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Abstract

Intratumoral heterogeneity (ITH) is a fundamental property of cancer; however, the origins of ITH 

remain poorly understood. We performed single-cell transcriptome profiling of peritoneal 

carcinomatosis (PC) from 15 patients with gastric adenocarcinoma (GAC), constructed a map of 

45,048 PC cells, profiled the transcriptome states of tumor cell populations, incisively explored 

ITH of malignant PC cells and identified significant correlates with patient survival. The links 

between tumor cell lineage/state compositions and ITH were illustrated at transcriptomic, 

genotypic, molecular and phenotypic levels. We uncovered the diversity in tumor cell lineage/state 

compositions in PC specimens and defined it as a key contributor to ITH. Single-cell analysis of 

ITH classified PC specimens into two subtypes that were prognostically independent of clinical 

variables, and a 12-gene prognostic signature was derived and validated in multiple large-scale 

GAC cohorts. The prognostic signature appears fundamental to GAC carcinogenesis and 

progression and could be practical for patient stratification.

GAC remains a common and lethal disease with a poor prognosis1. Often diagnosed at an 

advanced stage, GAC is frequently resistant to therapy2. A common site of metastases is the 

peritoneal cavity (peritoneal carcinomatosis; PC) and there is a high unmet need for 

improved therapeutic interventions in patients with advanced GAC3,4. Patients with PC are 

highly symptomatic and can have an overall survival of <6 months. Only a small fraction of 

patients benefits, often only transiently, from immune checkpoint blockade5,6 or HER2-

directed therapies7. Molecular understanding of advanced GAC is limited. Four genotypes 

defined by The Cancer Genome Atlas (TCGA) were based on analysis of primary GACs8. 

The two clinically favorable subtypes, Epstein–Barr virus-positive and microsatellite 

instable GACs, are rare in advanced cases9. In the clinic, empiricism prevails as patients are 

not routinely stratified and rational therapeutics are exceedingly limited.

It is well recognized that GAC is endowed with extensive intertumoral heterogeneity and 

ITH8,9. ITH is fundamental for tumor cell survival as it confers therapy resistance and is a 

major obstacle to improving patient outcomes. However, the origins of ITH are poorly 

understood. Deeper understanding of the cellular/molecular basis of ITH could influence 
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how GACs are treated. Single-cell transcriptome sequencing (scRNA-seq) is a robust and 

unbiased tool to assess cellular and transcriptomic ITH10.

Here, we performed scRNA-seq of PC cells from ten long-term and ten short-term survivors 

with PC, inferred tumor cell lineages and transcriptomic states at single-cell resolution by 

mapping the scRNA-seq data to the Human Cell Landscape (HCL) database11, constructed a 

single-cell map of malignant PC cells, comprehensively characterized ITH of PC tumor cells 

via integrative approaches and identified significant correlates with patient survival. This 

study demonstrated that the diversity in tumor cell lineage/state compositions is a key 

contributor to ITH. A 12-gene fundamental signature was discovered, which although 

derived from PC cells, retained its prognostic significance when applied to independent, 

localized and advanced large-scale GAC cohorts. These results provide an avenue for patient 

stratification and target discovery for future therapeutic exploitation.

Results

A single-cell transcriptome map of PC.

scRNA-seq was performed on cryopreserved PC cells collected from 20 patients with GAC 

at advanced stages, including ten long-term and ten short-term survivors (Fig. 1a). The 

clinical and histopathological characteristics and radiology images are summarized in the 

Supplementary Information (Supplementary Table 1 and Supplementary Fig. 1). All primary 

tumors were of diffuse type and no microsatellite instability (MSI) was observed (see the 

Methods). Following quality filtering, 45,048 cells were retained for the subsequent 

analyses. The batch effects were minimal as statistically assessed by k-BET12 

(Supplementary Fig. 2). We captured five main nonmalignant cell types: B cells, CD4 T 

cells, CD8 T cells, myeloid cells and fibroblasts, each defined by canonical marker genes 

(Fig. 1a, Extended Data Fig. 1 and Supplementary Table 2). A multistep approach was then 

applied to distinguish malignant PC cells and to define cell transcriptome states (see the 

Methods). The immune cells from different patients clustered together by cell type, whereas 

PC malignant cells clustered distinctly by patient (Extended Data Fig. 1a). It is evident from 

Extended Data Fig. 2 that tumor cell clusters from short-term survivors were relatively 

closer on both the uniform manifold approximation and projection (UMAP) plot and the 

cluster dendrogram. Consistently, the Bhattacharyya pairwise distance between clusters of 

long-term and short-term survivors was significantly larger than that of the background 

distributions, indicating distinct transcriptomic profiles associated with survival. In this 

study, we focused on PC tumor cells (n = 31,131). Five patients with too few tumor cells 

(<50) were excluded from subsequent analyses (Supplementary Tables 3 and 4). To profile 

the transcriptome landscape of PC tumor cells, unsupervised cell-clustering analysis was 

carried out and the results were illustrated using both t-distributed stochastic neighbor 

embedding (t-SNE) and UMAP13, which uncovered 14 unique cell clusters, with 

differentially expressed genes (DEGs) specifically marking each cell cluster (Fig. 1b and 

Supplementary Fig. 3). Seven of 14 clusters were defined by complete patient specificity, 

and for the remaining seven clusters, each one was dominated mainly by cells from an 

individual patient (Supplementary Fig. 4). The distribution of each patient’s tumor cells 
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across clusters was quantified using chi-squared tests (Supplementary Table 5), 

demonstrating a high degree of interpatient heterogeneity in PC tumor cells.

The inferred tumor cell lineages.

To map each individual tumor cell, to determine its transcriptome state and the potential 

cells of origin of PC, we used HCL11, a valuable and well-annotated scRNA-seq resource 

for human biology, as a reference. Using a prelabeled public scRNA-seq dataset14, we first 

tested the reliability of HCL and also evaluated the performance of our approach in cell 

lineage inference and obtained satisfactory results (Supplementary Fig. 5). We then analyzed 

PC cells using the same approach (see the Methods). Intriguingly, although all cases in this 

study were clinically diagnosed as PC from GAC, our transcriptome-based analysis revealed 

a high degree of cellular heterogeneity in inferred tumor cell lineages (Fig. 1c and 

Supplementary Table 3). Only ~70% of mapped PC tumor cells were defined as cells of 

stomach origin, including pit cells (47%), mucosal cells (22%) and chief cells (0.5%). 

However, the expression profiles of a subset of PC tumor cells (26%) transcriptomically 

resembled cells of other gastrointestinal (GI) organs, particularly the intestine (21%). It is 

unlikely that these cells represent cell doublets (Supplementary Fig. 6). DEG analysis 

revealed lineage-specific gene expression features across major cell lineages including 

colorectal-like, duodenal-like and gastric cells, and between colorectal enterocytes and 

goblet cells (Fig. 1d,e), which is supported by compelling evidence from the literature and 

public databases such as the Human Protein Atlas (https://www.proteinatlas.org; 

Supplementary Figs. 7 and 8).

We showed that the difference in transcriptomic features was unlikely due to dropouts or 

technical noise of the scRNA-seq data, as we observed a good correlation in cell lineage 

assignment between mapping with the raw and imputed data (Supplementary Fig. 9). In 

addition, we redid HCL mapping after regressing out cell-cycle-related genes and our 

analysis demonstrated that the cell lineage assignment was not confounded by differences in 

cell-cycle states (Extended Data Fig. 3). For the two cases (IP-158 and IP-010) with mixed 

gastric and colonic epithelial cells including colonic goblet cells, we were able to retrieve the 

histology images of their corresponding primary GACs and confirmed that tumors arose in 

the setting of gastric intestinal metaplasia, which is characterized by the presence of well-

formed goblet cells in gastric mucosa (Fig. 1f). This finding is intriguing given the 

associated analyses showing mixed cellular populations of both gastric and colonic lineages. 

For case IP-070, our analysis suggested that none of the PC tumor cells was of GI origin; 

instead, the cells transcriptomically resembled breast luminal epithelial cells (Fig. 1c and 

Supplementary Fig. 10). After re-reviewing the patient’s clinical records, we noted that this 

case was of breast cancer that metastasized to the stomach and formed PC. This vignette on 

the other hand reflected the accuracy of our cell lineage analysis.

The diversity in tumor cell lineage compositions links to ITH at transcriptomic, genotypic 
and molecular levels.

To further study transcriptomic ITH and examine its relationship with tumor cell lineage 

compositions, we performed unsupervised clustering analysis of PC tumor cells using 

Seurat15 and Monocle16 and colored cells on the global UMAP plots by their inferred cell 
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lineages (Fig. 1g,h). As expected, we observed that gastric cells were clustered distinctly 

from the colorectal-like cells, and this was more evident on the UMAP plots generated from 

subclustering analysis by patient (Fig. 1h, Extended Data Fig. 4 and Supplementary Table 

6). The cluster that was highly enriched with colorectal-like cells was separated from the rest 

of the clusters that were mainly composed of cells of stomach origin. For case IP-009, the 

stomach pit cells clustered distinctly from stomach mucosal cells (Fig. 1h). We also 

performed unsupervised clustering analysis of tumor cells using single-cell consensus 

clustering (SC3)17 at both cohort and patient levels. In line with the results of Seurat and 

Monocle, the independent SC3 approach grouped cells into clusters that exhibited significant 

differences in the compositions of different cell lineages (Extended Data Fig. 5). For 

example, tumor cells of IP-067 were grouped into four clusters by SC3. Cells within the 

cluster C1 were mainly of the stomach origin (96.5%), and only 3.5% of cells were 

colorectal-like, whereas the cluster C4 was mainly composed of cells of the intestine origin, 

with 71.4% cells being colorectal-like (two-sided proportion test, C4 versus C1, P < 2.2 × 

10−16). Further examining DEGs between the two clusters showed that cells within C4 

expressed the highest levels of marker genes of intestine origin such as DMBT1, FCGBP, 

PIGR and WFDC2 (Fig. 1e), whereas cells within C1 had the highest expression of marker 

genes of the stomach origin such as PSCA and TFF1. Together, our results demonstrate that 

the diversity in tumor cell lineage compositions is likely a contributor to the transcriptomic 

ITH.

In addition, we used the Bhattacharyya distance metric to measure the similarity of gene 

expression distributions between inferred cell lineages. The Bhattacharyya pairwise 

distances between colorectal-like cells and stomach pit (or mucosal) cells were significantly 

larger than the distances between pairs of cells of the same lineages (Extended Data Fig. 6), 

indicating that the colorectal-like cells were transcriptomically distinct from cells of the 

stomach origin. We next quantified the extent to which lineage diversity explains variations 

within tumors. On average, lineage difference explains 21%, 20% and 7% of variations, 

respectively, in the top three PCs (principal components) of a tumor (Supplementary Fig. 

11), and, overall, we observed larger distances between lineages across than within patients 

(Supplementary Fig. 12). Moreover, we sought to identify unsupervised factors that can 

explain the variances across tumors and performed SC3 unsupervised clustering of tumor 

cells from all patients, but detected no significant association between the clinical, 

histopathological or molecular variables and the SC3-defined cell clusters. We further 

performed pathway enrichment analyses to examine whether differences in certain 

molecular processes can partially explain the interpatient variances. The cells of several 

cases tended to cluster together and demonstrated elevated activity of the metabolic and 

oncogenic pathways (Supplementary Figs. 13 and 14), indicating that tumor-intrinsic 

signaling pathways may have contributed to the observed interpatient transcriptomic 

heterogeneity.

We next investigated the genotypic ITH of PC tumor cells and examined its association with 

inferred tumor cell lineages. Large-scale copy number variations (CNVs) were inferred from 

scRNA-seq as previously described10,18,19, followed by phylogenetic reconstruction analysis 

(see the Methods). In a subset of patients (n = 6) whose genomic DNAs were available, the 

inferred large-scale CNVs showed an overall good correlation with the CNVs called from 
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bulk whole-exome sequencing (WES) data, as exemplified in Supplementary Figs. 15 and 

16. We performed unsupervised clustering of inferred CNVs at both levels, by cell lineage 

and by patient, and observed greater intertumoral heterogeneity than ITH in the inferred 

large-scale CNV profiles (Supplementary Figs. 17 and 18). This observation was also 

consistent with the large F statistic and significant P values from one-way analysis of 

variance (ANOVA) of the expression profiles (the mean F statistic for the top ten principal 

components was 7,728.4, P < 2.2 × 10−16), and the larger Bhattacharyya pairwise distances 

between lineages across than within patients (Supplementary Fig. 12).

Some PC specimens exhibited a high level of ITH. A representative example was the case 

IP-067 (Fig. 2a). Phylogenetic reconstruction analysis of the inferred CNVs identified five 

subpopulations (B1–5) with distinct CNV profiles. The pattern of CNV subclonal structure 

aligned well with the inferred tumor cell lineages: the largest subpopulation, B5, that 

demonstrated colorectal-like transcriptomic profiles showed distinguished CNVs profiles at 

multiple chromosomes from the subpopulation B2 that was purely composed of cells of 

stomach lineage. Consistently, B5 cells were enriched in the Monocle cell cluster C1, 

whereas B2 cells were mainly in the cluster C3, a cluster that was clearly separated from C1 

on the Monocle UMAP plot (Fig. 2a, top right). Cells from clusters B1, B3 and B4 showing 

shared CNV profiles with that of B2 or B5 were mainly enriched in the Monocle cell cluster 

C2 that links clusters C1 and C3. To further understand the ITH in this case, we performed 

somatic variant analysis focusing on the 3′ untranslated region (UTR) using scRNA-seq data 

(see Methods and Extended Data Fig. 7). Mutation overlapping analysis revealed ITH at the 

genomic level: 36% of somatic mutations identified in cells of C1 was not detected in cells 

of C2 or C3; overall, only 26% of mutations were shared among all three clusters (Fig. 2a, 

bottom right). However, for case IP-009 (Fig. 2b), although the Monocle cell cluster C1 that 

was mainly composed of stomach pit cells was separated from the cluster C2 that was 

mainly composed of stomach mucosal cells, we observed slight differences in their CNV 

profiles among the three subpopulations defined by phylogenetic reconstruction analysis. 

Somatic variant analysis showed that ~60% of mutations were shared between the two 

Monocle cell clusters (Fig. 2b, bottom right), suggesting a relatively more similar genomic 

background.

We next examined ITH in the tumor cell proliferative property and its relationship with the 

inferred tumor cell lineages. We computationally assigned a cell-cycle state to each 

individual cell based on its expression profile of cell-cycle-related signature genes20 (see the 

Methods and Supplementary Table 7) and compared the tumor cell proliferative property 

across the inferred cell lineages (Fig. 2c–e and Supplementary Fig. 19). Our analysis showed 

that the proliferative property of stomach pit cells was the highest among all cell lineages, 

indicated by high G2M and S scores (Fig. 2c) and fraction of cycling cells (Fig. 2d). On 

average, about 72% of stomach pit cells were cycling, and the fraction was much higher than 

that of stomach mucosa cells (27%) or intestinal-like cells: colon goblet cells (58%), colon 

enterocytes (34%), rectum (15%) and duodenum (18%). These results are in line with 

previous observations showing that the cellular turnover of stomach pit cells is faster than 

that of the mucus-secreting cells of the stomach21,22, and with numerous reports showing 

that intestinal surface epithelium, including goblet cells, undergoes turnover rapidly23,24. 
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Consistently, some key cell-cycle regulatory genes were differentially expressed across 

tumor cell lineages (Fig. 2e).

17q copy number gain is nearly exclusive to cells of stomach origin and is associated with 
worse survival.

We analyzed the inferred CNVs from all cases together and discovered 17q copy number 

gain as a unique event that was prevalent in tumor cells of stomach origin and only present 

in tumor cells from the short-term survivors (Fig. 3a). By integrating genotypic and 

transcriptomic profiles, we identified a list of genes upregulated on 17q in tumor cells from 

cases with evident 17q gain (versus cases without) and associated with patient survival (Fig. 

3b,c and Supplementary Table 8). Some of these upregulated genes involved in key signaling 

pathways (for example, PI3K/AKT/mTOR, mTORC1, MYC) are also potential therapeutic 

targets (for example, HN1, GRB2, PSMB3), with a number of compounds being screened as 

active25. However, as the CNV profiles were inferred from scRNA-seq data the analysis was 

limited due to the low resolution. We performed validation analysis in two independent GAC 

cohorts: the TCGA primary GAC cohort (n = 411; Fig. 3d) and a cohort of metastatic GAC 

(n = 45; Fig. 3e). The data from both validation cohorts showed that patients with 17q gain 

in their tumors had significantly worse survival.

Cell signaling heterogeneity correlates with tumor cell lineages/states.

To examine the molecular consequences of transcriptomic and genotypic alterations 

described above and to better understand the biological programs associated with patient 

survival, we performed pathway enrichment analysis of >900 curated gene sets (see the 

Methods). Among them, 80 pathways were differentially expressed across the inferred tumor 

cell lineages (Fig. 4a), and, of these, 37 were also strongly associated with patient survival 

(Fig. 4b and Supplementary Fig. 20). These pathways were categorized into five major 

classes based on their biological functions: oncogenic signaling, cell cycle, DNA repair, 

metabolism and immune signaling. Pathway interaction analysis revealed that these 

biological processes are functionally connected (Fig. 4c).

Pathways that were significantly enriched in tumor cells of stomach origin and associated 

with shorter survival included cell cycle, DNA repair, PI3K/AKT/mTOR, mTORC1, Wnt, 

NF-κB and metabolic reprogramming, which are predominantly oncogenic. The pathways 

that were enriched in colorectal-like tumor cells and associated with longer survival included 

defensins, IL-7 signaling, complement cascade, IL6/JAK/STAT3 signaling and interferon 

alpha/gamma, which are all immune related (Fig. 4a,b). These results indicated that different 

biological processes might have been implicated in tumor cells with different lineages or 

transcriptome states, contributing to their distinct molecular consequences and patient 

survival.

To assess whether the cellular composition of the tumor immune microenvironment differed 

between tumors with gastric-dominant features and those with GI-mixed features, we 

performed immune deconvolution analysis of the bulk expression data using public datasets 

(see the Methods). Our results in Fig. 4d and Supplementary Fig. 21 show that the 

abundance scores of B cells increased significantly in tumors with GI-mixed features (versus 
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those with gastric-dominant features), and this observation was replicated in three 

independent cohorts. In addition, the fractions of M1-like macrophages (pro-inflammatory) 

were higher, and M2-like macrophages (anti-inflammatory) were lower, in tumors with GI-

mixed features. There was also a significant difference in the abundance scores of cancer-

associated fibroblasts, which were lower in tumors with GI-mixed features. Together, our 

analysis suggests that tumors with GI-mixed features are immunologically more active.

Single-cell analysis of tumor cell lineage compositions classified PC cases into two 
subtypes with significant survival difference.

Based on tumor cell lineage compositions, we classified PC samples into two main subtypes: 

gastric-dominant (mainly gastric cell lineages) and GI-mixed (with mixed gastric and 

colorectal-like cells) (Fig. 1c), and performed correlation analysis with the clinical/

histopathological variables and patient survival (Extended Data Fig. 8 and Supplementary 

Fig. 22). No significant difference was observed in the histopathological features between 

these two subtypes. Notably, 17q gain was highly enriched in the gastric-dominant group in 

the GAC-PC (PC specimens from patients with metastatic GAC) validation cohort 

(Supplementary Fig. 23); the cell-of-origin-based classification of PC showed a strong 

correlation with patient survival (Fig. 1c): all six cases with a GI-mixed phenotype were 

long-term survivors, whereas six of eight cases with a gastric-dominant phenotype were 

short-term survivors (Fisher’s exact test, P = 0.0097, log-rank P = 0.05; Fig. 5a). Currently, a 

validated and practical molecular signature for PC is lacking. These results suggest that the 

transcriptomic features of PC tumor cells could prognosticate patient survival.

Generation and validation of a 12-gene prognostic signature.

We next sought to generate a gene expression signature that could be practical. We 

performed single-cell DEG analysis on PC tumor cells between the gastric-dominant and 

GI-mixed subtypes, followed by filtering the DEGs list to identify the most significant 

DEGs, screening each of the DEGs based on their statistical correlation with patient survival 

and testing gene combination using a forward selection method (Fig. 5b and see the 

Methods). After a multistep process, a 12-gene signature was derived (Fig. 5c).

We then validated this signature in an independent GAC-PC cohort (n = 45). For each tumor 

sample, a signature score was computed using bulk RNA-sequencing (RNA-seq) data, and 

based on which the sample was categorized into either the gastric-dominant or the GI-mixed 

group for subsequent analysis (Supplementary Fig. 24 and see the Methods). The signature 

demonstrated an excellent power to prognosticate patient survival, and consistently, patients 

whose PCs were in the gastric-dominant group survived significantly shorter (7.8 versus 

24.5 months) than those whose PCs were in the GI-mixed group (Fig. 5d, left). Multivariate 

Cox regression analysis showed that this signature was a strong prognosticator of short 

survival, with a hazard ratio of 12.7 (95% confidence interval, 3.2–51.0, P = 3.3 × 10−4; Fig. 

5d, right), and it was independent of clinical/histopathological variables (Supplementary Fig. 

22).

We also evaluated its prognostic significance in four other large-scale localized GAC 

cohorts19,26–28, totaling 1,336 patients. Notably, although this signature was derived from an 
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advanced GAC cohort, it retained its prognostic significance in all four validation cohorts of 

localized GACs (Fig. 5e–h and Extended Data Fig. 8a). Intriguingly, this signature was 

independent of other molecular and clinical subtypes (Extended Data Fig. 8b). The 

multivariate Cox proportional-hazards model analysis revealed that its prognostic value was 

preserved after accounting for the previously defined molecular subtypes, including MSI and 

EMT (epithelial–mesenchymal transition) signatures by Cristescu et al.28; metabolic, 

proliferative and invasive signatures by Ooi et al.27; and other clinical and histopathological 

variables including age, sex and histology types (Extended Data Figs. 9 and 10). In addition, 

it correlated strongly with the risk of local recurrence/distant metastasis among the TCGA8 

and Cristescu cohorts28, where both the expression and outcome data were available (Fig. 

5e, Extended Data Fig. 8c and Supplementary Fig. 25). These results further highlighted the 

value of this prognostic signature and its robustness in prognosticating patient survival.

Discussion

The progress against GAC has lagged behind other GI tumor types. Therapy resistance and 

the lack of rational therapeutic targets represent the major obstacles in improving survival of 

patients with advanced GAC29. It is widely appreciated that ITH is a fundamental property 

of cancer contributing to therapeutic failure, development of distant metastases30 and 

hindrance to biomarker/target discoveries31. Studies of localized and advanced GACs 

identified multiple molecular subtypes and revealed a high degree of ITH, which is 

associated with poor clinical outcomes9,32,33. Therefore, deeper dissection of ITH is critical 

for understanding the mechanisms driving poor prognosis of GAC and for overcoming 

therapeutic resistance. In this study, we dissected, at single-cell resolution, the cellular and 

transcriptomic ITH of PC tumor cells using the cutting-edge scRNA-seq technology, in 

combination with integrative computational analyses.

A key finding of this study is that the diversity in tumor cell lineage/state compositions 

appears to mirror and may even dictate the inherent ITH of PC tumor cells at multiple levels. 

The origins of ITH have been a subject of discussion, with multiple models being 

proposed34,35. The peritoneal cavity is a unique microenvironment where tumor cells can be 

in suspension in the peritoneal fluid as opposed to being localized in solid tumor tissues, and 

thus the PC cells we have sequenced may be a better representation of ITH. We observed 

that more than one transcriptomically distinct tumor cell subpopulation co-existed in most of 

the PC cases analyzed and could be distinguished by the inferred cell lineage characteristics. 

We discovered that 6 of 14 (43%) cases in our discovery cohort had a considerable fraction 

(~26%) of PC tumor cells that transcriptomically resembled cells of nonstomach GI 

lineages, particular the intestine. Notably, ITH defined by single-cell lineage/state 

compositions is perpetuated at transcriptomic, genotypic, cell-cycle state, molecular 

signaling and phenotypic levels and strongly associated with patient survival. Tumor cell 

transcriptomic profiles and proliferative property also significantly differed across the 

inferred tumor cell lineages/states, as did the molecular signaling, suggesting that treatment 

strategies could potentially be tailored to these molecular features. It appears that the 

contributors to ITH are likely diverse and more complicated than original thought, and 

varied biological programs (for example, genomic/epigenomic) might have been engaged 

early in tumorigenesis. It is important to note that the different tumor cell lineages were 
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inferred by mapping scRNA-seq data to HCL and thus may only reflect changes at 

transcriptome level, instead of developmental lineages. Although we are unable to discern 

the precise cells of origin of each PC, we believe that the insights shared by this report will 

stimulate further studies in the field focusing on tumor cell of origin and lineage diversity/

plasticity analyses of both gastric and other cancer types, to better elucidate the regulatory 

mechanisms, possible effects on tumor progression and therapy responses.

It is noteworthy that we discovered 17q gain as a nearly exclusive event associated with PC 

cells of gastric lineage. The 17q region harbors multiple potential therapeutic targets and, 

interestingly, all patients whose tumors had 17q gain in our discovery cohort were short-term 

survivors, and the association of 17q gain and inferior survival was validated in both the 

localized and advanced GAC cohorts. Our discovery of the intimate link between tumor cell 

lineage compositions and genomic ITH at single-cell resolution could be generalized to 

other cancer types and broaden our understanding of cancer biology in general.

High genomic ITH in most cancers is associated with worse survival. We observed an 

opposite phenomenon in this study: patients with the GI-mixed molecular features in their 

PC tumor cells survived significantly longer than those with the gastric-dominant features. 

We remain uncertain of the detailed mechanisms. A possible explanation is that the 

intestinal-like cells in the GI-mixed tumors could be acquired from a process called 

intestinal metaplasia, which is the main precancerous lesion of the stomach. Intestinal 

metaplasia is characterized by the presence of differentiated epithelium that resembles the 

small intestine (partial or complete transformation of gastric gland epithelial cells into the 

intestinal type) on the basis of ultrastructural morphology, mucin patterns and enzyme 

histochemistry36. Consistent with this, two patients (IP-010 and IP-158) in this study had 

intestinal metaplasia confirmed in their primary tumors (diffuse type), although intestinal 

metaplasia is thought to be mainly associated with GAC of the intestinal type. In line with 

this, it is generally recognized that patients with intestinal-type GAC have better prognoses 

than those with a poorly differentiated or diffuse type histology37–39. In addition, immune 

deconvolution analysis using public datasets suggested that the better clinical outcomes of 

GI-mixed tumors could be partially associated with a more engaged and effective immune 

response against the tumor, including higher levels of B cells (which are known to be 

associated with a protective immunity and better clinical outcomes)40–42 and M1 

polarization43,44, lower levels of fibroblasts45–47 and M2-like macrophages, and elevated 

cytolytic activity. Nevertheless, further investigations are needed to elucidate the underlying 

mechanisms.

Most intriguingly, based on tumor cell lineage/state compositions, PC cases were classified 

into two cellular subtypes that were prognostic independent of histopathological features. 

Further analyses led us to discover a 12-gene signature that appears to be fundamental to 

GAC carcinogenesis/propagation as it was not only highly prognostic in GAC-PC validation 

cohort but performed just as robustly in several large-scale localized GAC cohorts. 

Currently, to our knowledge there is no such signature in clinical use, and thus it has a high 

potential to stratify patients for more effective therapies as they become available.
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Methods

Patient cohort, clinical characteristics and sample collection.

A total of 20 patients with GAC with malignant ascites (PC) were included in this study. 

Based on the Lauren classification, all of the primary GACs were of diffuse type. The 

primary GAC diagnosis was confirmed through an endoscopic biopsy. Pathology results 

were verified independently by two experienced GI pathologists. In addition, computed 

tomography images of all patients were re-reviewed by an experienced imaging physician. 

Our reviews of pathology and radiology results confirmed that all cases except IP-070 

(breast cancer metastatic to stomach determined by pathology and profiling) represented 

primary gastric cancer. None of the patients had a history or documented diagnosis of 

primary colon cancer, or imaging findings of colon cancer. The detailed clinical and 

histopathological characteristics are described in Supplementary Table 1, and representative 

computed tomography images are shown in Supplementary Fig. 1. GACs were staged 

according to the American Joint Committee on Cancer Staging Manual (8th edition)48,49. 

PC was confirmed by cytologic examination. This cohort included ten long-term survivors 

and ten short-term survivors. The long-term survivors were patients who survived more than 

1 yr after the diagnosis of PC and the short-term survivors were patients who died within 6 

months after the diagnosis of PC. Of the 20 patients, 16 had signet-ring cell carcinoma. Her2 

staining was performed and all tumors were Her2 negative. PC specimens were collected at 

The University of Texas MD Anderson Cancer Center (Houston, USA) under an 

Institutional Review Board-approved protocol (no. LAB01–543) after obtaining written, 

informed consent from each participant. Patients with diagnosed GAC-PC with ascites were 

approached when they required a therapeutic paracentesis. No other selection criteria were 

applied. This project was in accordance with the policy advanced by the Helsinki 

Declaration of 1964 and later versions. PC specimens were spun down for 20 min at 2,000g 
and pelleted cells (PC cells) were isolated, cryopreserved at −80 °C and used for scRNA-

seq. All samples were processed using the same protocol and by the same research assistant.

MSI testing.—The MSI test was not routinely done in clinic for gastric cancer when these 

patients were enrolled. For this study, only three patients were assessed for MSI test and 

reported as ‘microsatellite (MS) stable’. In six patients (all expired) there were no residual 

tissues for additional testing. For the remaining 13 patients, WES was performed on the 

same ascites samples or the ascites samples collected at a similar timepoint as the sample 

used for scRNA-seq, and was thus used for an unbiased genomic analysis of microsatellites. 

WES data were processed and mapped to human reference genome as previously described9. 

MSIsensor50, a validated algorithm for deriving MSI status from genomic sequencing data, 

was applied to the aligned BAM files for detection of somatic microsatellite changes. The 

MSIsensor score was below the suggested threshold (score > 10 for matched tumor–normal 

pair, score > 20 for tumor-only sample)50 and all 13 patients were designated as MS stable.

scRNA-seq library preparation and sequencing.

Chromium single-cell sequencing technology from 10x Genomics was used to perform 

single-cell separation, complementary DNA amplification and library construction following 

the manufacturer’s guidelines. Briefly, the cellular suspensions were loaded on a 10x 
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Chromium Single Cell Controller to generate single-cell gel bead-in-emulsions. The scRNA-

seq libraries were constructed using the Chromium Single Cell 3ʹ Library & Gel Bead Kit 

v.2 (PN-120237, 10x Genomics). The HS dsDNA Qubit Kit was used to determine the 

concentrations of both the cDNA and the libraries. The HS DNA Bioanalyzer was used for 

quality-tracking purposes and size determination for cDNA and lower-concentrated libraries. 

Sample libraries were normalized to 7.5 nM and equal volumes were added of each library 

for pooling. The concentration of the library pool was determined using the Library 

Quantification qPCR Kit (KAPA Biosystems) before sequencing. The barcoded library at 

the concentration of 275 pM was sequenced on the NovaSeq6000 (Illumina) S2 flow cell 

(100 cycle kit) using a 26 × 91 run format with 8 bp index (read 1). To minimize batch 

effects, the libraries were constructed using the same versions of reagent kits and following 

the same protocols, and the libraries were sequenced on the same NovaSeq6000 flow cell 

and analyzed together.

scRNA-seq data processing and analysis.

Raw sequencing data processing, quality check, data filtering, doublets 
removal, batch-effect evaluation and data normalization.—The raw scRNA-seq 

data were preprocessed (demultiplex cellular barcodes, read alignment and generation of 

gene count matrix) using the Cell Ranger Single Cell Software Suite provided by 10x 

Genomics. Detailed quality-control metrics were generated and evaluated. Genes detected in 

fewer than three cells and cells with low-complexity libraries (in which detected transcripts 

were aligned to less than 200 genes) were filtered out and excluded from subsequent 

analysis. Low-quality cells where >15% of transcripts derived from the mitochondria were 

considered apoptotic and also excluded. Following the initial clustering, we removed likely 

cell doublets from all clusters. Doublets were identified by the following methods: (1) 

Library complexity: cells are outliers in terms of library complexity. Cells in the top 1% of 

the distribution of genes detected per cell were removed. (2) Cluster distribution: doublets or 

multiplets likely form distinct clusters with hybrid expression features and exhibit an 

aberrantly high gene count. (3) Cluster marker gene expression: cells of a cluster express 

markers from distinct lineages (for example, cells in the T cell cluster showed expression of 

epithelial cell markers; cells in the B cell cluster showed expression of myeloid cell 

markers). We carefully reviewed canonical marker gene expression on UMAP plots and 

repeated the steps above a couple of times to ensure that we had filtered out most of the 

barcodes associated with cell doublets.

Following removal of the poor-quality cells and doublets, a total of 45,048 cells were 

retained for downstream analyses. Library size normalization was performed in Seurat15 on 

the filtered gene–cell matrix to obtain the normalized UMI (unique molecular identifier) 

count data as previously described51. Statistical assessment of possible batch effects was 

performed using the R package k-BET (a robust and sensitive k-nearest neighbor batch-

effect test)12. k-BET was run on major immune cell types including B, myeloid, CD4 and 

CD8 T cells separately with default parameters. A control dataset with known significant 

batch effects was included to assist with data interpretation. We chose the k input value from 

1% to 100% of the sample size. In each run, the number of tested neighborhoods was 10% 

of the sample size. The mean and maximal rejection rates were then calculated based on a 
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total of 100 repeated k-BET runs. A low rejection rate indicates homogeneous mixing of 

samples from different batches. k-BET results suggested minimal batch effects in this 

dataset (Supplementary Fig. 2).

Unsupervised cell clustering, dimensionality reduction and cluster 
relationship analysis.—Seurat15 was applied to the normalized gene–cell matrix to 

identify highly variable genes for unsupervised cell clustering. To identify highly variable 

genes, the MeanVarPlot method in the Seurat15 package was used to establish the mean– 

variance relationship of the normalized counts of each gene across cells. We then chose 

genes whose log-mean was between 0.0125 and 3 and whose dispersion was above 0.5, 

resulting in 3,018 highly variable genes. The elbow plot was generated with the 

PCElbowPlot function of Seurat15, and based on which the numbers of significant principal 

components (PCs) were determined. Different resolution parameters for unsupervised 

clustering were then examined to determine the optimal number of clusters. For this study, 

the first ten principal components and the highly variable genes identified by Seurat15 were 

used for unsupervised clustering with a resolution set to 0.6, yielding a total of 20 cell 

clusters (Extended Data Fig. 1a). For visualization, the dimensionality was further reduced 

using either the t-SNE or UMAP13 methods with Seurat functions RunTSNE and 

RunUMAP, respectively. The principal components used to calculate the embedding were 

the same as those used for clustering.

In addition, Monocle 3 alpha (http://cole-trapnell-lab.github.io/monocle-release/

monocle3/)16 was applied as an independent tool for unsupervised clustering analysis 

(function cluster_cells) focusing on tumor cells, and UMAP was used by default with the 

Monocle functions reduce_dimension and plot_cells for dimensionality reduction and 

visualization of the Monocle clustering results. Monocle 3 alpha was also used to construct 

the single-cell trajectories. The function learn_graph was run with default parameters. 

Moreover, we applied an additional unsupervised clustering approach, the single-cell 

consensus clustering (SC3) analysis17, on tumor cells from all patients and on tumor cells 

from each individual PC specimen. SC3 was run with default parameters and independent of 

cell lineage annotation. Furthermore, to study the hierarchical relationships among tumor 

cell clusters, we performed unsupervised cluster analysis. The dendrogram was drawn using 

Pearson correlation coefficient (PCC) with average principal component analysis (PCA) 

space (Seurat function RunPCA) for each tumor cell cluster with the R package 

denextend52.

Sample distribution analysis.—To quantify the distribution of each patient’s tumor 

cells across Seurat-defined cell clusters, we used the ratio of the observed to expected cell 

numbers in clusters to measure the enrichment of cells within a sample (tumor) across 

different cell clusters as previously described53. Given a contingency table of samples by 

clusters, we first applied the chi-squared tests to evaluate whether the distribution of cells of 

a sample across clusters significantly deviates from random expectations. We then calculated 

the Ro/e for each combination of samples and clusters as follows:

Ro/e = observed
expected
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where Ro/e is the ratio of the observed cell number to the expected cell number of a given 

combination of cluster and sample. The expected cell numbers for each combination of 

clusters and samples were obtained from the chi-squared test. Different from the χ2 values, 

which are defined as observed−expected 2
expected  and could only indicate the divergence of 

observations from random expectations, Ro/e could indicate whether cells of a certain sample 

are enriched in a specific cluster. For example, if Ro/e > 1, it suggests that cells of the sample 

are more frequently observed than random expectations in a specific cluster; that is, 

enriched. If Ro/e < 1, it suggests that cells of a given sample are observed with less 

frequency than random expectations in a specific cluster.

Determination of major cell types and cell states.—To define the major cell type of 

each single cell, DEGs were identified for each cell cluster using the FindAllMarkers 
analysis in the Seurat15 package and the top 20 most significant DEGs were carefully 

reviewed. In parallel, feature plots were generated for the top 20 DEGs and a suggested set 

of canonical immune and stromal cell markers (Supplementary Table 2), a similar approach 

as previously described54,55, followed by a manual review process. Enrichment of these 

markers (for example, EPCAM for epithelial cells, PTPRC for immune cells, CD3D/E for T 

cells, CD8A/B for CD8 T cells, IL7R/CD4/CD40LG for CD4 T cells, CD19/MS4A1/
CD79A for B cells, COL1A1/COL1A2 for fibroblasts, and so on) in certain clusters was 

considered a strong indication of the clusters representing the corresponding cell types 

(Extended Data Fig. 1). The two approaches were combined to infer major cell types for 

each cell cluster according to the enrichment of marker genes and top-ranked DEGs in each 

cell cluster, as previously described55.

Inference of large-scale CNVs, phylogenetic tree construction and correlation 
analysis.—The tool inferCNV (https://github.com/broadinstitute/inferCNV) was applied to 

infer the large-scale CNVs from scRNA-seq data, and monocytes from this dataset were 

used as a control for CNV analysis. Initial CNVs were estimated by sorting the analyzed 

genes by their chromosomal locations and applying a moving average to the relative 

expression values, with a sliding window of 100 genes within each chromosome, as 

previously described10,19. In a subset of cases (n = 6) whose WES data were available, the 

true CNVs called from WES were used as the positive control to assess the performance of 

the inferCNV analysis. Finally, malignant cells were distinguished from normal cells based 

on the information integrated from multiple sources, including cluster distribution of the 

cells, marker gene expression, inferred large-scale CNVs and aneuploidy status.

To construct a phylogenetic tree from the CNV calls in each tumor cell of a specific sample, 

the relative CNVs were calculated using the inferCNV outputs and the average CNV values 

were computed for nonoverlapping genomic bins, each consisting of 30 genes. For each cell 

within a bin, we calculated an integer copy number by multiplying relative CNV value by 2 

(diploid) and rounding the results off to the closest integers. The R package phangorn was 

then used to construct the phylogenetic maximal parsimony tree. The integer copy number 

profiles were re-segmented by the collection of breakpoints detected in each cell, so that 

each column in the data matrix corresponds to the longest interval uninterrupted by any 
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variations across the cell population. The breakpoints in individual cells were determined by 

the R package copynumber56 under default parameters.

Correlation analysis of the CNVs inferred from scRNA-seq data and that 
identified using bulk WES.—Copy number analysis using scRNA-seq data is limited 

due to the low resolution; therefore, only the arm-level events were included. The arm-level 

copy number ratio was calculated as the weighted average of copy number ratio of genes 

(scRNA-seq data, inferCNV output) or segments (WES data, the copy number segments) as 

follows:

CN =
∑CNi × Li

∑Li

where CNi means the copy number ratio of the ith gene or segment. Li means the length of 

the ith gene or segmentation.

The Pearson correlation and Spearman correlation analyses were then conducted on the 

resultant arm-level copy number ratio.

Cell-of-origin inference.—Origins of tumor cells were inferred by mapping our scRNA-

seq data to the well-annotated single-cell database of HCL (http://bis.zju.edu.cn/HCL)11 

using the R package scHCL (https://github.com/ggjlab/scHCL). First, gene expression 

normalization was performed using the following formula:

E = Count
sum Count × 105

where E denotes the normalized gene expression value; ‘Count’ denotes the raw UMI 

counts; and ‘sum (Count)’ is the sum of all raw UMI counts in one cell. The PCC between 

the normalized expression profile of each query cell and the expression profile of each 

annotated cell type from the HCL reference dataset was calculated using the scHCL 

software package. The PCC was estimated using 6,075 signature genes provided by 

scHCL11. Cell lineage/type was subsequently assigned for each query cell based on the 

following criteria: PCC > 0.3; and the best-matched stomach-derived cell lineage/type or the 

best-matched cell lineage/type if there was no stomach-derived cell lineage among the top 

five hits. Cells that did not have a good correlation coefficient (PCC < 0.3) with any cell 

lineage/type in the HCL database were classified as ‘other’. To examine the similarity 

between colorectal-like cells and cell doublets, we applied a doublet simulation approach. 

Therein, a random sampling of cells (excluding intestinal-like cells) was taken to generate 

500 simulated doublets and these cells were used for the UMAP clustering along with 

colorectal-like cells.

Quantifying the similarity of gene expression distributions of cell lineages 
and clusters within and across patients.—The Bhattacharyya distance metric (a 

distance metric that is effective at comparing pairwise probability distributions) was used to 

measure the similarity of gene expression distributions for all pairs of cell clusters between 
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the long- and short-term survivors. We embedded cell clusters in two-dimensional space 

with PCA using the highly variable genes and retained the top 50 principal components for 

subsequent analysis. We randomly sampled 500 cells from each tumor cell cluster of short-

term survivors and long-term survivors, repeated 100 times and computed the Bhattacharyya 

pairwise distance between clusters as follows (a similar approach as described 

previously57,58):

D8 = 1
8 μ1 − μ2 TΣ−1 μ1 − μ2 + 1

2ln detΣ
detΣ1detΣ2

where μ1 and μ2 are the mean vectors of each distribution, and Σ = Σ1 + Σ2 /2.

For comparison, we also generated background distributions of clusters of short-term 

survivors (Short) by randomly sampling 100 pairs of cells and computing the Bhattacharyya 

distance between each pair of cells. In addition, we also generated the Bhattacharyya 

distance between cells randomly sampled independent of survival status (Random). We only 

evaluated clusters that had 500 or more cells. Similarly, we computed the Bhattacharyya 

pairwise distance between different cell lineages (inferred by HCL) within and across 

patients. For the patient-level analysis, we randomly sampled 100 cells from each inferred 

cell lineage (for example, stomach pit cells, stomach mucosal cells, colorectal-like cells; Fig. 

1h) and repeated 100 times, and computed the Bhattacharyya pairwise distance between 

different lineages as described above. For comparison, we also generated background 

distributions of each lineage by randomly sampling 100 cells twice of the same lineage and 

computing the Bhattacharyya distance between each pair of cells, and also generated the 

Bhattacharyya distance between cells randomly sampled independent of lineage annotation 

(Random). We only evaluated the major lineages (for example, stomach pit cells, stomach 

mucosal cells, colorectal-like cells) that had 500 or more cells.

scRNA-seq imputation.—Markov affinity-based graph imputation of cells (MAGIC)59 is 

a commonly used algorithm for denoising scRNA-seq data. It learns the manifold data and 

imputes likely gene expression in each cell by sharing information across similar cells. Here, 

we followed the concept of MAGIC and simplified the imputation process as follows: (1) 

Computation of affinity matrix via the FindNeighbors function from Seurat. This step 

constructs a k-nearest neighbor graph based on the Euclidean distance in PCA space and 

refines the edge weights between any two cells based on the shared overlap in their local 

neighborhoods (Jaccard similarity). It takes default k and the same number of principal 

components as used for unsupervised clustering. (2) Symmetrization of the affinity matrix 

using an additive approach. (3) Row-stochastic Markov-normalization of symmetric affinity 

matrix (so each row sums to 1) into Markov matrix, representing the probability distribution 

of transitioning from each cell to every other cell. (4) Imputation expression matrix by 

multiplying the Markov matrix by the original expression matrix.

Quantifying the contribution of cell lineage diversity to transcriptomic 
variation within tumors.—Given that detection rate is a major source of cell-to-cell 

variation for scRNA-seq datasets60, we applied MAGIC59 to impute likely gene expression 
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to reduce this unwanted source of variation. After MAGIC (t = 3), the top 15 principal 

components can explain 81% ~ 93% of the total variance in each patient. To quantify the 

extent to which lineage diversity explains transcriptomic variation within a tumor, we then 

performed one-way ANOVA tests on each of the top 15 principal components in each tumor, 

using a similar approach as previously described58. The one-way ANOVA tests were 

conducted using the aov function in the R stats package. ANOVA partitions the total 

variation into within-lineages variation and between-lineages variation. The percentages of 

variation that can be explained by lineage diversity in each PCA space were then calculated 

for each tumor.

Comparison of between- and within-patient variations.—To compare the 

magnitudes of between- and within-patient variations in the transcriptomic profiles, we 

performed the one-way ANOVA tests on the top 15 principal components for tumor cells 

from patients that had 1,000 or more cells. The one-way ANOVA tests were conducted using 

the oneway.test() function in the R stats package. ANOVA partitions the total variation into 

between- and within-patient variation. In addition, we also performed the one-way ANOVA 

tests in the CNV profiles for each inferred lineage (for example, stomach pit cells, stomach 

mucosal cells, colorectal-like cells). The F statistic is the ratio of between-patient variation 

to within-patient variation, with F statistic >1 indicating that the between-patient variation is 

greater than the within-patient variation.

Inferring cell-cycle stage, hierarchical clustering, DEGs and pathway 
enrichment analysis.—The cell-cycle stage was computationally assigned for each 

individual cell by the function CellCycleScoring that is implemented in Seurat15. Cell-cycle 

stage was inferred based on the expression profile of the cell-cycle-related signature genes, 

as previously described20. Hierarchical clustering was performed at multiple levels (all 

tumor cells together, by cell lineage and by patient) using the Ward minimum variance 

method. DEGs were identified for each cluster using the FindMarkers function in Seurat R 

package15 and DEG list was filtered with the following criteria: the gene should be 

expressed in 20% or more cells in the more abundant group; expression fold change > 1.5; 

and false discovery rate (FDR) Q value < 0.05. The heat map was then generated using the 

pheatmap function in pheatmap R package for filtered DEGs. For pathway analysis, the 

curated gene sets (including Hallmark, KEGG and Reactome gene sets, n = 910) were 

downloaded from the Molecular Signature Database (MSigDB, http://

software.broadinstitute.org/gsea/msigdb/index.jsp), single-sample GSVA (ssGSVA) was 

applied to the scRNA-seq data and pathway scores were calculated for each cell using the 

gsva function in the GSVA software package61. Pathway enrichment analysis was done with 

the limma R software package. Significantly enriched signaling pathways were identified 

with an FDR Q value < 0.01.

To profile the interactions between biological pathways, the differentially expressed 

pathways were assembled into a network where nodes represent pathways and edges 

represent their interactions (if they have common genes). The weight of an interaction 

corresponds to its Jaccard index between each pathway pair. The Jaccard index is a measure 

of set (here it refers to pathway) similarity, and defines two sets (pathway A and pathway B) 
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as the ratio of the size of their intersection over the size of their union (see the equation 

below):

J A,B = A∩B
A∪B

For each pathway, its entity membership was represented as the set  Pi = e1, e2, …en . The 

Jaccard index was computed between a pair of pathways A and B as J(A, B). Cytoscape62 

was then used to visualize the network.

Generation of the 12-gene prognostic signature.—To generate a gene expression 

signature that is clinically applicable, we performed multistep analysis (Fig. 5a). First, we 

compared the gene expression profiles of tumor cells between the gastric-dominant and GI-

mixed groups and identified DEGs. The DEG list was then filtered based on the following 

criteria to select the most significant DEGs. Only the genes with an expression fold change 

>1.5 or <−1.5 and an FDR < 0.01 and highly expressed (normalized UMI count > 1, 

expressed in at least 50% of cells from one of the two groups) were selected and taken into 

subsequent analysis. We next screened each of the DEGs based on their statistical 

correlation with patient survival using a univariate Cox proportional-hazards regression 

model, and only the DEGs that showed consistency with patient survival were selected (for 

example, DEGs highly expressed in the gastric-dominant group with a hazard ratio > 1 or 

DEGs highly expressed in the GI-mixed group with a hazard ratio < 1). We identified 149 

significant DEGs in total (that met the above criteria). After that, the Harrell concordance 

index (C-index)63 was applied to quantify the predictive accuracy of the prognosis-related 

DEGs. C-index was calculated using a univariate Cox proportional-hazards regression model 

and the R package survcomp. A C-index value of 0.5 indicates no predictive ability, whereas 

a value of 1 represents perfect predictive ability, similar to that previously described64,65. 

Finally, we performed a forward selection process to search for a set of DEGs that can 

achieve the largest C-index value based on the following procedures. We chose the gene that 

had a C-index > 0.7 and expression fold change >2.5 or <−2.5 as a seed (refers TM4SF1). 

The rest of the DEGs (n = 148) were then added to the signature, one at a time. Each time, 

we screened all of the rest of the genes one by one, then evaluated the C-index of the 

potential signature after adding a specific gene, and finally picked the gene that reached the 

highest C-index to the signature. We repeated this process until the C-index had reached a 

plateau and did not increase any more. For each DEG added to the signature, we labeled 

each sample based on the expression level of the corresponding gene using the following 

equation:

For gene g, Lg,j =
1 × I g , V g, j ≤ median V g
−1 × I g , V g, j>median V g

where I(g) = 1 if gene g is highly expressed in samples of the gastric-dominant group; 

otherwise, I(g) = −1.

L, g, j and V denote label, gene, jth sample and gene expression, respectively.
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We then summed the scores for each sample and quantified the predictive performance of 

each derived signature based on its corresponding C-index value. Among all of the 

signatures derived from the seed, a 12-gene signature showed the highest C-index and was 

chosen for subsequent validation analyses. As we started from a relatively small number of 

carefully filtered DEGs (n = 149), no further statistic was applied to limit the size of the 

gene set.

Validation of the 12-gene prognostic signature.—The signature was then subject to 

validation with both internally generated and publicly available datasets. Briefly, the 

signature score was calculated for each sample using a similar approach as that used by 

Kang et al.66. The workflow is illustrated in Supplementary Fig. 15. First, a sample–gene 

expression matrix (for 12 signature genes) was extracted from each normalized bulk RNA-

seq or expression microarray dataset. Second, for each sample, a score of 1 or −1 was 

assigned for each of the 12 signature genes based on its relative expression (> or ≤ median 

value) and whether the signature gene was associated with gastric-dominant or GI-mixed 

features. Briefly, if the gene was among one of the seven genes that are associated with the 

gastric-dominant feature and its expression in a sample was less than or equal to the median 

value, we assigned a score of 1 for this gene for this specific sample, and we assigned a 

score of −1 if its expression was greater than the median value. If the gene was among one 

of the five genes that are associated with the GI-mixed feature and its expression in a sample 

was greater than the median value, we assigned a score of 1 for this gene for this specific 

sample, and we assigned a score of −1 if its expression was less than or equal to the median 

value (Supplementary Fig. 15). After that, the scores of each sample were summed, which 

constituted the signature score. Finally, the samples were categorized into gastric-dominant 

or GI-mixed groups based on their corresponding signature scores: ≤median or >median, 

respectively. For the bulk RNA-seq datasets, the signature scores were calculated using the 

log-transformed FPKM (fragments per kilobase of transcript per million mapped reads) 

values. For the bulk expression microarray datasets, the signature scores were calculated 

using the normalized gene expression values.

Immune cell deconvolution.—CIBERSORT67 was applied to the normalized bulk 

RNA-seq and microarray gene expression datasets with the LM22 gene signature to estimate 

the relative fractions of 22 immune cell types. In addition, the R package MCP-counter68 

was applied to infer the abundance of eight immune cell subpopulations including T cells, 

CD8 T cells, cytotoxic lymphocytes, NK cells, B lineage cells, monocytic lineage cells, 

myeloid dendritic cells and neutrophils, as well as endothelial cells and fibroblasts.

Single-cell somatic variant analysis.—For each sample, the reads were extracted from 

the original BAM file using the cell-specific barcodes and were aggregated to generate a 

sub-BAM file for each Monocle-defined cell cluster. Mutect2 (v.4.1.0.0)69 was then applied 

to the sub-BAM files to identify somatic point variants. The Mutect2 outputs were run 

through our pipeline for filtering and annotation. Briefly, only Mutect2 calls located at the 3ʹ 
UTR and marked as ‘PASS’ were selected and taken into the next step. Variants with total 

read coverage < 30, variant read coverage < 6 or variant allelic fraction < 0.1 were removed. 

After that, common variants reported by the Phase-3 1000 Genomes Project or ExAC (the 
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Exome Aggregation Consortium) with minor allele frequency greater than 0.5% were further 

removed. Additionally, we included a virtual normal panel of 33 germline samples from 

GAP-PC patients to help remove artifacts related to sequencing and mapping errors as well 

as common single nucleotide polymorphisms. The events that overlapped with variants 

called from this virtual normal panel were further excluded. Finally, the remaining somatic 

variants were carefully reviewed on the Integrative Genomics Viewer and variants with noisy 

background were further discarded. For variant-overlapping analysis at cluster level, we first 

made a unique list of variants by aggregating all quality-control-passed variants from the 

Monocle-defined tumor cell clusters of a sample. Then we queried their corresponding sub-

BAM files for each unique variant site by chromosome and coordinates and the numbers of 

reference and variant alleles were counted, which were subsequently used to identify shared 

and unique variants among tumor cell clusters.

Public datasets.

In addition to the scRNA-seq dataset generated internally for the discovery GAC-PC cohort, 

we included the bulk transcriptome sequencing (RNA-seq) data generated on an independent 

GAC-PC cohort from our recent study9 to validate the 12-gene prognostic signature. 

Moreover, we downloaded the normalized bulk RNA-seq data generated by TCGA on 

primary stomach adenocarcinoma (STAD) from the NCI Cancer Genomic Data Commons 

(NCI-GDC: https://gdc.cancer.gov). The RNA-seq data were processed and normalized by 

the NCI-GDC bioinformatics team using their transcriptome analysis pipeline. The clinical 

annotation of the TCGA STAD cohort was downloaded from a recent PanCanAtlas study70. 

The TCGA STAD cohort (n = 411) included both intestinal (n = 176) and diffuse type (n = 

69) tumors.

Furthermore, we downloaded three other large-scale primary GAC datasets (GSE62254 (ref. 
28), GSE15459 (refs. 27,71), GSE84437 (ref. 72)) from the Gene Expression Omnibus 

database (GEO, https://www.ncbi.nlm.nih.gov/geo/) to further evaluate the prognostic power 

of the 12-gene signature. The raw gene expression values from microarray experiments were 

preprocessed (background-corrected and log2-transformed) and quantile-normalized using 

the robust multi-array average algorithm73. For each sample, the expression measurements 

of all probes corresponding to the same gene ID were averaged to obtain a single 

measurement. For datasets GSE62254 and GSE15459, the clinical, histopathological and 

survival data as well as molecular signatures defined by each study27,28,71 were downloaded 

and used for the multivariate Cox regression analysis. These primary GAC datasets included 

both intestinal and diffuse types of GACs. The dataset GSE62254 (n = 300) included 134 

diffuse types, 146 intestinal types and 20 mixed types of GACs. The dataset GSE15459 (n = 

192) included 75 diffuse types, 99 intestinal types and 18 mixed types of GACs.

Additionally, to test the reliability of the HCL resource as a reference dataset and to evaluate 

the performance of our approach in cell lineage inference, we downloaded from the Data 

Portal of Human Cell Atlas (SCP259, https://data.humancellatlas.org) the scRNA-seq 

dataset generated on normal human colon tissues using a SMART-Seq2 protocol by a recent 

study14. The same approach as outlined in the section ‘Cell-of-origin inference’ was applied 

to the SCP259 dataset for cell lineage inference.
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Statistical analysis.

In addition to the bioinformatics approaches described above for scRNA-seq data analysis, 

all other statistical analyses were performed using statistical software R v.3.5.2. Analysis of 

differences on a continuous variable (for example, gene expression, pathway score) across 

two groups (a categorical independent variable, such as gastric-dominant versus GI-mixed) 

was performed by the nonparametric Mann–Whitney U test. The nonparametric Kruskal–

Wallis test was applied to assess the significant difference on a continuous variable by a 

categorical independent variable with multiple groups (for example, across different tumor 

cell lineages/types). For survival analyses, including overall survival (OS), progression-free 

interval, disease-free survival (DFS), disease-specific survival (DSS), disease-free interval 

(DFI) and survival time from peritoneal metastasis, we used the log-rank test to calculate P 
values between groups, and the Kaplan–Meier method to plot survival curves. For the TCGA 

dataset, the clinical annotation and the times calculated for OS, DFS, DSS and DFI were 

downloaded from the PanCanAtlas study70. For other large-scale primary GAC datasets 

downloaded from GEO, the OS times were downloaded from their corresponding published 

studies27,28,71,72. The hazard ratios were calculated using the multivariate Cox proportional-

hazards model. All statistical significance testing in this study was two-sided. To control for 

multiple hypothesis testing, we applied the Benjamini–Hochberg method to correct P values 

and the FDR Q values were calculated. Results were considered statistically significant at P 
value or FDR Q value of <0.05.

Statistics and reproducibility.

Supplementary Fig. 2b was generated from n = 100 repeated k-BET runs. A random 

sampling of cells (n = 100 times) was performed to generate the simulated doublets in 

Supplementary Fig. 6b, to calculate the Bhattacharyya pairwise distance between tumor cell 

clusters from samples of long- and short-term survivors in Extended Data Fig. 2c and to 

calculate the Bhattacharyya distance between and within inferred cell lineages in Extended 

Data Fig. 6. The statistical methods used for each analysis are described within the figure 

legends. The key findings of this study were validated by analyzing large-scale public 

datasets as described above in the section ‘Public datasets’. For the histology image shown 

in Fig. 1f: because of the nature of clinical care in this disease, only one diagnostic biopsy 

specimen per patient was available. Obviously, this is representative of the tumor and 

sufficient for making clinical decisions, but is also used here for analysis that parallels how 

we practice in the clinic. Keeping with the theme of our report on ITH, it is likely that 

metaplasia has been overgrown by tumor cells; however, the phenotypic appearance of 

metaplasia and the classic appearance of goblet cells are highly reliable patterns and true 

representations of the presence of a premalignant element in a particular GAC. Lack of 

metaplasia in the primary specimen, however, does not exclude its previous existence 

(sampling errors or abolition by eventual GAC).

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1 |. A single cell transcriptome map of PC.
a, t-SNE (t-distributed stochastic neighbor embedding) plots showing unbiased clustering 

analysis of 45,048 single cells that passed quality control in this study. Each dot represents a 

single cell. Cells are color coded for (left to right): the associated cell types, cell clusters, the 

corresponding patient origins, and survival status. b, t-SNE as in a, showing expression of 

canonical marker genes used for cell types assignment.
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Extended Data Fig. 2 |. Relationships between tumor cell clusters and correlation with patient 
survival.
a, the UMAP (uniform manifold approximation and projection) plot of PC tumor cells, 

showing the global data structure. Tumor cell clusters from short-term survivors appeared 

closer to each other on the UMAP plot than to cell clusters from long-term survivors. b, the 

dendrogram showing relationships between tumor cell clusters. c, the Bhattacharyya 

pairwise distance between tumor cell clusters from samples of long and short-term survivors. 

Overall, the pairwise distance between clusters of long and short survivors was significantly 

larger than that within the clusters of Short or Random, indicating distinct transcriptomic 

profiles associated with survival. Each dot represents one sampling, in totally 100 times. 

Box, median ± interquartile range. Whiskers, the minimum and maximum values. P values 

were calculated by a two-sided Wilcoxon rank sum test with Benjamini-Hochberg 

correction. P < 2.2e-16 represents a P value approaching 0.
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Extended Data Fig. 3 |. Cell lineage assignment was not confounded by differences in cell cycle 
states.
The histograms showing tumor cell lineage compositions before (top) and after (bottom) 

regressing out cell cycle-related genes, respectively.

Extended Data Fig. 4 |. Unsupervised clustering analysis revealed inter-patient and intra-tumoral 
transcriptome heterogeneity in PC tumor cells.
The UMAP plots showing unsupervised clustering analysis of tumor cells (using Seurat) 

from 14 samples underwent HCL mapping and cell lineage inference as in Fig. 1g. Cells are 

colored by their corresponding cluster IDs (left) and sample origins (right). Dashed circles 

highlight samples that formed two or more tumor cell clusters (related to Fig. 1g).
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Extended Data Fig. 5 |. SC3 unsupervised clustering analysis of PC tumor cells by patient.
SC3 results of 3 representative patients are shown. Each column represents a cell. The 

lineage annotation is shown in the top annotation track. The fractions of intestinal cells 

(IP-067, IP-073) or stomach pit cells (IP-009) in each SC3 defined cell clusters are labelled 

at the top. Some of the representative marker genes of intestine and stomach origins are 

labelled on the right. Two-sided proportion tests were performed between C1 and C4 

(IP-067), C1 and C3 (IP-073), and C1 and C2 (IP-009), and all are significant (P < 2.2e–16).
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Extended Data Fig. 6 |. The Bhattacharyya distance between and within inferred cell lineages.
The Bhattacharyya pairwise distance between different tumor cell lineages was computed as 

previously described (see Methods). Only the major lineages that had 500 or more cells were 

included in the analysis. The Bhattacharyya distance between cells of the same lineage and 

the Bhattacharyya distance between cells randomly sampled independent of lineage 

annotation (Random) was also computed to provide background distributions for statistical 

comparison. Each dot represents one sampling, in total 100 times. Box, median ± 

interquartile range. Whiskers, the minimum and maximum values. P values were calculated 

by a two-sided Wilcoxon rank-sum test with Benjamini-Hochberg correction. P < 2.2e–16 

represents a P value approaching 0.
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Extended Data Fig. 7 |. Representative examples of somatic variants identified on 3’UTR using 
scRNA-seq data.
Integrative Genomics Viewer (IGV) was used for visualization of the QC-passed somatic 

variants. The Bam files of Monocle defined cell clusters C1, C2, C3 of sample IP-067 were 

loaded to IGV and snapshots of 3’UTR mutations are shown for representative events: 

somatic mutations shared by PC tumor cells from all three clusters (top); mutations shared 

by only two of the three clusters (bottom left and middle), and mutations that were unique to 

one of the three clusters (bottom right) are shown. For each representative mutation across 

Monocle cell clusters, the gene name, chromosome, start position, base change, total read 

coverage, and tumor variant allele fraction (TAF) are shown. Total_dp: total read depth.
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Extended Data Fig. 8 |. Prognostic significance of 12-gene signature in TCGA primary gastric 
cancer cohort and correlation with molecular subtypes and clinical variables.
a, Disease-specific survival (DSS, left) and progression-free interval (PFI, right) of patients 

whose PCs were in the GI-mixed and gastric-dominant groups defined by expression of the 

12-gene signature. The analyses were performed with the Kaplan–Meier estimates and two-

sided log-rank tests. Twenty-five out of 411 patients whose DSS information were not 

available were excluded from survival analysis. b, the alluvial plots display relationships 

between the PC subtypes defined by the 12-gene signature (left strip) and the molecular 

subtypes defined by TCGA multi-omic analysis (left), tumor stages (middle), histology 

types (right), and presence of local recurrence and/or distant metastasis (c). N.S., not 

statistically significant. P value for alluvial plots were calculated by a two-sided Fisher’s 

Exact test.
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Extended Data Fig. 9 |. Validation of the 12-gene signature in a large-scale localized GAC cohort 
from Cristescu R, et al.
a, The multivariate Cox proportional hazard model analysis. The 12-gene signature, clinical 

and histopathological variables as well as the molecular signatures defined by the original 

study were included. For each variable, the reference level is the first one. Block in center of 

error bars represent the weighted mean. Whiskers of error bars represent the 95% confidence 

interval. b, (left) Alluvial plot shows the relationships between the PC subtypes (left strip) 

and the molecular signatures (right strip). The two-sided Fisher’s Exact test was used to 

calculate the P values and asterisks indicate significant enrichment events. (right) The 12-

gene signature scores were calculated and compared across the four molecular groups 

defined by the original the study. Box, median ± interquartile range. Whiskers, 1.5X 

interquartile range. P value was calculated by one-way Kruskal-Wallis rank-sum test.
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Extended Data Fig. 10 |. Validation of the 12-gene signature in a large-scale localized GAC cohort 
from Ooi CH, et al.
a, The multivariate Cox proportional hazard model analysis. The 12-gene signature, clinical 

and histopathological variables as well as the molecular signatures defined by the original 

study were included. For each variable, the reference level is the first one. Block in center of 

error bars represent the weighted mean. Whiskers of error bars represent the 95% confidence 

interval. b, (left) Alluvial plot shows the relationships between the PC subtypes (left strip) 

and the molecular signatures (right strip). The two-sided Fisher’s Exact test was used to 

calculate the P values and asterisks indicate significant enrichment events. (right) The 12-

gene signature scores were calculated and compared across the four molecular groups 

defined by the original the study. Box, median ± interquartile range. Whiskers, 1.5X 

interquartile range. P value was calculated by one-way Kruskal-Wallis rank-sum test.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. A single-cell transcriptome map of PC and the inferred tumor cell lineages.
This study included ten short-term survivors and ten long-term survivors. a, Left, the 

Kaplan–Meier curve demonstrates a dramatic difference (P = 3 × 10−06 by log-rank test) in 

the survival time since PC diagnosis between the two groups of patients with GAC; middle, 

a schema of sample collection for scRNA-seq; right, t-SNE plot showing unbiased clustering 

analysis of 45,048 single cells that passed quality control in this study. Each dot of the t-
SNE plot represents a single cell. Cells are color coded for their associated cell types. b, The 

t-SNE and UMAP plots of the 31,131 PC tumor cells (14 cell clusters) that were selected for 

subsequent analyses. Cells are color coded by their corresponding patient origins. c, The 

tumor cell lineage compositions inferred by mapping scRNA-seq data to the HCL database. 

The middle panel shows the HCL-defined cell lineages/types (rows) by patient (columns). 

The size of the circle represents, for each specific cell lineage/type, the fraction of tumor 

cells (among the total quality-control-passed tumor cells) in each individual PC. The circles 
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are color coded by defined cell lineages/types, the same as in the annotation track on the left. 

The histogram on the top shows, for each individual sample, the number of tumor cells 

accumulated on listed cell lineages/types (plus other unclassified or rare cell types). The 

histogram on the right shows, for each specific tumor cell lineage/type, the fraction of tumor 

cells (among the total quality-control-passed tumor cells) in this cohort. The bottom 

annotation tracks show (from top to bottom): the corresponding patient IDs, the survival 

groups to which the patients belong, the presence of intestinal metaplasia in their 

corresponding primary tumors, fractions of intestinal cells among the total quality-control-

passed tumor cells in each individual PC and the PC subtypes. Classification of the PC 

subtypes was based on tumor cell lineage compositions (gastric-dominant if fraction of 

intestinal cells <20% and GI-mixed if fraction of intestinal cells ≥20%). d, Bubble plot 

showing expression of lineage-specific marker genes across different cell lineages/types. e, 

Violin plots of representative lineage-specific marker genes. f, A representative histology 

image for IP-010 demonstrating well-formed goblet cells in gastric mucosa (indicated by 

blue arrow heads). g, UMAP plot showing unsupervised clustering of 26,401 PC tumor cells 

from 14 samples that underwent HCL mapping and cell lineage inference as in c. Cells are 

colored by their inferred cell lineages/types. Dashed circles highlight samples that formed 

two or more tumor cell clusters (as labeled in the left panel of Extended Data Fig. 4). h, t-
SNE and UMAP plots of PC tumor cells generated from patient-level subclustering analysis, 

showing that gastric cells (pink, purple) were clustered distinctly from the colorectal-like 

cells (dark blue).
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Fig. 2 |. The diversity in tumor cell lineage compositions links to ITH at transcriptomic, 
genotypic and molecular levels.
a, A representative sample, IP–067. Left, phylogenetic reconstruction analysis of inferred 

CNVs. B1–5 labels of five tumor cell subpopulations with distinct CNV profiles. Middle, 

heatmap showing the inferred larger-scale CNVs by chromosome; the annotation track on 

the left of the heatmap indicates the inferred cell lineages, and the annotation track on the 

right indicates Monocle-defined cell clusters. Right, top, Monocle-defined cell clusters. For 

each Monocle-defined cell cluster, its tumor-cell-lineage composition is shown in the small 

pie chart next to it; right, bottom, the Venn diagram showing shared and unique somatic 

variants across Monocle-defined cell clusters. Somatic variants were called from scRNA-seq 

data, and only variants located at the 3ʹ UTR were counted. b, Another representative 

sample, IP–009. B1–3 labels of three tumor cell subpopulations with distinct CNV profiles. 

The annotations for the remainder of b are in the same format as those of a. c, Comparison 

of tumor cell proliferative property across the inferred tumor cell lineages. Box, median ± 
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interquartile range. Whiskers, the minimum and maximum values. P values were calculated 

by a two-sided Wilcoxon rank-sum test with Benjamini–Hochberg correction. d, Proportion 

of cycling (cells in G2M or S phase) and non-cycling cells across the inferred cell lineages. 

e, The violin plots for representative cell-cycle-related genes that are differentially expressed 

across tumor cell lineages/types (P < 2.2 × 10−16). P values were calculated by one-way 

Kruskal–Wallis rank-sum test. P < 2.2 × 10−16 represents a P value approaching 0. Number 

of cells for c and e: colon goblet cells, n = 2,658; colon enterocyte cells, n = 1,042; rectum 

epithelial cells, n = 1,578; duodenum epithelial cells, n = 366; stomach pit cells, n = 12,341; 

stomach mucosal cells, n = 5,937. FC, fold change.
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Fig. 3 |. 17q copy number gain is prevalent in cells of stomach origin and significantly associated 
with inferior survival.
a, The landscape of inferred large-scale CNVs for all of the tumor cells. The annotation 

tracks on the left indicate (from left to right) the corresponding sample IDs (the same colors 

as in Fig. 1b), survival groups, PC subtypes and the inferred cell lineages/types. 

Chromosome numbers are labeled on the top. The yellow rectangle highlights the 17q copy 

number gain that was nearly exclusively found in cells from the short-term survivors. b, The 

heatmap displays scaled expression values of genes upregulated in three short-term survivors 

(sample IDs labeled at the bottom) with evident 17q gain (annotated on the top track) and 

one short-term survivor and seven long-term survivors without detectable 17q changes. 

Biologically important genes are listed on the right, color coded by their related signaling 

pathways. c, The representative violin plots of eight genes selected from b. d,e, 17q copy 

number gain was associated with worse patient survival in the TCGA primary GAC cohort 

(d) (n = 411; only cases with survival data available were included) and an independent 
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GAC-PC cohort (e) (n = 45). P values were calculated by a two-sided log-rank test. Median 

survival times (in months) are labeled on the plots. MDACC, MD Anderson Cancer Center; 

OS, overall survival; PFI, progression-free interval.
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Fig. 4 |. Molecular pathway-based dissection of the transcriptomic iTH and correlation with 
tumor cell lineage and patient survival.
a, The transcriptomic ITH of curated gene sets, including cancer hallmark gene sets (n = 50) 

and gene sets from KEGG (n = 186) and reactome (n = 674) pathway databases. Each 

column represents a single cell. Only the pathways (rows) that were differentially expressed 

across different tumor cell lineages are shown. The pathway names are labeled on the right 

and color coded by their biological functions. b, representative violin plots of six pathways 

selected from a and Supplementary Fig. 20 that showed significant correlation with patient 

survival. Number of cells: stomach mucosal cells, n = 5,937; stomach pit cells, n = 12,341; 

pancreas ductal cells, n = 1,037; gallbladder mucosal cells, n = 285; duodenal epithelial 

cells, n = 366; colorectal epithelial cells, n = 5,278; long-term survivors, n = 18,428; short-

term survivors, n = 6,816. Box, median ± interquartile range. Whiskers, 1.5 × interquartile 

range. P values across different tumor cell lineages were calculated by one-way Kruskal–

Wallis rank-sum test. P values between two patient groups were calculated by a two-sided 
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Wilcoxon rank-sum test. P < 2.2 × 10−16 represents a P value approaching 0. GSVA, gene 

set variation analysis. c, The interaction networks of differentially expressed pathways 

displayed in a. The curated gene sets were colored by their biological functions. The weight 

of a line corresponds to its Jaccard index (a similarity metric) between each pathway pair 

connected by the line. d, Violin plots showing the differences in immune cell composition 

between the gastric-dominant and GI-mixed groups across multiple validation cohorts. The 

MCP-counter scores for a specific tumor cell lineage or the CIBErSOrT cell fractions, or 

normalized gene expression levels, are shown on the y axis. The black, bold, horizontal line 

with a dot indicates the median value of each group. P values were calculated by a two-sided 

Wilcoxon rank-sum test. mDC, myeloid dendritic cells.
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Fig. 5 |. Identification and validation of the 12-gene prognostic signature.
a, Survival analysis of the discovery GAC-PC cohort. Left, histogram showing relative 

proportions of long- and short-term survivors between the gastric-dominant and GI-mixed 

groups. P value was calculated by the two-tailed Fisher’s exact test. Right, Kaplan–Meier 

plots showing the survival time (in months) since PC diagnosis and survival time since 

ascites collection, respectively, between patients in gastric-dominant and GI-mixed groups. P 
values were calculated by two-sided log-rank tests. b, A schema that illustrates the 

bioinformatics flow for generation of the 12-gene signature (see details in the Methods). c, 

Differential expression of the 12 signature genes between the gastric-dominant and GI-

mixed groups. d, Survival analysis of a second independent cohort of GAC-PC patients (n = 

45). Left, the Kaplan–Meier curves showing significant differences in patient survival from 

PC diagnosis between the two PC subtypes (the colors are the same as in panels a–c). Right, 

multivariate Cox proportional regression outcomes, with the 12-gene signature included. For 
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each variable, the reference level is the first one. The block in the center of the error bars 

represents the weighted mean. Whiskers of error bars represent the 95% confidence 

intervals. Patients whose PC belongs to the gastric-dominant subtype as defined by the 12-

gene signature are significantly associated (P = 3.31 × 10−4) with worse survival in this 

multivariate model. CI, confidence interval. e–h, Survival analysis of the 12-gene signature 

across three additional large-scale validation cohorts of localized GACs. For each cohort, the 

source of the dataset, the sample size, the log-rank P value and the median survival time (in 

months) are labeled on the Kaplan–Meier plot. e, The localized GAC cohort from Cristescu 

and colleagues28. The alluvial plots (right) show the relationships between PC subtypes (left 

strip) and the presence of local recurrence and/or distant metastases (right strip). The yellow 

band highlights the significant enrichment of local recurrence and/or distant metastases 

events in patients whose PCs belong to the gastric-dominant subtype. The P values for the 

alluvial plots were calculated by a two-sided Fisher’s exact test. f, The GAC cohort from 

Cheong and colleagues. g, The GAC cohort from Ooi and colleagues27. h, The GAC cohort 

from TCGA.
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