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Abstract

Learning about rewards and punishments is critical for survival. Classical studies have 

demonstrated an impressive correspondence between the firing of dopamine neurons in the 

mammalian midbrain and the reward prediction errors of reinforcement learning algorithms, which 

express the difference between actual reward and predicted mean reward. However, it may be 

advantageous to learn not only the mean but also the complete distribution of potential rewards. 

Recent advances in machine learning have revealed a biologically plausible set of algorithms for 

reconstructing this reward distribution from experience. Here, we review the mathematical 

foundations of these algorithms as well as initial evidence for their neurobiological 

implementation. We conclude by highlighting outstanding questions regarding the circuit 

computation and behavioral readout of these distributional codes.
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Biological and Artificial Intelligence

The field of artificial intelligence (AI) has recently made rapid progress in algorithms and 

network architectures that solve complex tasks [1–4]. These advances in AI raise new 

questions in neurobiology, which ask whether these state-of-the-art algorithms are also used 

in the brain [5]. Here we discuss a new family of algorithms, termed distributional 
reinforcement learning (distributional RL; see Glossary) [6,7]. A recent study suggests that 

the brain’s reward system indeed uses distributional RL [8], opening up opportunities for 

fruitful interactions between AI and neuroscience.

In this review, we provide an accessible introduction to distributional RL with the hope that 

it will facilitate such interactions. We first explain the basic algorithms of distributional RL 

and show that they can be understood from the single, unified perspective of regression. 

Next, we examine emerging neurobiological evidence supporting the idea that the brain uses 

distributional RL. Finally, we discuss open questions and future challenges of distributional 

RL in neurobiology.
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Development of Distributional Reinforcement Learning in AI

Reinforcement learning (RL) is the field of AI that studies algorithms by which an agent 

(e.g. an animal or computer) learns to maximize the cumulative reward it receives [9]. One 

common approach in RL is to predict a quantity called value, defined as the mean 

discounted sum of rewards starting from that moment and continuing to the end of the 

episode [9]. Predicting values can be challenging if the number of states is large and the 

value function is nonlinear. A recent study overcame these challenges by combining past RL 

insights with modern artificial neural networks to develop a deep Q-network (DQN) that 

reached human-level performance in complex video games [2] (Figure 1a–b).

Various algorithms have been developed to improve upon DQN [10], including distributional 

RL [6,7]. The key innovation of distributional RL lies in how these algorithms predict future 

rewards. In environments where rewards and state transitions are inherently stochastic, 

traditional RL algorithms learn to predict a single quantity, the mean over all potential 

rewards. Distributional RL algorithms, by contrast, learn to predict the entire probability 
distribution over rewards (Figure 1c). Remarkably, modifying DQN to implement variants of 

distributional RL boosts performance by as much as two and a half times [6,7,10] (Figure 

1d).

How Distributional Reinforcement Learning Works

Two major topics in distributional RL are (i) how the reward distribution is represented, and 

(ii) how it is learned. The original distributional RL algorithm [6] used data structures akin 

to histograms (the number of samples falling into fixed bins, or categories) to represent a 

distribution and treated learning as a multiclass classification problem. This class of 

distributional RL is hence called “categorical” distributional RL [6]. Although using a 

histogram is an intuitive (and common) way to represent a distribution, it remains unclear 

whether neurons in the brain can instantiate this approach. A subsequent paper proposed to 

replace the histogram representation by an algorithm called quantile regression [7], which 

uses a novel population coding scheme to represent a distribution and a biologically-

plausible learning algorithm to update it.

Learning from Prediction Errors

One of the key ideas in RL is that learning is driven by prediction errors, the discrepancy 

between actual and expected outcomes [11,12]. This idea originated in animal learning 

theories, and was formulated mathematically by Rescorla and Wagner [13]. The Rescorla-

Wagner rule postulates that the strength of association between two stimuli is updated based 

on a prediction error. In the simplest case, when a stimulus (X) is presented, the animal 

predicts the value of the future outcome. Once this outcome is revealed, it compares the 

outcome (R) against the predicted value (V) and computes the prediction error δ≔ R − V. 

According to the Rescorla-Wagner rule, the value of stimulus X is updated in proportion to 

the prediction error:

V V + α ⋅ δ . (1)
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Here, α is the learning rate parameter, which takes a value between 0 and 1. Eq. (1) defines 

how the value V is updated. (The arrow indicates that V on the left-hand side is the value 

after updating whereas V on the right-hand side is the value before.) If R is constant, the 

predicted value gradually approaches the actual value and the prediction error approaches 0. 

Even if R is probabilistic, the predicted value will converge to the mean reward amount, at 

which point positive and negative prediction errors will balance across trials (Figure 2a). In a 

more sophisticated RL algorithm called temporal difference (TD) learning [9,11,12], the 

prediction error is computed based on the difference between the predicted values at 

consecutive time points (Box 1), but the update rule may otherwise remain the same.

Toward Distributional RL

While expected values can be useful, summarizing a situation by just a single quantity 

discards information that may become important in the future. If the demands of the animal 

change — for example, if large, uncertain rewards become preferred to smaller, certain ones 

[14] — animals that store more detailed information about outcomes may perform better. 

Learning entire distributions sounds computationally expensive, but interestingly, 

distributional RL can arise out of two simple modifications to Eq. (1) [7,8].

First, we “binarize” the update rule as follows,

V V + α ⋅ −1  if δ ≤ 0
1  if δ > 0 . (2)

That is, the prediction error (δ) in the update equation is replaced by +1 or −1 depending on 

the sign of δ, such that value predictions are incremented (or decremented) by a fixed 

amount. In this case, V will converge to the median rather than the mean of the reward 

distribution (Figure 2b). Intuitively, this is because the median is the value that divides a 

distribution such that a sample from the full distribution is equally likely to fall above or 

below it. The increments and decrements specified by Eq. (2) will balance out at the point 

where positive and negative prediction errors occur with exactly the same frequency, which 

is to say, when V is the median of the reward distribution.

The second modification is to add variability in learning rate (α). Suppose we have a family 

of value predictors, Vi, each of which learns its value prediction in a slightly different way 

[7,8]. We assign each Vi two separate learning rates, an αi
+ for positive prediction errors and 

an αi− for negative prediction errors, resulting in the learning rule

V i V i +
αi− ⋅ ( − 1)  if δi ≤ 0
αi

+ ⋅ ( + 1)  if δi > 0
. (3)

In the case where αi
+ > αi−, positive prediction errors drive learning more strongly compared 

to negative ones. This will cause Vi to converge to a value larger than the median, so we call 

such value predictors “optimistic”. Conversely, when αi
+ < αi−, the value predictors become 
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“pessimistic.” For any combination of αi
+ and αi−, a value predictor which learns according 

to the above rule will converge to the 
αi

+

αi
+ + αi−

= τi‐th quantile (Figure 2c–d). Multiple value 

predictors associated with different τi’s thus form a population code that is the inverse of 

the cumulative distribution function (CDF; Figure 2e–f) of rewards.

We can also consider a family of value predictors that retains the original form of the update 

rule in Eq. (1), such that

V i V i +
αi− ⋅ δi  if δi ≤ 0
αi

+ ⋅ δi  if δi > 0
. (4)

This update rule gives rise to a range of value estimates called expectiles (Figure 2g–h), 

which generalize the mean just as quantiles generalize the median. However, unlike 

quantiles, expectiles do not bear a straightforward relationship to the CDF. To understand 

them, it is necessary to adopt a more general perspective on learning.

Distributional Reinforcement Learning as the Process of Minimizing Estimation Errors

The distributional RL algorithms illustrated above are known as quantile and expectile 

regression [7,8]. This is because in addition to thinking of quantiles as places to divide 

ordered samples into two sets of given size ratios, they can be derived from the perspective 

of minimizing certain continuous loss functions, which is precisely what a regression does 

[15,16]. We will demonstrate this here by re-deriving the aforementioned learning 

algorithms for quantiles and expectiles from the common perspective of regression (Figure 

3a).

Let us first consider the most widespread error measure used in linear regression, the mean 

squared error (MSE), in the context of learning about rewards (r). Assuming that we have 

observed rewards r1, r2, …, rN across N trials, the MSE of some value V is defined as

MSE(V ) = 1
N ∑n = 1

N rn − V 2, (5)

and so measures the squared difference of this value to each observed reward, averaged 

across all rewards [17]. This definition makes the MSE a function of V, such that as the 

value of V changes, the MSE will increase or decrease (Figure 3b). The question that we 

want to ask is: what is the V that minimizes the MSE? To find this minimum, we set the 

derivative of the MSE with respect to V to zero and solve for V, resulting in V = 1
N ∑n = 1

N rn. 

Therefore, if one defines the prediction error associated with the nth reward as δn = rn − V, 

then the MSE (the mean across all δn
2) is minimized if V equals the average reward across 

trials.

One approach to minimize Eq. (5) is to memorize all rewards across trials and subsequently 

compute their mean. However, once the number of trials N is large, this method is neither 
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memory-efficient nor biologically plausible. An alternative method that is widely applied in 

machine learning is stochastic gradient descent [18]. Revisiting the above example, assume 

that the rewards r1, r2, …, rN are observed one after the other. We would like to find a local 

learning rule that allows us to come up with an estimate V that approximately minimizes the 

sum of squared prediction errors.

With stochastic gradient descent, the current reward estimate V is adjusted every time a new 

observation rn becomes available by moving one small step down along the gradient of the 

squared error. (For mathematical convenience, here we actually compute the gradient of half 

the squared error, ∇ δn
2/2 , but the conceptual approach is the same.) This gradient measures 

how the output of the loss function associated with this new observation, δn
2, will change 

when the relevant parameters are modified. In this case, the relevant parameter is just V, 

such that the required gradient is given by the derivative of δn
2/2 with respect to V:

∇ δn2/2 =
d rn − V 2/2

dV
= − rn − V
= − δn .

The parameter V will then be updated according to V V − α∇ δn
2/2 . After substituting the 

gradient, we obtain

V V + α ⋅ δn . (6)

The current error function, which depends only on the most recently available reward rn, 

here acts as a proxy of the error function encompassing all trials, Eq. (5). Intuitively 

speaking, subtracting α times the gradient from the current reward estimate, as performed in 

Eq. (6), corresponds to adjusting the reward estimate slightly towards the steepest drop of 

the current error function. Notice that Eq. (6) is equivalent to Eq. (1). Therefore, the 

Rescorla-Wagner rule is equivalent to stochastic gradient descent if we measure the loss by 

the mean squared error [19].

In general, as long as the error we aim to minimize has a form similar to Eq. (5), in which 

the global error is a sum of local errors, each of which only depends on the reward in one 

trial, we can always apply an update rule similar to Eq. (6), using the corresponding gradient 

to carry out stochastic gradient descent. Below, we apply this approach to a variety of loss 

functions to derive the corresponding update rules.

One simple change is to replace the square of δn by its absolute value, leading to the mean 

absolute error

1
N ∑n = 1

N δn . (7)
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In this case, the derivative with respect to V of |δn| = |rn – V| is simply −sign(δn), which 

readers will recognize as the update that converges to the median of the reward distribution 

(Figure 3c).

If we additionally weigh positive and negative errors differently,

1
N ∑n = 1

N δn ⋅
1 − τ  if δn ≤ 0

τ  if δn > 0, (8)

where τ is a fixed value between 0 and 1, the best estimate becomes the τ-th quantile of the 

reward distribution [16]. Hence, Eq. (8) is called the quantile regression loss function.

We can again turn the global error function, Eq. (8), into a sequential update by stochastic 

gradient descent, resulting in

V V + α ⋅
−(1 − τ)  if δn ≤ 0

τ  if δn > 0 . (9)

If δn is negative, the rate parameter equals −α(1 – τ) = −α−; if it is positive, this product 

becomes ατ = α+. This confirms the intuition developed in the preceding section (Eq. 3), 

showing that such an update rule indeed minimizes the quantile regression loss function and 

approximates the τ-th quantile (Figure 3d).

To arrive at expectile regression, we move one step further and replace the absolute value of 

δn with its square in Eq. (8). This yields the weighted squared error loss function, also called 

the expectile regression loss function [15,20],

1
N ∑n = 1

N δn
2 ⋅

1 − τ  if δn ≤ 0
τ  if δn > 0, (10)

whose associated best estimate is the τ-th expectile (Figure 3e). For τ = 0.5, the two weights 

are equal, such that the error measure becomes equivalent to the mean squared error, Eq. (1). 

This confirms that the 0.5-th expectile is the mean across all rewards. Other expectiles can 

be interpreted as the analogue to quantiles, but for squared rather than absolute errors.

Stochastic gradient descent on Eq. (10) results in the update rule

V V + αδn ⋅
1 − τ  if δn ≤ 0

τ  if δn > 0, (11)

which is a modified version of Rescorla-Wagner rule in which the rate parameter takes on 

different values for negative and positive δn (Eq. 4).

Different loss functions therefore lead to estimating different statistics of the reward 

distribution. Even if we fix a loss function, however, there are still many possible ways to 

represent and learn the corresponding statistic. For instance, instead of storing the estimated 

quantiles directly and performing updates on them as in Eq. (9), the brain may approximate 
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quantiles by a parametric vector-valued function q(θ) = (q1(θ), …, qM(θ)), with parameters 

θ that might correspond to synaptic strengths between different neurons and outputs qi 

denoting the value of the τi-th quantile. The same strategy could also apply to expectiles 

e(θ).

To find the update rules for these representations, we can again use stochastic gradient 

descent. However, rather than computing the gradient with respect to V, we now compute it 

with respect to the function’s parameters, θ. Following similar calculations as shown above, 

this update rule for learning quantiles turns out to be

θ θ + α∑i = 1
M ∇θqi(θ) ⋅

−(1 − τ)  if δi, n ≤ 0
τ  if δi, n > 0, (12)

while for learning expectiles, it becomes

θ θ + α∑i = 1
M δi, n ∇θei(θ) ⋅

1 − τ  if δi, n ≤ 0
τ  if δi, n > 0 . (13)

Thus, the only changes to the update rules are (i) the addition of the gradient terms ∇θqi(θ) 

or ∇θei(θ), and (ii) the sum of contributions from different component quantiles or 

expectiles. For components qi(θ) or ei(θ) estimated as linear parametric functions uiTθ + vi, 

this gradient is ui, which results in a simple re-scaling of the parameter update by ui. Such 

functions include single-layer neural networks, in which case it is synaptic weights that are 

incremented or decremented. If we move from linear to non-linear parametric functions, like 

multi-layer neural networks, the gradients (and therefore the updates) become slightly more 

complex, but the general principles of stochastic gradient descent remain.

Traditional and Distributional Reinforcement Learning in the Brain

The idea that the brain uses some form of RL to select appropriate actions has been 

supported by a number of observations of animal behavior and neuronal activity [12,13,21–

23]. One of the strongest pieces of evidence is the close relationship between the activity of 

dopamine neurons and the reward prediction error (RPE) term in RL algorithms [21–23]. 

Neural activity representing value, the other critical variable in these algorithms, is also 

found in dopamine-recipient areas [24–26].

Dopamine neurons are located mainly in the ventral tegmental area (VTA) and substantia 

nigra pars compacta (SNc) in the midbrain, from which they send long axons to a wide 

swath of the brain that includes striatum, prefrontal cortex and amygdala. The information 

conveyed by different dopamine neurons varies greatly based on their projection targets [27–

30], with the dopamine neurons in the VTA that project to the ventral part of the striatum 

(nucleus accumbens) thought to mainly signal RPEs (but see [31,32]). Beyond this coarse 

projection specificity, which has been reviewed elsewhere [27,28], there is also fine-grained 

diversity within VTA dopamine neurons, which is our focus here. While the activity of these 

neurons appears quite homogenous compared to neurons in other parts of the brain [33,34], 

recent studies have revealed more diverse firing patterns [35] at least some of which may 
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reflect systematic variation in RPE signals [36]. Distributional RL offers one possible 

explanation for the functional significance of this diversity within the VTA.

Testing Distributional Reinforcement Learning

The key ingredient that transforms traditional RL into distributional RL is the diversity in 

learning rate parameters for positive and negative RPEs (α+and α−), or, more critically, the 

ratio between them, τ = α+
α+ + α− , which we call the asymmetric scaling factor [7,8]. 

Although the biological processes that implement α+ and α− remain unclear, one possibility 

is that these parameters correspond to how the firing of each dopamine neuron scales up or 

down with respect to positive or negative RPEs, respectively. This leads to several testable 

predictions in the expectile setting.

First, there should be ample diversity in asymmetric scaling factors across dopamine neurons 

(Figure 4a), which should result in optimistic and pessimistic value predictors (Figure 4b). 

The information contained in these value predictors (Vi), in turn, is routed back to dopamine 

neurons for computing RPEs, subtracting “expectation” (Vi) from the response to a received 

reward (R). This means that for optimistic dopamine neurons, which are coupled to 

relatively high value predictors, larger rewards are necessary to cancel out their reward 

response and obtain zero RPE. Thus, optimistic dopamine neurons with α+ > α− will have 

“reversal points” that are shifted towards above-average reward magnitudes (Figure 4c). 

Conversely, pessimistic dopamine neurons with α+ < α− will have reversal points shifted 

towards below-average reward magnitudes. Across the population of neurons, distributional 

RL therefore makes the unique prediction that the reversal points of dopamine response 

functions should be positively correlated with their asymmetric scaling factors (τ = α+
α+ + α−).

A recent study [8] tested these predictions using existing data from optogenetically-tagged 

VTA dopamine neurons in mice performing a task in which a single odor preceded a 

variable reward [34,37]. Responses differed in subtle but important ways among dopamine 

neurons; some neurons were consistently excited, even for below-average rewards, while 

others were excited only by rewards that exceeded the average (Figure 4d) [8]. The reversal 

points in this task were assumed to reflect different value predictions: each reversal point eτi
was interpreted as the τi-th expectile of the reward distribution.

To independently compute τi, αi
+ and αi− were estimated for each neuron i as the slopes of 

the average response function above and below the neuron’s reversal point. This analysis 

revealed significant variability in asymmetric scaling factors, tiling a relatively wide range 

between 0 and 1 (Figure 4e). Critically, these asymmetric scaling factors were positively 

correlated with the reversal points, as predicted above (Figure 4f). Finally, such structured 

heterogeneity in dopamine neurons allowed the authors to decode possible reward 

distributions from the neural data by finding reward distributions compatible with the 

expectiles defined by τi, eτi  (Figure 4g). Importantly, this decoding procedure strongly 

relied on the structured heterogeneity assumption imposed by an expectile code and should 

have been unsuccessful if the variability merely reflected random noise.
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Distributional RL lends itself to several additional experimental predictions, which remain to 

be tested [8]. For example, dopamine neurons should show consistent asymmetric scaling 

factors across different reward distributions. Furthermore, optimistic cells should learn more 

slowly from negative prediction errors compared to pessimistic cells, and therefore be slower 

to devalue when reward contingencies are changed. Quantile-like distributions of value 

should be present in both the downstream targets as well as the inputs to VTA dopamine 

neurons [8], with optimistic neurons in one region projecting predominantly to optimistic 

neurons elsewhere. Finally, distributional representations should predict behavior in operant 

tasks, such that biasing dopamine neurons optimistically [38] elicits risk-seeking behavior.

Is Distributional Reinforcement Learning Biologically Plausible?

The studies discussed above are promising, but the prospect of distributional RL in the brain 

raises many new questions regarding development, plasticity, and computation in the 

dopamine system.

Diversity in Asymmetric Scaling and Independent Loops

The critical feature of distributional RL — the diversity of asymmetric scaling factors in 

dopamine signals (Figure 4a) — might be established developmentally simply through 

stochasticity in wiring. However, there may be more specific mechanisms in place to ensure 

such diversity. Recent evidence suggests that positive and negative RPEs may be shaped by 

relatively separate mechanisms. For example, lesions of the lateral habenula or rostromedial 

tegmental nucleus (RMTg) result in a preferential reduction of responses to negative RPEs 

[38,39]. Intriguingly, habenula-lesioned animals become “optimistic” in reward-seeking 

behavior as well [38], raising the possibility that asymmetric scaling factors might influence 

behavior.

One important assumption in the distributional RL model discussed above is the 

independence between loops of dopamine neuron-value predictor pairs, to separate 

optimistic and pessimistic value predictors (Figure 4b). Of course, complete independence 

of these loops would be unrealistic, given the complexity of wiring in the brain. Axons of 

dopamine neurons branch extensively in the dorsal striatum, but branching in the ventral 

striatum is much more restricted [40–42]. It turns out that adding relatively extensive 

crosstalk between neighboring dopamine projections does not disturb distributional RL [8], 

provided that optimistic and pessimistic dopamine neurons (and value predictors) are 

topographically organized [e.g. 42]. One way to create such a gradient would be through 

inhomogeneous projections of inputs generating excitatory and inhibitory responses in 

dopamine neurons, as is the case for input from RMTg [44,45]. There is additional 

topographic variability in the intrinsic membrane properties of dopamine neurons, 

particularly in their response to hyperpolarizing current, that is hypothesized to render them 

differentially sensitive to positive and negative RPEs [43], adding yet another layer of 

diversity that could support distributional RL.
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Learning Rate Parameters in Striatum and Cortex

Up to this point, we have assumed that asymmetric scaling factors are already implemented 

in the firing of dopamine neurons [8]. However, learning rate parameters may also be 

affected by downstream processes such as synaptic plasticity at dopamine-recipient neurons. 

Recent studies have begun to establish experimental paradigms for inducing synaptic 

plasticity using transient dopamine release in vitro and measuring the resulting “plasticity 

function” [46,47]. Along these lines, recent studies indicate that positive and negative RPEs 

are processed differently depending on whether the target cells in the striatum express D1- 

or D2-type dopamine receptors [46,47]. This dichotomous circuit architecture resembles the 

binarized update rules above, but it is at present unclear whether it enables distributional RL 

in the brain.

Normative models predict that the overall learning rate should be dynamically modulated by 

the volatility of rewards in the environment [48]. The mechanism of distributional RL leaves 

open the possibility that additional, extrinsic factors might modulate the overall learning 

rate, or “gain,” while leaving the ratio between positive and negative learning rates — and 

thus the distributional codes — relatively unchanged. Neuromodulators such as serotonin 

and norepinephrine, acting in cortical or striatal areas, are good candidates for tuning such a 

gain mechanism [49,50]. Furthermore, frontal regions such as the anterior cingulate [48,51] 

and orbitofrontal [52] cortex that project densely to more ventral portions of the striatum 

[53] also encode value, prediction error, uncertainty, and volatility, and have been 

hypothesized to adjust the gain under conditions of uncertainty [54]. In principle, this 

additional, cortical level of regulation could go beyond adapting the learning rate to directly 

influencing the computation or readout of a quantile-like code — for example, by biasing 

downstream circuits towards more optimistic or pessimistic value predictors.

Powerful evidence of the interplay between cortical and subcortical circuits comes from the 

Iowa Gambling Task (IGT), which was originally created to characterize deficits in risk-

based decision-making in patients with orbitofrontal damage [55]. Parkinson’s patients 

treated with L-DOPA, which elevates dopamine levels — but not unmedicated patients [56], 

who have normal levels of ventral striatal dopamine [57] — also exhibit deficits in the IGT, 

as well as impulse control disorders such as pathological gambling [58,59]. This pattern 

suggests that L-DOPA may compromise the fidelity of distributional RL, and is consistent 

with previous reports that dopaminergic [60] and ventral striatal [61,62] activity can 

combine information about reward mean and variance to influence choice behavior [63–66]. 

Distributional RL provides a new potential mechanism to explain the involvement of 

dopaminergic activity in risk and could play a critical role in guiding efficient exploration of 

uncertain environments [67].

How Does the Brain Benefit from Distributional Representations?

The performance improvement garnered by distributional RL in previous studies [6–8,10] is 

not due to better decision-making at the action selection stage; the modified DQN in these 

studies computed the mean of the inferred reward distribution to decide which action to take. 

Instead, it is thought that the benefit of distributional RL comes mainly from its ability to 

support efficient representation learning in multi-layer neural networks. In traditional DQN, 
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states with the same expected value yield the same output even if they give rise to very 

different reward distributions; thus, there is no drive to distinguish these states in lower 

layers of the network. A distributional DQN, by contrast, outputs the complete return 

distribution and so requires distinct representations in the hidden layers [8]. By combining 

the quantile or expectile loss with backpropagation or other optimization methods, deep 

neural networks can convey this much richer information to lower layers and thereby 

improve performance even with risk-neutral policies. Linear function approximators (e.g. 

single-layer neural networks) do not learn hidden representations, so distributional RL 

confers no benefit for estimating the expected value in the linear setting [49]. Whether or not 

such distributional codes also promote state learning in the brain remains to be tested 

experimentally. However, it is compelling to speculate that such codes are central not just for 

learning distributions of reward magnitude [8,34,69] and probability [38], but also for 

tracking rewards across uncertain delay intervals [70–72] and representing such distributions 

in the common currency of value.

Quantile-like codes are non-parametric codes, as they do not a priori assume a specific 

form of a probability distribution with associated parameters. Previous studies have 

proposed different population coding schemes. For example, probabilistic population codes 

(PPCs) [73,74] and distributed distributional codes (DDCs) [75,76] employ population 

coding schemes from which various statistical parameters of a distribution can be read out, 

making them parametric codes. As a simple example, a PPC might encode a Gaussian 

distribution, in which case the mean would be reflected in which specific neurons are most 

active, and the variance would be reflected in the inverse of the overall activity [73]. It is not 

yet known if parametric codes predict similar structured heterogeneity of dopamine neuron 

RPEs. Understanding the precise format of population codes is crucial because it helps 

determine how downstream neurons can use that information to guide behavior. While 

PPCs, for example, support Bayesian inference [77,73], quantile codes could support simple 

implementations [8] of Cumulative Prospect Theory [78], which provides a descriptive 

model of human and animal behavior [79]. There have also been simpler algorithms 

proposed that learn a specific parameter (e.g. variance) of a distribution [54,80]. While these 

algorithms are not meant to learn the entire shape of a distribution, such parameters may be 

useful for specific purposes, and it will be important to clarify under what circumstances 

quantile-like codes outperform these simpler mechanisms.

In the limit of infinite experience, the full distribution of future returns captures intrinsic and 

irreducible stochasticity in the environment, such as variability in reward size. However, 

there are several additional possible sources of uncertainty in the RL framework, such as 

state, value, and policy uncertainty, all of which have been proposed to affect dopamine cell 

activity, albeit through different mechanisms [81]. For example, there is strong evidence that 

reward expectations inferred from ambiguous state information [71,72,82] or perceptual 

uncertainty [83,84] modulate dopamine activity. Future avenues of research should explore 

how a distributional representation of outcomes can be combined with such independent 

forms of uncertainty to produce more robust learning.
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Distributional TD Updates in the Brain

A subtle but crucial distinction between traditional and distributional RL when moving from 

the Rescorla-Wagner to the TD framework centers on the computation of the prediction error 

δ (Box 2). In the case of traditional RL, δ can be computed from a single, local estimate of 

the value at the succeeding state. By contrast, distributional RL often requires samples to be 

generated from the reward distribution of the succeeding state in order to compute δ [7,8]. 

The information required to generate these samples is no longer contained locally within a 

(hypothetical) single unit; instead, it is distributed across a population of neurons, and hence 

available only globally. Computing δ in the general TD case thus requires more elaborate 

feedback than simple TD-value predictor loops (Box 2). Future work should seek to identify 

neural architectures that could compute the distributional TD update, as well as experimental 

paradigms or environments that demand such an update.

Concluding Remarks

Distributional RL arises from structured diversity in RPEs. The specific type of diversity 

confers a computational advantage, providing a normative perspective on the diversity of 

dopamine neuron firing. It is interesting to note that the signatures of this type of diversity 

were present in previous studies, but were typically averaged out to focus on general trends 

across dopamine neurons [85,34,69]. This attests to the potential of machine learning to 

inform the study of the brain: without the development of distributional RL, this type of 

neural variability might have been discarded as mere “noise.”

Beyond the dopamine system, the efficacy of quantile-like codes in deep RL and the 

biological plausibility of the associated learning rules raise new possibilities for neural 

encoding. Whether such codes exist elsewhere in the brain, and how they interact with other 

population coding schemes, remains unknown (see Outstanding Questions). Generally, the 

optimal type and format of a neural code depends on the specific computations that it 

facilitates. Artificial neural networks specifically adapted for performance on machine 

learning tasks may reveal novel combinations of neural codes and related computations, as 

has been widely documented in the primate visual system [86,87]. Ongoing collaborations in 

this area will help close the loop between biological and artificial neural networks and push 

the frontiers of neuroscience and AI.
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Glossary

Distributional reinforcement learning
a family of algorithms whereby an agent learns not only the expected reward, but rather the 

entire distribution of reward.

Expectile
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the τ-th expectile of a distribution is the value eτ that minimizes the expectile regression loss 

function for τ (Eq. 10). The 0.5-th expectile equals the mean.

Gradient
the partial derivative of a multivariate function with respect to a parameter.

Loss function
also called cost, error, or objective function, it is the equation that provides a metric for the 

goodness-of-fit of a set of parameters to data. We can fit e.g. a regression by finding the 

parameters that minimize the loss function.

Markov dynamics
property of a state space such that the probability of a successor state st+1 depends directly 

on st and not any prior state: P(st+1|s0, s1, …st) = P(st+1|st).

Non-parametric code
a type of population code that makes no assumptions about the underlying type of 

distribution. A quantile-like code is one example.

Parametric code
a type of population code in which neural activity reflects particular parameters of a pre-

defined type of distribution (in simple cases, the mean and variance of a Gaussian, but often 

more complex distributions).

Population code
the representation of particular information in the world (e.g. the presence of a specific 

sensory stimulus, the average reward, or the distribution of reward) by the firing of a 

population of neurons.

Quantile
the τ-th quantile of a distribution is the value qτ such that τ fraction of samples is below qτ 
while the other 1 – τ fraction is above it. Equivalently, qτ minimizes the quantile regression 

loss function for τ (Eq. 8). The 0.5-th quantile is the median.

Quantile regression
a model that predicts quantiles of a distribution given some predictor variables (e.g. a state 

vector).

Reinforcement learning
the field of AI that considers the interaction between an agent and its environment. The 

agent receives states and rewards as inputs. It then takes actions that may modify its state 

and/or elicit reward. The agent’s objective, in general, is to maximize value.

States
the description of the environment that is input to RL algorithms, alongside rewards.

Stochastic gradient descent
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minimization method that computes the gradient of the loss function on individual samples, 

selected at random, and then adjusts the parameters in the negative direction of this gradient.

Temporal difference (TD) learning
bootstrapping technique in RL that computes the difference between predicted value at 

successive points in time to update the estimate of value.

Value
in the Rescorla-Wagner formulation, it is the predicted amount of reward associated with a 

stimulus. In the TD framework, it is the expected sum of discounted future rewards 

associated with a state (see Box 1) or state-action combination.
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Box 1.

Temporal Difference Learning

The Rescorla-Wagner (RW) rule [13], for all its success, is limited by its exclusive focus 

on immediate rewards. Fortunately, many of its shortcomings can be overcome by 

defining a different environmental structure and learning objective [9,11,12]. We start by 

considering arbitrary states s, which transition at each time step and sample a random 

reward (possibly zero or negative) from a probability distribution R(st). We then define a 

new learning objective, the value:

V st : = E R st + γR st + 1 + γ2R st + 2 + … , (1.1)

where E[·] denotes an expectation over stochastic state transitions and reward emissions, 

and γ is a discount factor between 0 and 1, reflecting a preference for earlier rewards.

Contrary to the RW model, which cares only about the reward obtained in a trial, this 

model cares about (a weighted sum of) all future rewards. Since the environment is 

assumed to follow Markov dynamics, we can rewrite this relationship recursively, using 

the so-called Bellman equation:

V st : = E R st + γV st + 1 . (1.2)

Rearranging and sampling rt ~ R(st) from the environment, we arrive at a new kind of 

reward prediction error, namely, a temporal difference (TD) error [4], which we also call 

δ to emphasize its similarity to the reward prediction error in the RW model:

δ(t): = rt + γV st + 1 − V st . (1.3)

The value update then occurs in exactly the same manner as before:

V st V st + αδ(t) . (1.4)

The similarity between the RW and TD learning rules disguises one important difference. 

In the case of the RW rule, we computed the prediction error using the actual reward, R, 

that was experienced. In TD, we substitute R with rt + γV(st+1), our estimate of the target 

value of state st. But this target includes yet another value predictor γV(st+1), which we 

also are trying to learn, and which may in fact be inaccurate. Therefore, we use one 

estimate to refine a different estimate, a procedure known as “bootstrapping.” For that 

reason, unlike RW, TD learning is not a true instance of stochastic gradient descent, since 

changing the parameters of our value function changes not only our estimate but also our 

target [9]. This is the principal reason why we focus on distributional forms of the RW 

(rather than TD) rule in the main text. Nonetheless, and quite remarkably, this 

“bootstrapping” procedure is proven to converge to a point near the local optimum in the 

case of linear function approximation [88], and can be made to work very well in practice 

even in situations where theoretical convergence is not guaranteed [2].

Lowet et al. Page 18

Trends Neurosci. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2.

Distributional Temporal Difference Learning

In distributional TD learning, the objective is no longer simply the expected value, but 

rather the entire distribution over cumulative discounted future reward beginning in state 

st. This is called the return distribution and denoted Z(st) [6]. We emphasize that Z(st) is a 

random variable, unlike its expectation V(st) = E[Z(st)]. Nonetheless, we can write down 

a similar “distributional Bellman equation,” where the D denotes equality of distribution:

Z st =D R st + γZ st + 1 . (2.1)

If we were to take the expectation on both sides, we would get back our familiar, non-

distributional Bellman equation. In contrast, we now seek to learn each statistic Vi(st) that 

minimizes the quantile regression loss (Eq. 8, main text) on samples from Z(st) for τ = τi. 

One way to do this is by computing samples of the distributional TD error [7]:

δi(t) ≔ rt + γz st + 1 − V i st . (2.2)

Here, rt is a sample from R(st), provided by the environment, and z st + 1  is a sample 

from the estimated distribution Z(st+1). Note that this TD error departs from the 

traditional form; in particular, as z st + 1  is fundamentally random, so is the TD error, and 

δi(t) ≠ rt + γVi(st+1) − Vi(st), as one might otherwise expect. Furthermore, since δi(t) 
enters the value update equations in a non-linear way, we cannot simply operate with the 

average TD error, E[δi(t)]. Despite these differences, our value predictors can be updated 

in direct analogy to the distributional RW rule:

V i st V i st +
αi− ⋅ ( − 1)  if δi(t) ≤ 0
αi

+ ⋅ ( + 1)  if δi(t) > 0
. (2.3)

While asymptotically correct, a strategy that relies on a single sample z st + 1  from the 

upcoming reward distribution, and associated single δi(t) sample, would be limited by 

high variance. To reduce variance, we average across J updates, each of which depends 

on its own sample of δi(t) [7]:

E ΔV i st = 1
J ∑

j = 1

J αi− ⋅ ( − 1)  if δi, j(t) ≤ 0
αi

+ ⋅ ( + 1)  if δi, j(t) > 0
(2.4)

V i st V i st + E ΔV i st . (2.5)

The expected update (Eq. 2.5) becomes equivalent to the sample update (Eq. 2.3) when 

Z(st+1) collapses to a single Dirac, in which case all z st + 1  are equivalent, and to the 

RW quantile update (Eq. 3, main text) when no future reward is expected, in which case 
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all z st + 1  are zero. This last case is the regime explored in work to date [8] and in most 

of the present article, for simplicity.

Computing E[ΔVi(st)] (Eq. 2.4) is straightforward for quantiles, since quantiles with 

uniformly spaced τi can be treated as samples from the underlying distribution as long as 

the number of quantiles is reasonably large. We can therefore simply interpret each 

quantile Vj(st+1) as a sample from Z(st+1) and compute the expectation of ΔVi(st) over j 
for all pairs of (Vi(st), Vj(st+1)) [7]. However, performing similar sampling for a given set 

of discrete expectiles requires a different and currently computationally expensive 

approach [89]. It remains to be seen whether alternative sampling strategies — or other 

approximations not dependent on sampling — can be made to ensure robust, efficient 

computation of these estimators in a biologically plausible manner.
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Outstanding Questions Box

• Under what circumstances do animals use reward distributions, rather than 

expected values (utility) in making decisions? How does distributional RL 

support changes in risk preferences?

• Are optimistic and pessimistic value predictors explicitly specified during 

development? Are they organized in a topographic fashion in the mesostriatal 

dopamine pathway?

• Does the brain use distributional TD errors to improve its representation of 

states in the environment, as is the case in artificial systems?

• How do quantile-like codes compare quantitatively to existing probabilistic 

population coding theories, such as PPCs and DDCs?

• Are learning rates modulated by environmental volatility in a way that 

preserves the optimism or pessimism of individual value channels?

• Might other neuromodulatory systems such as acetylcholine be sensitive to 

the distribution of predicted events, and if so, what kinds of codes are used to 

signal them?

• What are the rules governing plasticity in downstream neurons — particularly 

D1 and D2 receptor-expressing medium spiny neurons — in response to 

positive and negative dopamine transients? Do these rules serve to enhance 

distributional RL?

• Biased value predictions and belief updating are associated with clinical 

anxiety, depression, addiction, and bipolar disorder. Do these biases arise 

from distributional RL, and if so, could interventions specifically targeting 

optimistic or pessimistic neurons help ameliorate them?
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Highlights

• A large family of distributional RL algorithms emerges from a simple 

modification to traditional RL and dramatically improves performance of 

artificial agents on AI benchmark tasks. These algorithms operate using 

biologically plausible representations and learning rules.

• Dopamine neurons show substantial diversity in reward prediction error 

coding. Distributional RL provides a normative framework for interpreting 

such heterogeneity.

• Emerging evidence suggests that the combined activity of dopamine neurons 

in the VTA encodes not just the mean but rather the complete distribution of 

reward via an expectile code.
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Figure 1. Deep reinforcement learning
(a) A formulation of reinforcement learning problems. In reinforcement learning, an agent 

learns what action to take in a given state in order to maximize the cumulative sum of future 

rewards. In video games such as in an Atari game (here the Space Invader game is shown), 

an agent chooses which action (a(t), joystick turn, button press) to take based on the current 

state (s(t), pixel images). The reward (r(t)) is defined as the points that the agent or player 

earns. After David Silver’s lecture slide (https://www.davidsilver.uk/teaching/).

(b) Structure of deep Q-network (DQN). A deep artificial neural network (more specifically, 

a convolutional neural network) takes as input a high-dimensional state vector (pixel images 

of 4 consecutive Atari game frames) along with sparse scalar rewards, and returns as output 

a vector corresponding to the value of each possible action given that state (called action 

values or Q-values and denoted Q(s, a)). The agent chooses actions based on these Q-values. 

To improve performance, the original DQN implemented a technique called “experience 

replay,” whereby a sequence of events are stored in a memory buffer and replayed randomly 

during training [2]. This helped remove correlations in the observation sequence, which had 

previously prevented RL algorithms from being used to train neural networks. Modified 

after [2].

(c) Difference between traditional and distributional reinforcement learning. Distributional 

DQN estimates a complete reward distribution for each allowable action. Modified after [6].

(d) Performance of different RL algorithms in DQN. Gray, DQN using a traditional RL 

algorithm [2]. Light blue, DQN using a categorical distributional RL algorithm (C51 

algorithm [6]). Blue, DQN using a distributional RL based on quantile regression [7]. 

Modified after [7].
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Figure 2. Learning rules of distributional RL (quantile and expectile regression)
(a) The standard Rescorla-Wagner learning rule converges to the mean of the reward 

distribution.

(b) Modifying the update rule to use only the sign of the prediction error causes the 

associated value predictor to converge to the median of the reward distribution.

(c-d) Adding diversity to the learning rates alongside a binarized update rule that follows the 

sign of the prediction error causes a family of value predictors to converge to quantiles of the 

reward distribution. More precisely, the value qτi to which predictor i converges is the τi-th 

quantile of the distribution, where τi is given by 
αi

+

αi
+ + αi−

. This is illustrated for both 

unimodal (c) and bimodal (d) distributions.

(e) The cumulative distribution function (CDF) is a familiar representation of a probability 

distribution.
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(f) By transposing this representation, we get the quantile function, or inverse CDF (left). 

Uniformly-spaced quantiles cluster in regions of higher probability density (right). Together, 

these quantiles encode the reward distribution in a non-parametric fashion.

(g-h) Multiplying the prediction error by asymmetric learning rates yields expectiles. 

Relative to quantiles, expectiles are pulled toward the mean for both unimodal (g) and 

bimodal (h) distributions.

Lowet et al. Page 25

Trends Neurosci. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Distributional RL as minimizing a loss function
(a) The reward probabilities of an example reward distribution. Mean Vmean, median 

Vmedian, 0.25-quantile V0.25-quantile and 0.97-expectile V0.97-expectile of this distribution are 

indicated with different colors.

(b-e) Loss as a function of the value estimate V (left) when the rewards follow the 

distribution presented in (a), illustrating that V = Vmean minimizes the mean squared error 

(b), V = Vmedian minimizes the mean absolute error (c), V = V0.25-quantile minimizes the 

quantile regression loss for τ = 0.25 (d), and V = V0.97-expectile minimizes the expectile 

regression loss for τ = 0.97 (e). The right panels show the loss as a function of the RPE δ.
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Figure 4. The structured diversity of midbrain dopamine neurons is consistent with 
distributional RL
(a) Schematic of five different response functions (spiking activity of dopamine neurons) to 

positive and negative RPEs. In this model, the slope of the response function to positive and 

negative RPEs corresponds to the learning rates α+ and α−. Diversity in α+ and α− values 

results in different asymmetric scaling factors (
αi

+

αi
+ + αi−

).

(b) RPE channels (δi) with α+ < α− overweight negative prediction errors, resulting in 

pessimistic (blue) value predictors (Vi), while RPE channels with α+ > α− overweight 

positive prediction errors and result in optimistic (red) value predictors. This representation 

corresponds to the Rescorla-Wagner approach in which RPE and value pairs form separate 

channels, with no crosstalk between channels with different scaling factors. See Box 2 for 

the general update rule when this condition is not met.

Lowet et al. Page 27

Trends Neurosci. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(c) Given that different value predictors encode different reward magnitudes, the 

corresponding RPE channels will have diverse reversal points (reward magnitudes that elicit 

no RPE activity relative to baseline). The reversal points correspond to the values Vi of the 

τi-th expectiles of the reward distribution.

(d) Reversal points are consistent across two different halves of the data, suggesting that the 

diversity observed is reliable (P = 1.8 × 10−5, each point represents a cell). Modified after 

[8].

(e) Diversity in asymmetric scaling in dopamine neurons tiles the entire [0, 1] interval and is 

statistically reliable (one-way ANOVA; F(38,234) = 2.93, P = 4 × 10−7). Modified after [8].

(f) Significant correlation between reversal points and asymmetric scaling in dopamine 

neurons (each point is a cell, linear regression P = 8.1 × 10−5). Grey traces show variability 

over simulations of the distributional TD algorithm run to calculate reversal points in this 

task. Modified after [8].

(g) Decoding of the reward distribution from dopamine cell activity using an expectile code. 

The expectiles of the distribution, τi, eτi , were defined by the asymmetries and reversal 

points of dopamine neurons. Grey area represents the smoothed reward distribution, light 

blue traces represent several decoding runs, and the dark blue trace their mean. Modified 

after [8].
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