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SUMMARY

Modern scientific research has been revolutionized by the availability of powerful and flexible 

computational infrastructure. Virtualization has made it possible to acquire computational 

resources on demand. Establishing and enabling use of these environments is essential, but their 

widespread adoption will only succeed if they are transparently usable. Requiring changes to 

applications being deployed or requiring users to change how they utilize those applications 

represent barriers to the infrastructure acceptance. The problem lies in the process of deploying 

applications so that they can take advantage of the elasticity of the environment and deliver it 

transparently to users. Here, we describe a reference model for deploying applications into 

virtualized environments. The model is rooted in the low-level components common to a range of 

virtualized environments and it describes how to compose those otherwise dispersed components 

into a coherent unit. Use of the model enables applications to be deployed into the new 

environment without any modifications, it imposes minimal overhead on management of the 

infrastructure required to run the application, and yields a set of higher-level services as a 

byproduct of the component organization and the underlying infrastructure. We provide a fully 

functional sample application deployment and implement a framework for managing the overall 

application deployment.
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1. INTRODUCTION

With the maturity of virtualization technologies and high speed networking, coupled with 

recent research directions‡,§,¶, it is apparent that dispersed, independent, and individually 

managed infrastructures are being aggregated into larger units that are uniformly managed 
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[1]. Resource aggregation is a likely trend for organizations to pursue for a variety of reasons 

including greater infrastructure management flexibility, failover, redundancy, increased 

resource utilization, and cost reduction [2]. This resource aggregation model also fares well 

with changes in resource user base, such as change of a project or group size, change in 

funding, change in data processing demand, and change in infrastructure management. Over 

the years, interest in this trend has manifested as the deployments of grids and, more 

recently, clouds [3].

The benefits of aggregated infrastructures are realized because resources can be housed in 

dense data centers, thus reducing operational costs [4, 5], and access to those can be flexibly 

controlled through virtualization technologies [6], which enable easier control over the 

layout of distributed hardware making otherwise static resources and infrastructures much 

more dynamic [7]. This makes it is possible for a user to acquire a greatly variable number 

of resources, as required by their current computational demand, and it is in direct contrast 

to statically managed, traditional infrastructures where a user was strictly limited by the total 

size of any one resource. Virtualization also allows resource providers to increase resource 

utilization by effectively managing the infrastructure across a wider user base [8] by 

providing compute resources in the form of small, preconfigured units called machine 

images (e.g., [9–11]). As the name implies, a machine image is a preconfigured, customized 

image of a machine that encompasses underlying hardware, an operating system, and 

desired system software. Because a machine image can be instantiated any number of times 

and multiple machine images can be assembled in any desired combination, the underlying 

infrastructure may be organized and reorganized in any number of ways, yielding 

unprecedented flexibility of the infrastructure.

To maximize flexibility of the infrastructure and minimize cost, many service providers offer 

only transient instances (e.g., [12, 13]). This means that any changes made to a live machine 

image (i.e., an instance) are lost at instance termination. The reason for transient images can 

be seen as a consequence of frequent failure [14] and high cost [15] of reliable storage, 

which would be required for persistent instances. Because of the need for service providers 

to provide cost-effective solutions to the consumers, transient instances are likely to remain a 

prominent feature for the long term. With such infrastructure characteristics, there is thus a 

need to persist desired changes beyond the life of an instance. One method for including the 

changes is to create a new version of the machine image. However, repeatedly creating new 

machine images represents a continuous disruption to the user’s routine and leads to version 

management issues making it neither desirable nor scalable. This issue is remedied through 

persistent storage resources that are available within the infrastructure in addition to the 

machine images. Storage resources represent persistent storage units that transcend the life 

of an instance and they may be used to store any data resulting from computation performed 

on an instance. Once a compute instance is available, an arbitrary number of storage 

resources can be associated with an instance and used as needed (e.g., [12]).

With that, aggregated infrastructures based on virtualization provide all of the necessary 

components to compose a complete system, namely: machine images, storage, and network 

connectivity (e.g., [11, 13]). These units represent basic building blocks that may be used to 

construct complex and customized systems on demand. However, from an application and 
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user standpoint, these building blocks are disparate units. They require users to contemplate 

their usage of the system and for applications to be modified to execute in the new 

environment. It would be beneficial to transparently coordinate these individual building 

blocks into a unit that gives the perception of a traditional system to both the users and 

applications. Such an approach would make the transition toward aggregated infrastructures 

easier and faster.

Taking advantage of the flexibility of aggregated infrastructures while enabling easy 

transition for applications and users thus imposes the following two requirements: (1) 

existing applications should be easily deployable on the new infrastructures and (2) users 

should not observe any differences in application behavior when they are used on the new 

infrastructures. The first requirement implies that an application should not need to be 

modified. Instead, a framework that hides low-level infrastructure details should be in place 

so that any differences between the traditional infrastructures and the newly emerging ones 

are abstracted. This enables applications to continue their execution as if they were running 

in a traditional environment. This requirement helps in promoting the adoption of the 

described infrastructures by not imposing additional requirements on application developers. 

Requirement two implies that a user should not need to change how they interact with the 

application because of the underlying infrastructure changes. Rather, they should 

transparently enjoy the flexibility enabled by the new infrastructure. This requirement helps 

in promoting adoption of the described infrastructures by not turning users away. Figure 1 

depicts these ideas: (a) users in different research groups access a dedicated application 

instance over the internet as they are accustomed to; (b) the application instances appear to 

the users to be running on top of a dedicated infrastructure, albeit, with apparently infinite 

compute and storage resources; and (c) the resources are in fact virtual resources, which are 

allocated on demand from a large shared pool. At the same time, applications are executing 

as they normally would, without any special adjustments for execution in the new 

environment; the encapsulating framework hides and abstracts the low-level infrastructure 

details making it appear to the application as if it was running in a static, traditional 

environment.

In this paper we present an architecture and provide a framework along with a working 

example that satisfies the two stated requirements. The presented architecture makes use of 

the basic building blocks provided by an infrastructure provider and coordinates those in a 

fashion that enables an application to be easily deployed and controlled in the new 

environment. In addition, the proposed framework enables higher-level services, which are 

made possible by effectively utilizing the underlying infrastructure components, to be 

simply exposed to users. This added value has the benefit of attracting users to utilize a 

given application and the infrastructure. We also provide an implementation of the derived 

architecture in the form of an application deployment framework. This framework has been 

tested and is being utilized within the Galaxy project [17, 18] on Amazon’s EC2 cloud 

infrastructure [11]. In this context, a complete and working implementation is available at 

http://bitbucket.org/galaxy/cloudman/ that can be simply modified to other applications or 

infrastructure providers.

Afgan et al. Page 3

Concurr Comput. Author manuscript; available in PMC 2021 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bitbucket.org/galaxy/cloudman/


2. MOVING FROM IAAS TO PAAS

To facilitate adoption of aggregated infrastructures, we have focused on bridging the 

functionality of the three basic infrastructure types: IaaS, PaaS, and SaaS. On the basis of 

the two requirements stated in the introduction and coupled with users’ desired perception of 

those infrastructures, we observed a need for a solution that is rooted in and utilizes the low-

level, core infrastructural components but simultaneously delivers high-level services. 

Because aggregated infrastructures may be implemented using a variety of methods and 

principles, to maintain the widest applicability potential, there is a need to choose the lowest 

common denominator for the application deployment environment. As a result, focusing on 

functionality offered by IaaS providers (as opposed to PaaS or SaaS providers), one can rely 

on the basic computational components that may be expected from a range of IaaS providers 

(as described in the previous section). This approach minimizes dependencies on expected 

functionality and is thus applicable to a variety of infrastructure implementations; it 

minimizes lock-in with respect to the infrastructure and the environment setup. However, 

these low-level, flexibility-granting components need to be abstracted away from the end 

user so their productivity is not hindered by the accidental complexities of the technology. 

Productivity can be improved through automation and delivery of domain-specific tools that 

simply utilize low-level infrastructures but do not require technical expertise. In other words, 

there is a benefit in relying only on low-level computational components offered by a range 

of IaaS providers and yet transparently delivering SaaS type of functionality to the users.

2.1. Architecture

In the remainder of this section, we present an architecture built on the principles outlined 

above. This architecture represents a step toward defining a universal environment for 

deploying a range of applications on aggregated infrastructures. The motivation for this 

approach is twofold: (1) provide a template for those wishing to migrate their own 

application to an aggregated infrastructure environment and (2) enable the underlying 

infrastructure to be interchanged while minimizing changes required to realize the bridge 

between IaaS and SaaS. By following this architecture, we believe many of the pitfalls of 

application deployment across aggregated infrastructures can be avoided and several benefits 

can be realized, as described in detail in the next section.

The presented architecture focuses on encapsulating an existing application into a 

deployable unit that can be instantiated by an individual user. This approach has benefits for 

both the application owner and the application user: the application owner is alleviated from 

having to provision resources on which the application runs or provide details and support 

about how to install a given application locally. Furthermore, by providing a completely self-

contained solution within an infrastructure provider, the application owner does not need to 

act as a broker between users and the infrastructure provider. They are thus further 

abstracted from the infrastructure management details allowing them to focus on the 

application. At the same time, from the user standpoint, a readily deployable application unit 

allows them to easily and quickly gain access to the desired application. The user is thus not 

encumbered by having to install and maintain their own infrastructure or installation, nor 

limited by restrictions imposed by availability of a public deployment of the application; if 
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the application deployment unit exists for multiple infrastructure providers, the user is also 

free to choose where to run the application. As a result of the self-contained application unit 

deployment process, the user can independently—and with no system level expertise—

utilize IaaS infrastructure while enjoying SaaS usability. This approach creates a separation 

of concerns at a high level and allows everyone involved to focus on their domain instead of 

being bogged down by management and maintenance routines and requirements.

To enable packaging of an application deployment unit, the application deployment process 

needs to be understood. An application is deployed by transferring the entire application 

(source code, required data, scripts, dependencies) to a virtual machine, where it is then 

compiled and made available for execution. This deployment process requires steps that 

often involve user intervention, insight into the internal structure of the application, and 

familiarity with the various infrastructure technologies and tools. Moreover, once deployed, 

the application assumes and expects a static environment regarding data storage locations 

and dependencies. The devised architecture thus has the requirement to encapsulate and 

continue to provision individual components provided by the infrastructure in a fashion that 

is expected by the application.

The devised architecture is captured through separation and coordination of otherwise 

independent components. Figure 2 captures the three components comprising the presented 

architecture: the machine image, a persistent data repository, and persistent storage 

resources. The machine image is characterized by simplicity; it consists only of the basic 

services required to initiate the application unit deployment process. In particular, besides 

selecting the underlying operating system, only the core set of services should be installed 

on the image itself. This core set of services is comprised of only those services that are 

required to complete the remainder of the instance boot process. Alongside these services, a 

contextualization script should be included in the basic machine image. Contextualization is 

the process of coordinating the machine instance preparation and deployment at runtime 

[19]. The contextualization script included in the machine image should serve only as an 

access point to the instance while the contextualization details should be extracted and 

stored in the persistent data repository. The persistent data repository lives independent of 

the machine image and is used to provide contextualization details, in particular, boot time 

scripts that define which services should be loaded (note that this does not include 

downloading and compiling the desired software stack at each boot, see Implementation 

section). Lastly, persistent storage resources provided by the infrastructure should be used as 

the storage medium for the software stack, namely the application, any required tools, 

libraries, or datasets the application depends on, and user data. It is furthermore advisable to 

group the pieces of software into logical units (i.e., application and any dependencies, 

required datasets, and user data) and create a persistent storage resource for each of the 

units.

The presented architecture is designed with modularity in mind. As described earlier, 

creating new versions of a machine image is undesirable, so we believe that machine image 

customizations should be kept to a minimum and instead the custom components composing 

an application deployment should reside on a medium that is easier to modify (e.g., 

persistent data resources in the form of an external data volume/snapshot). Then, at instance 
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setup time during contextualization, those external resources can be associated with the 

running instance, which happens nearly instantaneously. Through such an approach, an 

otherwise static machine image can become a customized instance by assembling 

preconfigured persistent data resources at runtime to accommodate the needs of a changing 

application. The same machine image may even be reused for different applications. The 

persistent data repository, where the contextualization script resides, is realized as a content 

delivery service and it only needs to be accessible to the machine image at boot time; it may 

be provided by a service provider (e.g., S3 within Amazon) or be external to the given 

infrastructure. Regardless of the implementation, use of the external persistent data 

repository allows the application developer to modify the image instantiation process by 

simply updating the script that is stored in the persistent data repository and referenced by 

the contextualization script on the machine image at boot time.

Similar to the benefits of the persistent data repository, from the architectural standpoint, the 

persistent storage resources are external to the machine image; they are formatted as 

independent file systems accessible to the system as a whole. As a result, they may be 

updated and assembled (at contextualization time) in any desired arrangement. From the 

standpoint of the application being deployed, those resources are perceived as local 

resources available for immediate consumption (i.e., file systems). This enables the 

application to utilize those resources without requiring any changes in how it operates, and 

without the user noticing any difference. Although only a single storage resource could be 

used for all of the pieces required for deploying the application (e.g., dependencies, 

datasets), there is a considerable benefit in isolating those into separate logical units and 

assigning them to individual storage resources. As described in more detail in the next 

section, such decomposition of individual pieces provides support for updates to the 

individual pieces and the ability to version the same. In addition, multiple storage volumes 

may be requested on demand and assembled into a single file system, thus removing 

physical limitations of any one storage medium that may be otherwise imposed by the 

infrastructure provider.

Specific benefits relating to the portability, encapsulation, and management of the proposed 

architecture are twofold: (1) updates to the machine image contextualization process happen 

without updating the image itself and (2) updates to the application, any dependencies or 

datasets happen independently of other components. The presented architecture goes a long 

way toward defining and simplifying the application deployment process for virtualized 

infrastructures; in addition, it enables a set of higher-level services otherwise not available 

(see next section). The architecture defines individual components but not the specific 

assembly of those components. This is because different applications will impose different 

requirements on their environment, so the needed component composition must be 

performed specifically for the given application. In subsequent sections we provide an 

example of how this was achieved and in turn provide a framework that may be reused to 

perform the same steps. We believe the presented architecture is applicable to a range of 

applications and will help in deploying almost any application into a virtualized 

environment.
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3. SUPPORT FOR HIGH-LEVEL SERVICES

Supporting the goal of maintaining portability, the presented architecture makes use of only 

the basic compute infrastructure components. Coordination of these low-level components 

into a cohesive unit yields a framework capable of delivering high-level services or features 

to the end user that are a product of the devised architecture rather than explicit 

implementation or a given infrastructure. These features include: data persistence, managed 

software updates, and software versioning. The following sections discuss in detail how 

these features are achieved and the associated benefits.

3.1. Data persistence

Data persistence is paramount to the usefulness of a system and, because applications and 

users expect data persistence, it needs to be realized transparently for both. The architecture 

presented in the previous section utilizes persistent storage resources available within an 

IaaS infrastructure to achieve this. By definition, the persistent storage resources persist 

independently beyond the life of an instance. They may be attached to a running instance 

and exposed as a hard drive to the remainder of the system. Such functionality makes it easy 

to transparently utilize these resources from within the application. In turn, the application 

requires no modifications to execute in the new environment. Subsequently, through instance 

contextualization, these resources are assembled into a unit that the application comes to 

expect and the user is given the notion of constant data availability.

More specifically, individual storage resources are attached to a running instance and a file 

system is created on top of those. If multiple instances are being deployed into a cluster, 

those file systems can be shared through a network file system. As explained in the 

architecture description in the previous section, the individual pieces required to deploy an 

application are grouped into logical units (e.g., application with its dependent tools and 

libraries, datasets, user data). Consequently, separate storage resources are acquired and 

individual units are stored independently from one another. This approach separates, for 

example, the application core from the user data. As further elaborated in subsequent 

sections, this approach enables runtime composition of the desired components for a 

deployment and makes management of those components more isolated. From the 

perspective of both the system and the user, those individual components are simply 

different locations in the overall file system. Once a deployed instance is terminated, all 

resources are released. With the next deployment, through instance contextualization, the 

same storage resources are attached to the new instance and file systems are mounted, 

providing all of the expected persistent data as the application starts.

An additional feature of persistent storage resources is that point-in-time snapshots can be 

created from the storage resources. With such functionality, there is often no need to require 

all of the users to keep their versions of all the storage resources required by a deployment. 

Because the application, dependencies, and reference datasets are typically used in read-only 

mode (i.e., all of the changes and calculations performed by the user are considered user 

data and thus stored on the respective user data resource), snapshots of a given storage 

resource can be created by the application developer. These snapshots can then be made 

public and, at instance boot time, temporary versions of the snapshots are automatically 
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created and attached to the user’s instance. Upon instance termination, these created storage 

resources are deleted. Such an approach can dramatically reduce infrastructural resource 

requirements and make software updates easier, as discussed next.

3.2. Managed software updates

Through the use of contextualization, a persistent data repository, and the composition of 

individual storage resources we find the ability to perform easy software updates. 

Composing an application deployment unit as described in the presented architecture is in 

direct contrast to bundling, or packaging, the application and any required dependencies 

directly into the machine image. If the application and all of the required dependencies are 

bundled into the base image, thus creating a fat image, any subsequent changes to the boot 

process, application updates, or simple configuration changes mandate creation of a new 

machine image. Even if the process of creating a machine image is automated, thus 

minimizing manual effort, users of the given machine image need to be informed to use the 

new image. This provides a possible point of failure involving the end user, disrupts the 

user’s routine, and reduces productivity.

The architecture presented here handles the update case much more elegantly. The persistent 

data repository referenced during the contextualization process defines a single start point 

for any instance. The boot script that resides in this repository defines the actions that, in 

turn, define the new instance. As a result, changes to this script are automatically and 

transparently deployed to all of the new instances. Correspondingly, use of the external 

storage resources for data storage allows composition of custom instances at runtime. By 

separating application deployment pieces into logical units and snapshots of storage 

resources, different systems may be composed by simply joining individual components. For 

example, if multiple versions of tools are made available as independent storage resource 

snapshots, at instance boot time the user can be given an option as to which version of tools 

to utilize on the given instance. Moreover, as the application developer releases new versions 

of their application or updates to application dependencies, these can be made available as 

individual storage resources and, through changes to the central contextualization script, 

transparently utilized by users for all new instances.

Figure 3 depicts this functionality: after the application developer deploys the application in 

compliance with the described architecture, snapshots of storage resources used by the 

application and dependent datasets can be created and made public. From then on, each time 

a user starts a new instance, new storage resources are created from the published snapshot 

and made available in that particular user’s environment. Along with the read-only storage 

resources, a user data storage resource is created for each machine instance. Because the 

application is configured to use only user data resources for data that changes, the 

application and the user have the impression that everything is persistent and operating as it 

would in traditional environments. When a user terminates an instance, read-only storage 

resources are released and only user data is preserved. Once the application developer 

updates the application and is ready to make it public, they simply need to provide a new 

version of the relevant snapshot. From then on, the user will immediately gain access to the 
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updated application version. Moreover, the update can happen transparently if that is the 

desired functionality.

3.3. Versioning

On the basis of the notion of snapshots, if multiple versions of the application, datasets, or 

dependencies exist and are available, it is possible to compose instances at runtime that are 

customized to an individual user. Customized instances can range from differing availability 

of tools within the application to a different version of the application in its entirety. These 

ideas are captured in Figure 4. Default action can be defined as using the latest versions of 

published snapshots. This means that a completely new instance automatically utilizes the 

newest snapshots to create a live instance for a user. Alternatively, if an instance has been 

established previously or if functionality to choose from multiple versions exists, custom 
action is enacted. A custom action can simply imply use of the same version of a snapshot as 

was used for the most recent instantiation of a given instance. This is important because the 

user data may depend on having a particular version of the application or associated 

datasets, thus the application should not automatically force the user to use the newest 

versions of snapshots.

Internally, composition of services is handled through contextualization. At instance boot 

time, a reference to available snapshots is read from the persistent data repository, and a set 

of options can be presented to the user allowing them to choose which configuration they 

would like. Again, because of the separation of logical units comprising an application 

deployment, composition of an instance from these different selections is possible. If there 

are specific requirements or constraints on any of the components, care should be taken to 

appropriately present possible options and resolve possible issues. As part of our future 

work, we will look into defining a component description and dependency harness that can 

be utilized to address this potential problem.

4. IMPLEMENTATION

We implemented the previously described architecture within the context of the Galaxy 

project‖ to enable the Galaxy application [17, 18] to make use of aggregated infrastructures. 

Galaxy is a tool integration framework specifically targeting the biological domain. It 

focuses on accessibility, extensibility, and result reproducibility by providing an integrated 

analysis environment where domain scientists can interactively construct multistep analyses, 

with outputs from one step feeding seamlessly into the next. Any command-line tool can 

easily be made available through Galaxy, and the underlying data management and 

computational details are completely hidden from the user, even when dealing with large-

scale datasets and high-performance computing resources. The environment transparently 

tracks every analysis detail to ensure reproducibility, and provides a workflow system for 

constructing reusable analysis, and an intuitive interface for constructing workflows from an 

existing analysis. The public Galaxy server (http://usegalay.org) is used by thousands of 

users every month that run hundreds of thousands of jobs; however, this is a public, shared 

‖http://galaxyproject.org
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server. To allow users to become independent of the public server, we wanted to provide a 

turnkey solution for transparently utilizing aggregated infrastructures so that individual 

researchers’ need for computational and storage resources can more easily be met. Galaxy 

CloudMan [20] meets this need by providing a reliable solution within these aggregated 

infrastructures that can additionally scale at runtime as demand mandates (for more 

information on how to use Galaxy CloudMan see http://usegalaxy.org/cloud).

Recently, cloud computing [21] has emerged as a computational model that is rooted in the 

concepts of aggregated infrastructure ideas discussed throughout this paper. With many 

providers of cloud computing services (e.g., Amazon Web Services (AWS), RackSpace, 

GoGrid, and Mosso), this model presents an ideal scenario to verify the architecture 

described in Section 2.1. We have selected AWS as the service provider to verify our 

architecture because it represents a de facto standard in this area, showcased by proven 

availability and reliability of its services. In addition, the infrastructural architecture and the 

API set forth by Amazon and used by the implementation presented here have been accepted 

by other cloud infrastructure management projects (e.g., Eucalyptus [13], OpenNebula [22], 

and Nimbus [23]) allowing for smoother transition as those services become more prominent 

or infrastructures based on those managers emerge.

A customized Amazon Machine Image was created that is packaged with necessary 

applications and services to implement the described architecture within AWS. As described 

in the architecture section, this image contains only the basic boot contextualization script 

and essential tools, namely: the python interpreter, a message queuing system, and necessary 

user accounts (i.e., galaxy, postgres, and sge). All of the domain-specific tools and the 

Galaxy application are obtained at instance boot time from attachable storage resources 

(e.g., Elastic Block Store (EBS) snapshots and volumes) that are easy to associate with 

individual users, perform tool updates, and persist beyond lifetime of any one instance. 

Adopting the described approach was even more important in the context of developing 

Galaxy CloudMan because the same machine image is instantiated by multiple, independent 

users. Thus, the image needs to be flexible enough to be transparently tailored for 

independent users while not containing information specific to any individual user (e.g., 

[24]).

Internally, CloudMan is implemented as a standalone web application that acts as a manager 

for the instantiated deployment. To enable composition of multiple instances into a compute 

cluster, at the implementation level, CloudMan is represented by two services, a master and 

a worker. The distinction between services is determined at instance boot time, based on the 

given instance’s role. All of the instance contextualization, master-worker communication, 

and status reporting is performed through a messaging system implemented using the 

Advanced Message Queuing Protocol standard [25] and using a RabbitMQ** server 

deployed on the master instance.

Figure 5 shows the composition and interaction of individual components described in the 

architecture in Section 2.1. The persistent data repository is used to store the CloudMan 

**http://www.rabbitmq.com/
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application and information specific to the given cluster. Initially, there is a default public 

repository that contains only the CloudMan application code that we, the developers, 

maintain. Once a user instantiates a cluster, an independent repository is created for the 

given cluster within that user’s AWS account. A copy of the CloudMan application along 

with a listing of which logical volumes and versions thereof are to be used is then stored in 

the newly created repository. The next time a user instantiates this cluster, information from 

their repository is used to ensure persistence and reproducibility. Within CloudMan, we 

decided to realize data persistence with three logical units that are placed on independent 

storage resources. The following logical units were created: Galaxy application and 

associated tools, index files needed by tools run through Galaxy, and user data. This 

approach was chosen because the index data does not change often while the tools do. More 

specifically, it has the ability to update the application and tools without needing to modify 

any other data. This reduces the number of snapshots we need to maintain and thus 

simplifies the overall system management.

With the infrastructure in place, CloudMan automates composition of the individual 

components at instantiation time. Descriptions of actions that are performed after the created 

machine image is instantiated, complementing Figure 5, are provided below:

1. User instantiates a master instance.

2. As part of the startup process, start RabbitMQ server, download CloudMan 

source code from either user’s data repository or the public data repository and 

start the CloudMan web application.

3. Within CloudMan, create attachable storage resources (EBS volumes in case of 

AWS) from public snapshots for the Galaxy application and necessary index files 

(i.e., datasets) used by several Galaxy tools, attach them to the running instance, 

and import existing file systems.

4. Start network file system and enable sharing of relevant directories.

5. Unpack and configure the job manager (Sun Grid Engine (SGE) in the case of 

CloudMan).

6. Allow a user, through the CloudMan web interface, to configure their cluster by 

specifying the amount of persistent storage to be used for the user data.

7. Create the user data external storage resource and the appropriate file system.

8. Configure PostgreSQL database on the user storage resource to be used by the 

Galaxy application.

9. Start the Galaxy application. Once Galaxy is ready, enable access to it from the 

web interface.

10. The user can now start using the Galaxy application. As the need for cluster 

nodes increases (or decreases), through the web interface, the user may add (or 

remove) worker instances:

i. As a worker instance boots, they mount NFS directories and notify the 

master instance that they are ‘alive’; and
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ii. As instances report alive, authentication information to enable SGE to 

submit jobs is exchanged with the master.

Upon user-initiated termination of a given instance, CloudMan stops all relevant services, 

terminates worker instances, exports file systems and detaches external data volumes. As 

noted in Section 3, because storage resources containing tools and index files are not 

modified during the life of a Galaxy instance, those storage resources are deleted. The next 

time this instance is instantiated they will be recreated exactly as they were previously. The 

user data volume is unmounted and detached, but not deleted. Information about this volume 

is stored in a user-specific persistent data repository (an S3 bucket, in case of AWS) and is 

read by CloudMan automatically during the instance contextualization process.

Note that although discussed in the context of the Galaxy application, the process described 

here and the CloudMan code itself can be reused as a separate framework customized to 

jumpstart other projects wanting to achieve similar functionality. Currently, CloudMan 

handles composition of lower-level components in a fashion that suits the Galaxy application 

(e.g., composition of index files, Galaxy application, tools, and user data storage resources). 

However, the underlying actions of creating and connecting relevant storage resources 

coupled with mounting the file system or starting of relevant services and applications are 

generic. Thus, adjusting CloudMan to start with a persistent storage snapshot different than 

the one with Galaxy tools or starting an application other than Galaxy is a simple matter of 

parameterization. As a result, CloudMan is an implementation framework for the presented 

architecture and can thus be used as a comprehensive manager for controlling a cluster 

deployment on aggregated infrastructures.

Overall, the approach presented here, and demonstrated in the CloudMan application, 

enables users to gain access to a completely functional and usable service in a matter of 

minutes—without needing to posses any technical knowledge. In addition, because of the 

infrastructural flexibility coupled with the provided scaling functionality, users are able to 

utilize a variable amount of underlying compute resources. Because they are no longer 

constrained by the limits of the infrastructure, they are free to advance their research.

5. RELATED WORK

In Bradshaw et al. [16] and Keahey et al. [19] the authors presented the process of instance 

and cluster contextualization; they focused on the process of contextualization and context 

data provisioning for an instance. In our approach, we utilize the process of instance 

contextualization as one part of the architecture but also present a higher-level aggregation 

of otherwise disparate services to comprise an environment where an application can 

execute. Furthermore, the approach described in these works requires a centralized broker 

that coordinates much of the data used during the contextualization process. In our work, we 

provide a self-contained and standalone solution that requires no external services or 

brokerage, thus making it independent of a specific service or an infrastructure provider.

In Nishimura et al. [26] and Krsul et al. [27], the authors described methods for instantiating 

complete clusters of virtual machines and focused on the performance of the deployed 

solutions. However, the approaches presented encapsulated the entire application stack into 
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the virtual machine and thus lacked the flexibility provided by contextualization. 

Furthermore, the focus of the approach presented in those papers were on the higher-level 

architecture describing and enabling entire applications to be deployed in aggregated 

infrastructures without requiring changes to the source or usability of a given application.

6. CONCLUSIONS

In this paper we describe an architecture that coordinates independent components for the 

deployment of an existing application within aggregated infrastructure environments. This 

architecture focuses on utilizing only low-level infrastructure components that can be 

expected from a wide range of infrastructure providers. The presented decomposition and 

coordination of the low-level components makes it possible to deploy an application within 

this framework without requiring application changes. Simultaneously, through the 

controlled composition of those components, users can utilize a given application without 

requiring them to change how they interact with it. This approach thus acts as a bridge 

between the low-level components that can be relied upon for application portability and 

specific solutions delivered to users. The overall approach provides a model, a working 

example, and a framework for achieving the same results across a range of applications.

Overall, key aspects of the presented architecture focus on the decomposition of individual 

pieces required for a complete application deployment into logical units and subsequent 

mapping of those onto appropriate resources. Such decomposition allows for separation of 

concerns and good modularity in a deployed solution. This leads to easier deployment of an 

application but also facilitates easier realization of higher-level features, namely managed 

software updates and versioning. These features have the benefit of easing application 

developers’ management duties while allowing them to offer a more versatile application 

with more functionality—without requiring considerably more effort.
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Figure 1. 
Simplified overview of an aggregated distributed infrastructure and its perception by users.
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Figure 2. 
Layout of the basic components comprising the proposed architecture.
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Figure 3. 
The application developer can manage software updates by simply publishing snapshots of 

relevant storage resources. At instance boot, those snapshots are used to create user’s 

instance. Because of the separation of instance pieces into logical units, created resources 

can be used in read-only mode and thus released upon instance termination, thus reducing 

infrastructure requirements.
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Figure 4. 
With multiple versions of logical units composing an application deployment, it is possible 

to automatically assemble customized instances at runtime and provide versioning 

functionality.
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Figure 5. 
Composition of components composing the presented architecture to enable CloudMan 

execution in virtualized environment. User initiates interaction with the infrastructure 

through the infrastructure console manager (1) and instantiates CloudMan machine image 

(2). CloudMan starts as part of the boot process (3) and contextualizes itself by obtaining 

needed context from the persistent data repository (4). External storage resources are then 

attached and configured automatically by CloudMan (5). User provides needed 

configuration information through CloudMan’s web interface (6) and CloudMan configures 

and starts the Galaxy application. The user then specifies the desired size of the cluster (8), 

which CloudMan configures by acquiring additional worker instances (9). Once configured, 

users may use the Galaxy application as any other instance of the application (10) and have 

their jobs run transparently on the backend resources (11).
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