Table 3.
Grasping evaluation of detection using a modified YOLOv2 and another two.
| Class of Product | Method | Parameters | ||||||
|---|---|---|---|---|---|---|---|---|
| Confid. | Accur. | Precis. | Recall | F1 | AP | Time (s) | ||
| A | modYOLOv2 | 0.942 | 0.990 | 0.990 | 1 | 0.995 | 0.990 | 0.055 |
| MobileNet2 | 0.905 | 0.963 | 0.963 | 1 | 0.981 | 0.941 | 0.157 | |
| ResNet18 | 0.890 | 0.950 | 1 | 1 | 1 | 0.961 | 0.056 | |
| B | modYOLOv2 | 0.938 | 0.972 | 0.971 | 1 | 0.985 | 0.927 | 0.054 |
| MobileNet2 | 0.626 | 0.925 | 1 | 1 | 1 | 0.958 | 0.053 | |
| ResNet18 | 0.707 | 0.750 | 0.944 | 1 | 0.971 | 0.971 | 0.056 | |
| C | modYOLOv2 | 0.852 | 0.990 | 1 | 0.989 | 0.994 | 0.771 | 0.053 |
| MobileNet2 | 0.768 | 0.740 | 1 | 0.958 | 0.978 | 0.827 | 0.087 | |
| ResNet18 | 0.719 | 0.750 | 0.969 | 0.969 | 0.969 | 0.633 | 0.053 | |
| D | modYOLOv2 | 0.925 | 0.990 | 0.990 | 1 | 0.995 | 0.990 | 0.054 |
| MobileNet2 | 0.864 | 0.963 | 0.963 | 1 | 0.981 | 0.909 | 0.053 | |
| ResNet18 | 0.862 | 0.925 | 0.974 | 1 | 0.987 | 0.923 | 0.053 | |
| E | modYOLOv2 | 0.885 | 0.854 | 0.854 | 1 | 0.921 | 0.754 | 0.053 |
| MobileNet2 | 0.818 | 0.777 | 0.777 | 1 | 0.875 | 0.650 | 0.054 | |
| ResNet18 | 0.709 | 0.875 | 0.875 | 1 | 0.933 | 0.739 | 0.052 | |
| F | modYOLOv2 | 0.922 | 0.981 | 0.981 | 1 | 0.990 | 0.979 | 0.054 |
| MobileNet2 | 0.708 | 0.963 | 0.963 | 1 | 0.981 | 0.998 | 0.053 | |
| ResNet18 | 0.690 | 0.875 | 0.875 | 1 | 0.933 | 0.739 | 0.052 | |
| G | modYOLOv2 | 0.875 | 0.945 | 0.990 | 0.954 | 0.971 | 0.867 | 0.055 |
| MobileNet2 | 0.641 | 0.851 | 1 | 0.851 | 0.920 | 0.776 | 0.058 | |
| ResNet18 | 0.785 | 0.975 | 0.975 | 1 | 0.987 | 0.957 | 0.056 | |
| H | modYOLOv2 | 0.952 | 0.981 | 1 | 0.981 | 0.990 | 0.907 | 0.056 |
| MobileNet2 | 0.841 | 0.851 | 1 | 0.923 | 0.960 | 0.749 | 0.062 | |
| ResNet18 | 0.952 | 0.925 | 0.974 | 1 | 0.987 | 0.925 | 0.058 | |
| I | modYOLOv2 | 0.917 | 1 | 1 | 1 | 1 | 1 | 0.056 |
| MobileNet2 | 0.868 | 0.925 | 1 | 1 | 1 | 0.9616 | 0.053 | |
| ResNet18 | 0.742 | 0.950 | 0.974 | 0.974 | 0.974 | 1 | 0.055 | |
| µ modYOLOv2 | 0.912 | 0.967 | 0.975 | 0.992 | 0.982 | 0.909 | 0.054 | |
| µ MobileNet2 | 0.782 | 0.884 | 0.963 | 0.970 | 0.964 | 0.863 | 0.070 | |
| µ ResNet18 | 0.784 | 0.886 | 0.951 | 0.994 | 0.971 | 0.872 | 0.055 | |
| σ modYOLOv2 | 0.032 | 0.043 | 0.044 | 0.015 | 0.015 | 0.089 | 0.001 | |
| σ MobileNet2 | 0.097 | 0.079 | 0.068 | 0.049 | 0.039 | 0.112 | 0.032 | |
| σ ResNet18 | 0.089 | 0.079 | 0.043 | 0.012 | 0.022 | 0.124 | 0.002 | |