Skip to main content
. 2021 Apr 17;21(8):2842. doi: 10.3390/s21082842

Table 2.

Detection results on the PASCAL visual object classes (VOC) 2007 test set (GPU: graphics processing unit, mAP: mean average precision, FPS: frames per second).

Model Data Backbone Network Input Size GPU Framework #Parameters mAP FPS
SSD300* 07 + 12 VGG 300×300 2080Ti PyTorch 26.3 M 77.2 30
SSD300* 1 07 + 12 VGG 300×300 Titan X Caffe 26.3 M 77.2 46
DSSD321 07 + 12 ResNet-101 321×321 Titan X Caffe - 2 78.6 9.5
SSD300-TSEFFM 07 + 12 VGG 300×300 2080Ti PyTorch - 78.6 7
DF-SSD300 07 + 12 DenseNet-S-32-1 300×300 Titan X Caffe 15.2 M 78.9 11.6
RefineDet320 07 + 12 VGG 320×320 Titan X Caffe - 80.0 40.3
RefineDet320++ 07 + 12 VGG 320×320 Titan X PyTorch - 81.1 27.8
SSD300-EMB 07 + 12 VGG 300×300 2080Ti PyTorch 30.6 M 78.4 30

1 SSD300 was tested with the PyTorch deep learning framework and RTX 2080Ti GPU, while SSD300* was tested with the Caffe deep learning framework and Titan X GPU. 2 All data not mentioned in their papers are marked with ‘-’.