm(2,3) 0.087 0.086 0.093 0.104 0.085 0.087 0.087 0.096 0.103 0.099

WDm(2,3) 1.078 2.797 21.422 20.658 2.910 1.847 1.014 5.637 5.219 3.399

Db(1,2) 0.118 0.837 0.606 0.591 0.842 0.756 0.467 1.089 1.191 1.479

SDDb(1,2) 0.079 0.066 0.064 0.077 0.067 0.072 0.076 0.077 0.084 0.079

WDb(1,2) 1.499 12.675 9.470 7.674 12.564 10.503 6.147 14.148 14.175 18.725

Db(1,3) 0.255 1.152 0.692 0.743 1.132 0.944 0.574 1.680 1.758 1.832

b SDDb(1,3) 0.077 0.067 0.081 0.094 0.067 0.074 0.075 0.073 0.076 0.075

WDb(1,3) 3.308 17.195 8.539 7.903 16.894 12.757 7.651 23.015 23.135 24.421

Db(2,3) 0.136 0.315 0.086 0.152 0.290 0.188 0.107 0.591 0.568 0.352

SDDb(2,3) 0.092 0.088 0.098 0.110 0.092 0.092 0.093 0.104 0.110 0.106

WDb(2,3) 1.481 3.585 0.873 1.382 3.154 2.041 1.147 5.680 5.160 3.324

Note. Par. = Parameter; b = difficulty; m = visual intensity; b = time intensity; Db(, ) = difference in item

difficulty between two conditions; Dm(, ) = difference in item visual intensity between two conditions; Db(, )

= difference in item time intensity between two conditions; SDDb(, )
:standard deviation of posterior

distribution of difference in item difficulty; SDDm(, )
= standard deviation of posterior distribution of

difference in item visual intensity; SDDb(, )
= standard deviation of posterior distribution of difference in

item time intensity; WDb(, )
= Wald test statistic of difference in item difficulty; WDm(, )

= Wald test statistic

of difference in item visual intensity; WDb(, )
= Wald test statistic of difference in item time intensity.
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are significant in average time used by test-takers on answering items between

Conditions 1 and 2, and Conditions 1 and 3.

Visual Intensity Estimates Across Conditions. A trend of visual intensities similar to the

summarized response patterns in the previous session was observed, which indicates

test-takers familiar with the items tend to put less visual effort on searching for infor-

mation to answer the questions (see Figure 4). By averaging the visual intensities

across the 10 items, �̂m (the averaged visual intensity) is 4.427 in Condition 1; 3.707

in Condition 2, and 3.505 in Condition 3 (see Table 3). By taking the exponential of

each averaged visual intensity estimate, the unit of �̂m were converted into counts. In

general, test-takers in Condition 1 generated about 84 fixation counts to finish an

item, those in Condition 2 produced about 40 fixation counts, and those in Condition

3 created about 33 fixations. The results show that, on average, that test-takers in

Condition 3 put much less visual effort than participants in the other two conditions

on solving questions. Moreover, the Wald statistics (see, Table 4) demonstrated the

similar pattern in testing drifts in visual intensities as in time intensities WDm(, )
sup-

port that the mean differences Dm(, ) are significant in average visual effort put by

test-takers on answering items between Conditions 1 and 2, and Conditions 1 and 3.

Impact of Having Preknowledge of Test Items on Test-Takers’ Behavior

Table 5 shows the impact of having preknowledge of test items on the test-takers’

behaviors. The behavioral pattern differences were demonstrated via comparison of

the three person-side covariances, indicating association among the interested latent

constructs (ability, working speed, and visual engagement) across the three experi-

mental conditions. As a trend, as students gain more preknowledge of the test items

the correlation between latent ability and working speed increased from 0.005 in

Condition 1 (95% credible interval: 20.023 to 0.020) to 0.672 (95% credible inter-

val: 0.496 to 0.621) in Condition 3. The increased correlation between latent ability

and working speed might be caused by test-takers in Condition 3 receiving practice

Table 5. Person-Side Correlation Matrix Estimates.

Conditions

C1 C2 C3

Parameter Mean CI Mean CI Mean CI

Coru, v 20.011 (20.244, 0.227) 20.193 (20.437, 20.108) 20.678 (20.812, 20.505)

Coru, t 0.005 (20.239, 0.251) 0.24 (20.020, 0.327) 0.672 (0.496, 0.810)

Corv, t 20.152 (20.359, 20.080) 20.899 (20.935, 20.886) 20.91 (20.942, 20.867)

Note. C1 = condition 1; C2 = condition 2; C3 = condition 3; CI = credible interval; Cor. = correlation.
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items with answer keys. Therefore, they answered more items correctly than the ones

who did not receive any test preparation materials.

In terms of changes in the trade-offs between the latent ability and visual engage-

ment across conditions, Figure 5 shows that test-takers who were familiar with the

test items tended to put less visual efforts on answering items. The correlation

between those two latent constructs dropped from 20.011 in Condition 1 (95% cred-

ible interval: 20.244 to 0.227) to 20.678 in the Condition 3 (95% credible interval:

20.812 to 20.505). Similarly, negative trade-offs between the working speed and

visual engagement were observed. The correlation (ru, v) decreased from 20.152 in

the Condition 1 (95% credible interval: 20.359 to 0.062) to 20.910 in the Condition

3 (95% credible interval: 20.942 to 20.867). This result infers that as test-takers

knew the answer keys of practice items, they favored quickly answering the ques-

tions without elaborately paying attention to the content (see Figure 4.11).

Discussion

As is becoming increasingly evident, gaining a more comprehensive understanding of

complex test-taking behaviors necessarily requires collecting and modeling supple-

mentary information beyond conventional item responses. To this end, technology-

enhanced assessments allow the collecting of response process data, such as RTs and

gaze fixation counts, that can be used to systematically reflect the characteristics

regarding item parameters and spatial patterns of test-takers’ cognitive capacities

(Fox & Marianti, 2016). Incorporating process data information has been demon-

strated to facilitate estimation of person and item parameters in IRT (Man & Harring,

2019; van der Linden et al., 2010) while providing insights of test-takers’ behaviors

that is hard to be identified from item responses only.

The proposed ML-MG three-way joint model can help (1) integrate visual

fixation—an eye-tracking indicator—into a traditional psychometric modeling

framework and (2) investigate pattern differences in the trade-offs of visual attention,

working speediness and accuracy across groups. With this modeling framework,

some important test takers’ cognitive processes can be evaluated in a virtual-based

learning system by estimating the relations among the responding accuracy, task

decoding speed, and visual engagement. Those manifested relations could facilitate

practitioners to better understand and classify different types of responding beha-

viors. Especially now, due to the outbreak of pandemic, it is essential to have tools

to differentiate cheaters from normally behaved test-takers, which can keep our

online delivered tests as secure as possible (Jiao & Lissitz, 2018).

Results from the real data example show that the proposed model captures the

underlying patterns of data set showing a satisfactory data model fit. In addition, the

proposed ML-MG three-way joint model demonstrates additional benefits. Both the

associations among item parameters and trade-offs among person parameters can be

assessed across groups. This may help practitioners and substantive researchers to

better understand behavior nuances and cognitive processes in test-takers’
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performance belonging to different groups in the technology-enhanced environment.

For instance, with the proposed model, the impact of having preknowledge on items

could be evaluated by quantifying the differences in working efficiency, visual

engagement, and responding accuracy across groups.

Moreover, other eye-tracking related biometric information variables (e.g., blink-

ing rates, pupil diameters) could be added as auxiliary information to reflect other

characteristics of test-taking behaviors. For example, the diameter of the pupil has

been reported to be negatively correlated with levels of fatigue (e.g., Morad et al.,

2000; Yoss et al., 1970). Also, many other types of biometric information (e.g., blood

oxygen level–dependent signal, electroencephalography, or heart rate) could be inte-

grated into the current modeling framework to assess whether these involuntary bod-

ily processes could provided any new, systematic insights into the learners’ learning

progressions in the ITELS. For instance, heart rate could be used to track test-takers’

anxiety levels in ITELS (e.g., Friedman & Thayer, 1998). Furthermore, other back-

ground variables like gender could be added as covariates to show the difference

between groups.

Lastly, the proposed model could be further expanded. An interesting next ela-

boration might be to model multidimensional compensatory responses (Molenaar

et al., 2015) and its functional relation to RTs and VFCs rather than modeling unidi-

mensional item responses. Of course, the measurement model can also be extended to

two-parameter logistic IRT model (2PL), three-parameter logistic IRT model (3PL),

or polytomous item responses in a straightforward manner as long as the sample size

is sufficiently large to estimate item parameters with satisfactory precision. However,

due to the budget and time constrain we had for conducting this study, 1-PL model

was used to fit item responses. This is an essential elaboration as many educational

and psychological tests and assessments include items that are Likert-type scaled.

Finally, the current assumptions that visual engagement and working speed are con-

stant over the entire test, and this assumption could be relaxed in a future study. This

may provide individualized items-specific information regarding changes of beha-

vioral patterns of test-takers over items.
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Note

1. For interpretation purposes, we here introduce a positive sign to the latent test engagement

parameter which was used in the original NBF model (Man & Harring, 2019).
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