Table 2.
Model | Data | Backbone Network | Input Size | GPU | Framework | #Parameters | mAP | FPS |
---|---|---|---|---|---|---|---|---|
SSD300* | 07 + 12 | VGG | 2080Ti | PyTorch | 26.3 M | 77.2 | 30 | |
SSD300* 1 | 07 + 12 | VGG | Titan X | Caffe | 26.3 M | 77.2 | 46 | |
DSSD321 | 07 + 12 | ResNet-101 | Titan X | Caffe | - 2 | 78.6 | 9.5 | |
SSD300-TSEFFM | 07 + 12 | VGG | 2080Ti | PyTorch | - | 78.6 | 7 | |
DF-SSD300 | 07 + 12 | DenseNet-S-32-1 | Titan X | Caffe | 15.2 M | 78.9 | 11.6 | |
RefineDet320 | 07 + 12 | VGG | Titan X | Caffe | - | 80.0 | 40.3 | |
RefineDet320++ | 07 + 12 | VGG | Titan X | PyTorch | - | 81.1 | 27.8 | |
SSD300-EMB | 07 + 12 | VGG | 2080Ti | PyTorch | 30.6 M | 78.4 | 30 |
1 SSD300 was tested with the PyTorch deep learning framework and RTX 2080Ti GPU, while SSD300* was tested with the Caffe deep learning framework and Titan X GPU. 2 All data not mentioned in their papers are marked with ‘-’.