Skip to main content
. 2021 Apr 19;57(4):395. doi: 10.3390/medicina57040395
Algorithm 2. The VGG-19 model description
Input: thyroidal images of dimension (500 px, 500 px) from the train dataset.
Output: VGG model weights
1. for each image in the dataset
2. Resize image to (224 px, 224 px)
3. Normalize the image pixels values between [0, 1].
4. end
5. Load the VGG-19 model pre-trained on ImageNet dataset.
6. Remove the last layer of the model.
7. Make non-trainable all the layers of the model.
8. Add a Flatten layer on the model output to obtain a 1-D array of features.
9. Add a fully connected layer with 256 hidden units.
10. Apply a dropout for inactivate neurons in the previous layer.
11. Add a fully connected layer with 4 hidden units and a softmax activation function.
12. Optimize the model with Adam optimizer.
13. Train the model for 100 epochs.
14. Save the final model.