Skip to main content
. 2021 Apr 16;21(8):2813. doi: 10.3390/s21082813

Table 3.

Grasping evaluation of detection using a modified YOLOv2 and another two.

Class of Product Method Parameters
Confid. Accur. Precis. Recall F1 AP Time (s)
A modYOLOv2 0.942 0.990 0.990 1 0.995 0.990 0.055
MobileNet2 0.905 0.963 0.963 1 0.981 0.941 0.157
ResNet18 0.890 0.950 1 1 1 0.961 0.056
B modYOLOv2 0.938 0.972 0.971 1 0.985 0.927 0.054
MobileNet2 0.626 0.925 1 1 1 0.958 0.053
ResNet18 0.707 0.750 0.944 1 0.971 0.971 0.056
C modYOLOv2 0.852 0.990 1 0.989 0.994 0.771 0.053
MobileNet2 0.768 0.740 1 0.958 0.978 0.827 0.087
ResNet18 0.719 0.750 0.969 0.969 0.969 0.633 0.053
D modYOLOv2 0.925 0.990 0.990 1 0.995 0.990 0.054
MobileNet2 0.864 0.963 0.963 1 0.981 0.909 0.053
ResNet18 0.862 0.925 0.974 1 0.987 0.923 0.053
E modYOLOv2 0.885 0.854 0.854 1 0.921 0.754 0.053
MobileNet2 0.818 0.777 0.777 1 0.875 0.650 0.054
ResNet18 0.709 0.875 0.875 1 0.933 0.739 0.052
F modYOLOv2 0.922 0.981 0.981 1 0.990 0.979 0.054
MobileNet2 0.708 0.963 0.963 1 0.981 0.998 0.053
ResNet18 0.690 0.875 0.875 1 0.933 0.739 0.052
G modYOLOv2 0.875 0.945 0.990 0.954 0.971 0.867 0.055
MobileNet2 0.641 0.851 1 0.851 0.920 0.776 0.058
ResNet18 0.785 0.975 0.975 1 0.987 0.957 0.056
H modYOLOv2 0.952 0.981 1 0.981 0.990 0.907 0.056
MobileNet2 0.841 0.851 1 0.923 0.960 0.749 0.062
ResNet18 0.952 0.925 0.974 1 0.987 0.925 0.058
I modYOLOv2 0.917 1 1 1 1 1 0.056
MobileNet2 0.868 0.925 1 1 1 0.9616 0.053
ResNet18 0.742 0.950 0.974 0.974 0.974 1 0.055
µ modYOLOv2 0.912 0.967 0.975 0.992 0.982 0.909 0.054
µ MobileNet2 0.782 0.884 0.963 0.970 0.964 0.863 0.070
µ ResNet18 0.784 0.886 0.951 0.994 0.971 0.872 0.055
σ modYOLOv2 0.032 0.043 0.044 0.015 0.015 0.089 0.001
σ MobileNet2 0.097 0.079 0.068 0.049 0.039 0.112 0.032
σ ResNet18 0.089 0.079 0.043 0.012 0.022 0.124 0.002