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Abstract

Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative 

disorders and susceptibility to acute brain injury. DNA and histone modifications act together with 

noncoding RNAs to form a complex gene expression machinery that adapts the brain to 

environmental stressors and injury response. These modifications influence cell-level operations 

like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory 

formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence 

the progression of many neurological disorders independent of aberrations in the genetic code. 

This review aims to highlight ways in which epigenetics applies to several commonly researched 

neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of 

epigenetics-based treatments.
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INTRODUCTION

Epigenetics are regulatory mechanisms that modulate gene expression without changing the 

genetic code. Epigenetics represent interactions between genes and the environment 

providing a connection between nutrition, toxins, medications, stress and cellular 

physiology.1–3 The concept of epigenetics was first described by Conrad Waddington in 

1940’s with DNA methylation and has since been shown to encompass transcriptional 

regulation by histone modifications and long noncoding RNAs (lncRNAs) as well as post-

transcriptional regulation by microRNAs (miRNAs).4–8 Epigenetic alterations are involved 

in neurodevelopmental processes such as brain patterning, neural stem cell maintenance and 

neurogenesis and has been implicated in many diseases of the brain.9 Epigenetics can 
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significantly increase our understanding of the molecular mechanisms that contribute to 

brain damage as well as identify targets for efficient therapeutic targeting to promote 

neuronal survival. This review discusses the epigenetic targets for both chronic and acute 

conditions that lead to significant neuronal death and neurological dysfunction including 

Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Huntington’s Disease (HD), epilepsy, 

stroke and traumatic brain injury (TBI).

EPIGENETIC MECHANISMS

DNA Methylation:

DNA methylation (addition of a methyl group to cytosine to form 5-methylcytosine; 5-mC) 

is the most studied epigenetic mechanism implicated in gene regulation.10, 11 This usually 

occurs in stretches of dense CG dinucleotide repeats known as CpG islands that when 

methylated often lead to gene silencing by interfering with the ability of transcription factors 

to bind (Fig. 1).3, 12, 13 DNA methylation is mediated by a family of DNA 

methyltransferases (DNMTs). Methyl groups donated by S-adenosyl-methionine (SAM) are 

added to CpG islands by DNMT3a and DNMT3b and maintained throughout successive cell 

generations by DNMT1.6, 14–16 DNMTs are highly expressed in the embryonic nervous 

system as well as post-mitotic neurons and glia where they facilitate synaptic plasticity, 

long-term potentiation and DNA repair.9, 10, 17, 18 In addition, methyl-CpG binding domain 

proteins (MBD) like MeCP2 can be recruited to 5-mC and play a role in gene regulation by 

mediating histone modifications and gene silencing.10, 19–21 The CNS shows the highest 

prevalence of DNA methylation of all organs which is thought to be involved in 

neurodevelopment, cognitive processes and aging.6, 22 In recent years, it has been shown that 

5-mC patterning is strongly associated with aging and mortality.23 Thus, DNA methylation 

age (DNAm age) may be used as an estimation of biological age, a measure of an 

individual’s physiological health.24, 25 DNAm age has been proposed as a biomarker for 

predicting aging-associated brain disorders such as cognitive decline, dementia and AD.
23, 26

DNA hydroxymethylation:

The family of ten-eleven translocase dioxygenases (TETs) oxidize 5-mC to 5-

hydroxymethylcytosine (5-hmC).27–29 Similar to 5-mC, 5-hmC is also highly enriched in the 

brain where it is predominantly found in neurons.30, 31 Contrary to 5-mC, 5-hmC is often 

concentrated at euchromatin and is associated with transcriptional activation.32–34 The TET 

enzymes are recruited to methylated CpGs where they have been shown to inhibit 

methyltransferase interaction, hinder MeCP2, and promote demethylation by further 

oxidizing 5-hmC to yield an unmethylated DNA through base excision repair.35–38 In the 

CNS, 5-hmC plays a role in DNA repair, synaptic plasticity and neuronal aging.39

Histone modifications:

Nucleosomes, the basic units of chromatin, consist of DNA wrapped around histones that 

are essential for DNA structure. Histone organization can influence gene expression by 

affecting the architecture of promoters and the availability of DNA to transcription factors.
10, 40, 41 Histones can undergo various epigenetic modifications including methylation, 
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acetylation, ubiquitination, SUMOylation, citrullination and ADP-ribosylation.12 Of these, 

the roles of histone methylation and acetylation in CNS disorders have been studied in 

detail. Histone methyltransferases (HMTs) catalyze methylation using SAM as a donor on 

the amino acid side-chains of histones 3 and 4 (H3 and H4).6, 42 The degree, symmetry, and 

location of histone methylation dictates whether a gene is going to be expressed or 

suppressed (Fig. 2).43,44 Methylated histones do not change the overall shape of chromatin, 

but facilitate the recruitment of additional proteins that regulate gene expression.6, 42 

Dysregulation of histone methylation has been linked to brain aging and neurological 

diseases.45 Histones are acetylated by histone acetyltransferases (HATs) which results in 

gene activation due to electrostatic reduction between histones and DNA leading to a relaxed 

state euchromatin (Fig. 3).6, 46–49 Histone deacetylation mediated by histone deacetylases 

(HDACs) and sirtuin deacetylases (SIRTs) lead to tightly wound chromatin and suppression 

of gene expression.6, 47, 48 HDACs are implicated in axon growth, oxidative stress, synaptic 

plasticity and cognition.50–57 Overall, epigenetic mechanisms that include DNA methylation 

and histone modifications, together with other proteins like MBDs, regulate gene expression 

in a highly dynamic manner in normal physiologic states and pathologic conditions.9, 16

Non-Coding RNA:

Non-coding RNAs (ncRNAs) are functional RNA molecules that are not translated into 

proteins, and instead regulate the expression of genes at the transcriptional or post-

transcriptional level. The epigenetic-related ncRNAs include micro, circular, short-

interfering, PIWI-interacting, and long non-coding RNA, among others.51 Of these ncRNAs, 

microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most studied in 

relation to their epigenetic roles in diseases of the brain.

MicroRNA (miRNA) act post-transcriptionally on messenger RNA (mRNA), binding to 

their 3’ untranslated region (3’ UTR) and regulating gene expression by degradation or 

silencing of transcripts.7, 52–55 These 20–25 nucleotide long species, of which over 2000 

have been classified, undergo splicing by Drosha and Dicer56 before individually acting on 

as many as 1000 target genes.9, 53 The ability of a single miRNA to act upon multiple genes 

produces an incredibly complex epigenetic environment, providing many therapeutic 

opportunities for human disease. In the CNS, miRNAs are important for neuronal signaling, 

synaptic plasticity and neurorepair mechanisms.57–59

Long non-coding RNA (lncRNA), RNA transcripts containing more than 200 nucleotides, 

are highly expressed in the human brain.60 While the biological function of most lncRNAs 

remains to be elucidated, lncRNAs have been shown to play a role within chromatin 

remodeling, often guiding other modifying proteins to specific histones or gene sites and 

thereby influencing gene expression.8, 45, 61, 62 In addition, lncRNA may come in the form 

of antisense transcripts, functionally masking genes and preventing degradation of their 

sequences by miRNA.61, 63 LncRNAs are important in normal brain development and 

function, while aberrant lncRNA expression has been implicated in neurological disorders.
64–69
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EPIGENETICS AND NEURODEGENERATIVE DISEASES

Alzheimer’s disease

Alzheimer’s disease (AD), the most common cause of dementia is a progressive 

neurodegenerative disease marked by the aggregation of proteins amyloid-beta (Aβ42) and 

phosphorylated tau leading to extracellular plaques and intracellular tangles in the brain.
56, 70, 71 These plaques and tangles are accompanied by neuronal loss, dysregulation of 

microtubule assembly, apoptosis, and brain atrophy.56, 72, 73 Interestingly, <5% of AD cases 

are early onset/familial and can be accounted for by common variants.56, 70, 74 This indicates 

the possible mediation of epigenetics in the pathogenesis of AD.

The amyloid-β plaques fundamental to AD pathogenesis are caused by the dysregulation of 

the amyloid precursor protein gene (APP).75–77 Post-mortem studies with brain tissue from 

humans that died of natural causes showed that 13 cytosine residues in the promoter region 

of APP are differentially methylated with age.78 Additionally, those patients older than 70 

showed ~50% reduction in methylation at these cytosines.78 Increased methylation of APP 

in AD subjects has been shown to increase APP expression leading to aggregation of the 

neurotoxic Aβ42 indicating the importance of differential methylation patterning in AD 

pathogenesis.79

Presilin1 (PS1) and β-secretase (BACE) are integral in the processing of APP and their 

dysregulation leads to the aberrant Aβ42 plaques observed in AD.80 PS1 and BACE 

methylation is highly dependent on SAM as methyl donor and severe decrease in SAM 

levels correlates with AD.81 In neuroblastoma cell lines, vitamin B12 and folate deprivation 

induces PS1 and BACE that are reversed by SAM.82, 83 In transgenic mice that overexpress 

human APP and display Aβ plaque deposition, SAM supplementation reduced the activity 

of β- and γ-secretase, decreased Aβ production and plaques, restored normal levels of tau 

phosphorylation and improved spatial memory.84, 85 These studies are supported by a 

clinical trial where increased plasma levels of SAM were correlated with decreased Aβ−40 

and PS1 mRNA levels in newly diagnosed AD patients.86

Apolipoprotein E (APOE) regulates Aβ42 clearance and hence it is considered as an 

important risk factor for late-onset Alzheimer’s disease (LOAD).87 APOE has a non-

classical (CpG-poor) promoter and hence its regulation is complex.88 The APOE haplotypes 

ε2–4 has been shown to be differentially correlated with LOAD risk.88 For example, APOE4 

confers more risk than APOE3, but not all APOE4 carriers develop LOAD and many LOAD 

patients are not carriers of APOE4.87, 89–91 Furthermore, significant hypomethylation of the 

2 APOE CpG sub-regions in the frontal lobe of Lewy body dementia and AD patients have 

been identified in post-mortem brain studies.92, 93 These studies indicate a role for 

methylation of the APOE promoter as an epigenetic regulator of LOAD.

Histone acetylation levels were reported to be markedly decreased in both AD transgenic 

mice and AD human brains.94, 95 In AD transgenic mice, HDAC2 was shown to be induced 

and treatment with HDAC2-specific inhibitor suberoylanilide hydroxamic acid (SAHA) 

improved learning and memory.96, 97 Treatment with another HDAC inhibitor sodium 4-

phenylbutyrate (4-PBA) also decreased the number of phosphorylated tau tangles and 
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enhanced cognitive function in transgenic AD mice.98 Furthermore, HDAC6 knockout mice 

showed improved learning and memory and protection against Aβ42-induced disruption of 

mitochondrial trafficking, which is related to amyloid pathology.99, 100

The majority of identified AD-related miRNAs are involved in regulation of APP. 

Bioinformatics analyses have revealed several putative APP 3’UTR miRNA binding sites 

that have been validated in vitro. MiR-16 and miR-101 were shown to target APP and 

reduce Aβ-induced cytotoxicity in both PC12 cells and hippocampal neurons.101–103 In 

human cell lines, several miRNAs including miR-106, miR-520c, miR-20a, miR-17–5p, 

miR-106b, miR-17, miR-153, miR-147, miR-644, miR-655, miR-323–3p and miR-20a have 

been shown to bind to APP and repress APP expression.104–106 MiR-195, miR-339–5p and 

miR-107 are reduced in the brain tissue of AD disease patients and have also been shown to 

directly target and reduce the APP processor BACE1 in human cell lines and mouse cell 

culture studies.107–110 Furthermore, overexpression of miR-195 was shown to reduce Aβ 
toxicity in neuroblastoma cells.107 BACE1 is also targeted by miR-485–5p and miR-485–5p 

overexpression returned BACE1 to its non-pathological levels in HEK293T cells.61

Several studies have also identified the role of miRNAs in APP regulation both in vitro and 

in vivo. For example, the miR-29 family (miR29a, −29b, −29c) is downregulated in AD 

brains and has been shown to target the 3’-UTR of the APP processor BACE1 in human and 

mouse cell lines.111–113 In vitro, suppression of miR-29a and miR-29b in human cells 

increases production of Aβ.111 Hippocampal injection of miR-29c mimic in SAMP8 mice 

decreased Aβ and improved learning and memory compared to untreated control mice.112 In 

APP/PS1 mice, reductions in miR-135, miR-200b and miR-429 were observed in the 

hippocampus. MiR-200b and miR-429 were shown to target APP and reduce APP 

expression while miR-135 targeted and decreased BACE1.114 MiR-124 is also a negative 

regulator of BACE1 and lentiviral overexpression of miR-124 in the dentate gyrus of 

APP/PS1 mice reduced of apoptotic and autophagy markers and ameliorated cognitive 

deficits.115

The miR-132/212 cluster has been shown to be downregulated in tauopathy-related diseases 

including AD.116, 117 Knockout of miR-132/212 in mice led to an increase in tau expression, 

phosphorylation and aggregation.118 Another study showed that miR-132/212 knockout 

mice display significant deficits in cognitive function.119 MiR-132 was shown to directly 

target and decrease tau mRNA and treatment with a miR-132 mimic restored tau and 

improved memory function in 3xTg-AD mice.118 Downregulation of miR-132 was most 

significantly observed in neurons showing hyper-phosphorylation of tau in the brains of late 

stage AD patients.120, 121 Furthermore miR-132 downregulation has been shown to correlate 

with cognitive decline in patients with AD.118 MiR-219 also targets and represses tau 

synthesis and decreased levels of miR-219 were also observed in the human AD brain.122 In 

a Drosophila model that produces human tau, reductions in miR-219 were associated with 

exacerbation of tau toxicity, linking this miRNA to AD-related pathology.122

The dysregulation of miRNAs has not only been shown to occur within the brain, but also 

within bio fluids such as serum, plasma, and CSF. A large push to develop AD detection 

methods has led to miRNA profiling within serum123–127, plasma125, 128–130, 
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CSF125, 130–135, exosomes132, 134–136, extracellular fluid137, and PBMCs138 of humans and 

AD animal models. For example, one study showed that miR-135 was reduced in the blood 

of patients with mild cognitive impairment and miR-135 and miR-200b levels were 

decreased in CSF of individuals with dementia of Alzheimer’s type (DAT) group.114 In 

blood samples obtained from AD patients, both miR-29c and BACE1 expression were 

increased.112 Recently, Kumar et al. has developed a biomarker technique allowing AD 

patients to be distinguished from control patients with 95% specificity by hsa-miR-191–5p 

and hsa-miR-15b-5p signatures within plasma.139 Another study developed a 16 miRNA 

exosomal serum panel that predicts AD with 87% sensitivity and 77% specificity.137 Table 1 

outlines the therapeutic potential of miRNAs and the other epigenetic regulators discussed in 

AD.

Bioinformatics studies have begun to elucidate the roles of lncRNAs in AD. In postmortem 

brain samples, the expression of hundreds of lncRNAs are significantly changed in AD 

patients versus age-matched controls in AD-related regions of the brain such as the 

hippocampus, middle temporal gyrus, entorhinal cortex and cortex.140–142 Gene ontological 

analysis identified significantly altered lncRNAs associated with mRNAS involved in 

protein ubiquitination, amyloid-β clearance, neural communication, electron transport chain, 

metabolic processes and cholesterol homeostasis.140–142 When neurofibrillary tangles were 

sampled, lncRNAs associated with development and morphogenesis of the neural tube and 

neural crest were significantly changed.143 Microarray analyses performed in rodent models 

of AD have similarly shown extensive changes in lncRNA expression.144, 145 While these 

bioinformatics studies revealed that several lncRNAs play roles in AD pathology, recent 

reports have identified Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) as a key 

lncRNA in AD progression.141 Downregulation of NEAT1 in hippocampal tissue of 

APPswe/PS1dE9 mice was observed in the early stage of disease progression.146 Reduced 

levels of NEAT1 prevented clearance of Aβ by inhibiting expression of endocytosis-related 

genes.146 Alternatively, in vitro models of AD performed with mouse brain tissue or 

neuroblastoma cells have shown upregulation of NEAT1.147, 148 Knockdown of NEAT1 

reduced Aβ-induced toxicity, apoptosis and promotion of p-Tau. Furthermore, NEAT1 was 

shown to reduce miR-107 and miR-124, thereby increasing BACE1.148 Another lncRNA 

that modulates miRNA efficacy is BACE1-AS, an anti-sense transcript that is upregulated in 

AD and expressed alongside BACE1. BACE-AS competes with the miR-485–5p binding 

site and prevents miR-485–5p from degrading the BACE1 transcript.61, 149 Dysregulated 

expression of both BACE-AS and miR-485–5p have been observed in RNA samples from 

the brains of AD patients.61

Parkinson’s disease

Parkinson’s Disease (PD) is the second most common neurodegenerative disease, affecting 

over 600,000 Americans, a number expected to double by 2040.150 PD is caused by 

degeneration of dopaminergic nigrostriatal pathways from the substantia nigra pars 

compacta (SNpc) to the striatum.6, 151, 152 The neurodegeneration of PD is marked by 

aggregates of α-synuclein (α-syn), a synaptic protein leading to dopaminergic neuron failure 

and resulting in tremors, rigidity, and non-motor symptoms like dementia and depression.
6, 151, 153 Levodopa (L-Dopa), an amino acid precursor to neurotransmitters, provides relief 
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to the motor-based symptoms of PD; however, L-Dopa can lead to the involuntary 

movement disorder, tardive dyskinesia, and other drugs like it fail to treat the non-motor 

symptoms of the disease.6, 154 Therefore, potential PD treatments in the realm of epigenetics 

are currently being explored (Table 2).

Oligomerization and aggregation of α-synuclein (α-syn) is thought to be responsible for the 

onset of PD in humans.152 While phosphorylation and ubiquitination are known to promote 

α-syn aggregation, the precise mechanisms that control α-syn are still not known. 

Hypomethylation of the CpG2 (near intron 1) in the α-syn gene was shown in the blood, 

substantia nigra and putamen tissue samples of PD patients.155 This hypomethylation of the 

α-syn gene is thought to be responsible for increased levels of α-syn and correlate with age 

of onset of PD.156, 157 Furthermore, DNMT1 levels were shown to be decreased by ~50% 

that might be responsible for reduction in α-syn promoter methylation in PD brain samples.
158 There has been evidence showing that α-syn mediates the sequestration of DNMT1 in 

neuronal cells causing its own hypomethylation in a feed-forward mechanism.158 Thus, 

epigenetic control by methylation of the α-syn promoter might be a factor responsible for 

PD onset as well as progression.

Many studies showed that histone acetylation also plays a significant role in PD 

pathogenesis. In α-syn overexpressing cells, α-syn binds to H3 leading to hypoacetylation 

of H3.159 Treatment with HDAC inhibitors sodium butyrate and SAHA reversed this and 

rescued cells from α-syn toxicity.159 Furthermore, H3 deacetylation inhibitors valproic acid 

(VPA), sodium butyrate, Trichostatin A (TSA) and SAHA protected the neuronal cells 

following MPTP treatment, a drug that produces a neurotoxin up taken by dopaminergic 

neurons and causes parkinsonism features.160, 161 In an MPTP mouse model of PD, H3 

acetylation was observed to be upregulated and treatment with Levodopa (L-DOPA) 

reversed this effect.162 However, in primate PD models H3 acetylation was observed to be 

downregulated upon L-DOPA administration.162 Hence, HDAC inhibitors are promising to 

understand PD pathology, but the mechanistic role of histone acetylation in PD is still not 

completely clear. Histone acetylation has also been explored in the pesticide exposure-

induced model of PD. In rat mesencephalic dopaminergic neurons, pesticides dieldrin and 

paraquat that are known to cause PD-like symptoms promoted H3 and/or H4 

hyperacetylation.163 Furthermore, CREB-binding protein mediated histone hyperacetylation 

led to dopaminergic neuronal apoptosis that was rescued by the HAT inhibitor anacardic 

acid.163, 164

Familial and sporadic PD can be caused by gain-of-function mutations in leucine-rich repeat 

kinase 2 (LRRK2).165 It was previously shown that mutant LRRK2 leads to miRNA-induced 

transcriptional repression by negatively regulating Argonaute-2 of the RISC complex and by 

antagonizing let-7 and miR-184 in Drosophila.166 In mammalian PD models, LRKK2 has 

been shown to cause dysregulation of GTPase activity167, autophagy168, and actin 

stabilization.169 Cho et al. found that despite increased expression of LRRK2 protein in PD 

patients, LRRK2 mRNA levels are not significantly altered, leading them to investigate post-

transcriptional modifications.170 Screening for miRNAs with target sites near the LRRK2 

3’UTR, revealed that miR-205 is disproportionately downregulated in PD frontal cortex. 

Overexpression of miR-205 suppressed LRRK2 protein expression, and inhibition of 
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miR-205 increased LRRK2 in primary neurons and dopaminergic MN9D cell lines.170, 171 

Increased miR-205 levels were shown to inhibit defects in neurite outgrowth in hippocampal 

neurons of mice expressing mutant forms of LRRK2.170

SNCA is also post-transcriptionally regulated by several miRNAs. MiR-7 has been shown to 

reduce levels of α-syn by 30% while miR-153 reduced levels of α-syn by 19% in primary 

neurons.172 A synergistic effect was observed with overexpression of both miR-7 and 

miR-153 which reduced α-syn levels by 46% in primary neurons.172 In another study, 

miR-7 and miR-153 overexpression was protective via mTOR and SAPK/JNK pathway 

preservation in cortical neurons exposed to MPP+.173 Furthermore, inhibition of miR-7 

upregulated α-syn and miR-7 was shown to protect against cellular α-syn-mediated 

susceptibility to oxidative stress, proteasome impairment, and prevent cell death by targeting 

RelA in dopaminergic neuroblastoma cells.174, 175 MiR-155 was shown to play a key role in 

α-syn-induced inflammation and knockout of miR-155 reduced α-syn neurotoxicity in mice.
176 Finally, eight miRNA, including hsa-miR-21 and hsa-miR-301b were shown to 

deregulate the chaperone mediated autophagy proteins (CMA), lysosome-associated 

membrane protein type 2a (LAMP-2A) and heat shock protein 70 (hsc70), each degraders of 

α-syn, resulting in increased aggregates in neuroblastoma cells.177

MiR-34b/c and the previously reported miR-7 have been implicated in mitochondrial 

function in PD and PD-related models. MiR-34b and miR-34c were downregulated in 

human brain tissue from PD patients in Braak stages 4 and 5.178 Correspondingly, decreased 

levels of miR-34b and miR-34c correlated with mitochondrial dysfunction, reactive oxygen 

species (ROS) generation and increased α-syn aggregation in human dopaminergic 

neuroblastoma cells.178, 179 It has been proposed that miR-34b loss in PD patients leads to 

the characteristic upregulation of A2AR in the putamen observed in the disease.179 MiR-7 

has also been shown to regulate mitochondrial protein expression, prevent ROS and 

mitochondrial permeability transition pore opening following MPP+ exposure in 

neuroblastoma cells.180 Finally, miR-7 has been shown to target the NLRP3 inflammasome 

in microglia, and a miR-7 mimic provided neuroprotection in Transgenic-α-syn mice subject 

to MPTP.181

Several other miRNAs involved in modulating PD pathology have been identified. For 

example, treatment with a miR-221 mimetic was shown to be protective against a 6-OHDA 

treatment model of PD in PC12 cells.182 Overexpression of miR-185 or miR-181c prevented 

MPTP-induced apoptosis in neuroblastoma or PC12 cells, respectively.183, 184 In a rotenone 

PD model of neuroblastoma cells, miR-384–5p inhibition reversed ER stress and attenuated 

apoptosis.185 Overexpression of miR-124 downregulated apoptotic and autophagic pathways 

to provide neuroprotection in both MPTP-treated mice models and MPP+-treated 

neuroblastoma cells.186 Loss of miR-133b has been observed in the midbrain of PD patients 

and miR-133 was shown to regulate maturation and function of dopaminergic neurons 

through a feedback loop with Pitx3.187 MiR-16–1-mediated downregulation of hsp70 was 

shown to worsen aggregation of α-syn in transgenic neuroblastoma cells.188 Finally, 

hydrogen sulfide treatment was shown to protect MPTP-treated mice by increasing 

miR-135a- 5p, which represses rho-associated protein kinase 2, an enzyme that promotes 

neurodegeneration.189
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Profiles of miRNAs expressed in the prefrontal cortex tissue190, SNpc191, exosomes of the 

CSF192, and serum193 of PD patients have revealed extensive dysregulation of miRNAs. 

CSF miRNA profiling was shown to distinguish PD patients from controls and also 

correlated with different stages of PD pathology.194, 195 Overlapping miRNAs identified in 

serum studies have implicated several miRNAs that may be key to PD pathogenesis 

including miR-29c, miR-221, and miR-214.196–199 The role of miR-29c has not been 

elucidated, but miR-221 has been shown to promote survival in human dopaminergic 

neuronal cells and loss of miR-214 increased alpha-synuclein expression in human 

neuroblastoma cells.200, 201 In plasma, a strategy combining k-Top Scoring Pairs algorithm 

of differentially expressed miRNA can predict PD with 91% sensitivity and 100% 

specificity.202

Several profiling studies have shown aberrations in lncRNA expression in the human PD 

brain and mouse models of PD providing a basis for biomarker research.203–208 The 

majority of the lncRNAs investigated in PD have been shown to modulate miRNAs. For 

example, HAGLROS was upregulated in MPTP-treated mice and MPP+-treated 

neuroblastoma cells.208 HAGLROS was shown to sponge miR-100 and subsequent 

inhibition decreased apoptosis and autophagy both in vitro and in vivo through PI3K/Akt/

mTOR regulation.209 P21 was upregulated in neuroblastoma cells subject to MPP+ and 

subsequent knockdown decreased ROS generation, neuroinflammation, and apoptosis.210 It 

was found that p21 exerts protective function through de-repression of miR-625 and thus 

upregulation of Transient receptor potential melastatin 2 (TRPM2).210 In addition, p21 

promoted apoptosis in neuroblastoma cells by sponging miR-1277–5p and thereby 

increasing expression of α-syn.211 MALAT1 is increased in midbrains of MPTP-treated 

mice and was shown to suppress miR-205–5p, leading to a subsequent increase of 

LRRK2.171 Correspondingly, MALAT1 knockdown prevented apoptosis after MPP+ 

treatment in MN9D cells.171 In addition, β-asarone treatment has been shown to be 

protective in both in vitro and in vivo models of PD by downregulating MALAT1 

expression.212

The small nucleolar host gene 1 (SNGH1) lncRNA was upregulated in MPP+-treated 

neuroblastoma cells and exacerbated toxicity by sponging miR-15b-5p.213 Knockdown of 

SNGH1 or overexpression of miR-15b-5p abrogated ROS production and cell death in the 

same model.213 The protective role of miR-15b-5p was again shown through SNGH1 

knockdown leading to less α-syn aggregation in neuroblastoma cells.214 SNGH1 silencing 

has been shown to act through other axes like miR-221/222 and CDKN1B/p27/mTOR to 

enhance autophagy and prevent cell death in MPTP-treated mice and MPP+-treated MN9D 

cells.215 Importantly, SNGH1 was also elevated in brains of PD patients and was shown to 

promote neuroinflammation by suppressing miR-7 and enhancing microglia and 

inflammasome activation in MPTP-treated mice.216

MPTP-treated mice and MPP+-treated neuroblastoma cells were both shown to induce 

NEAT1 expression.217 Subsequent knockdown of NEAT1 suppressed autophagy in mice by 

stabilizing PINK 1.217 Importantly, NEAT1 was also increased in the substantia nigra of 

patients with PD and the neuroprotective drugs fenofibrate and simvastatin have been shown 

to require NEAT1 to prevent paraquat-induced cell death in neuroblastoma cells.218 
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Alternatively, NEAT1 silencing was also shown to be protective by reducing apoptosis and 

inflammatory signaling in MPP+-treated neuroblastoma cells by derepressing miR-124.219

The Urothelial Cancer Associated 1 (UCA1) lncRNA was highly expressed in MPTP-treated 

mice and MPP+-treated neuroblastoma cells, leading to increased SNCA expression.220 

Knockdown of UCA1 decreased caspase-3 activity and apoptosis in the same cell model.220 

Similarly, downregulation of UCA1 prevented inflammation and oxidative stress in a PD rat 

model induced by 6-hydroxydopamine injection (6-OHDA).221 MPTP treatment of 

neuroblastoma cells downregulated NORAD and subsequent overexpression protected 

against MPP+-mediated apoptosis, decreased ROS, and decreased lactose dehydrogenase 

activity.222 Finally, expression of the lncRNA HOTAIR has been shown to increase in both 

MPTP models of mice and MPP+ models of neuroblastoma cells along with a corresponding 

increase in LRRK2.66 Knockout of HOTAIR in the cellular model attenuated induced 

neurotoxicity.66

Huntington’s disease

Huntington’s Disease (HD) is a dominant, late-onset genetic disorder affecting 5–10 people 

of 100,000 globally.223, 224 In HD, CAG repeats form at exon 1 of the Huntingtin gene 

(HTT), producing the neurotoxic Huntingtin protein (mHTT) and resulting in 

neurodegeneration of GABAergic spiny striatal neurons.224–226 HD manifests in motor 

impairment and chorea, schizophrenia-like behavior and suicidal tendency, as well as 

changes in mood and judgement.224 HD patients undergo differing treatment depending on 

the course of the disease, and it is hopeful that altering gene expression through 

combinatorial approaches such as tacrine, moclobemide, and creatine will improve treatment 

options.227, 228 Several studies have revealed a role for epigenetic mechanisms in HD 

pathology, many of which display therapeutic potential (Table 3).

In post-mortem tissue from the frontal and parietal cortex of HD patients, a higher level of 

global methylation was observed compared to control patients.229 Cultured mouse striatal 

cells from knock-in embryos expressing full-length huntingtin (HTT) show methylation of 

promoters and thus down-regulation of several genes that control developmental processes, 

neuronal migration and cell signaling genes.230 A correlation between global cortex 

hypermethylation and age of disease onset in the cerebral cortex has been observed, 

although differential methylation at probed sites around HTT was not identified.231 

Genome-wide reduction of 5-hmC has also been seen in a HD mouse model, particularly in 

the cerebral cortex and striatum.232 Differentially hydroxymethylated promoter regions in 

these animals correspond to Wnt/β-catenin/Sox pathway, axon guidance, GABA signaling 

and dopamine feedback, which are all implicated in HD pathology.232 Stimulation of the 

adenosine A2A receptor (A2AR) has been shown to ameliorate neurodegeneration and 

several major HD symptoms in rodents.233, 234 However, A2AR levels are significantly 

reduced in the HD putamen of human brains potentially due to hypermethylation and 

decreased hydroxymethylation of the adenosine a2a receptor (ADORA2A) gene.235

HDAC inhibition is a major mechanism of neuroprotection in HD. Various chemical HDAC 

inhibitors such as SAHA, sodium butyrate, 4-PBA and TSA have been shown to ameliorate 

motor dysfunction, cognitive deficits or the neurodegenerative phenotype in transgenic C. 
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elegans, Drosophila and mouse models of HD.236–242 Treatment with the HDAC inhibitor 

4b was shown to reduce hypoacetylation of H3 and H4, and diminish transcriptional 

abnormalities caused by mutant HTT in the striatum, cortex and cerebellum of HD 

transgenic mice.243 The 4b treatment was additionally shown to improve motor function and 

decrease brain atrophy in HD mice.243 While chemical HDAC inhibition has proven to be 

effective in ameliorating HD deficits, studies employing genetic knockdown of various 

HDACs in HD are not clear. For example, knockout of HDAC4, HDAC6, or HDAC7 were 

not effective in ameliorating neurodegeneration in transgenic HD mouse models.244–246 

Similarly, while HDAC3 chemical inhibition has been shown to have a therapeutic effect in 

HD, HDAC3 knockout was not effective in reducing transcriptional dysregulation or HTT 

aggregation in transgenic HD mice and increased nuclear HTT aggregates in HeLA and 

293T cells expressing mutant HTT.241, 247, 248 Alternatively, RNA interference-mediated 

HDAC3 knockdown suppressed polyglutamine toxicity in a C. elegans model of HD using 

neuronal expression of mutant HTT with expanded polyglutamine repeats.239 These 

opposing results highlight the complexity of HDACs in HD as chemical inhibitors may 

target multiple HDACs, HDAC isoforms differ in target specificity and efficacy, and 

chemical and genetic inhibition have been shown to have differential compensatory 

mechanisms.249

Levels of brain-derived neurotrophic factor (BDNF) that is essential for striatal neuronal 

survival is severely reduced in the brain of HD patients.250–253 HTT is known to interact and 

recruit the repressor element-1 transcription factor (REST) complex (REST/coREST/Sin3A/

HDAC1/HDAC2) to the cytosol which consequently allows BDNF gene expression.252, 253 

A study assessing REST levels in brain tissues of HD patients found that cytoplasmic REST 

levels are reduced in neurons of the cortex and caudate of HD patients.254 Studies in mice 

have shown that the HTT mutation in HD causes the REST complex to accumulate in the 

nucleus, thereby silencing BDNF and contributing to neuronal death.253 In addition to 

BDNF, loss of several REST-controlled genes involved in neuronal maintenance have been 

observed in both the mouse and human HD brain.253 Since REST silencing occurs via 

HDAC-dependent chromatin remodeling, HDAC inhibitors that may also target REST 

activity may by therapeutically beneficial.

Differential expression of miRNAs has been observed in the brain and blood of HD patients 

and animal models of HD.255–260 MiR-9 was decreased in the cortices of HD patients and 

was shown to target REST and coREST in neuronal precursor cells.261 In a transgenic non-

human primate model, miR-128 was downregulated from the time of birth and was shown to 

interact with HTT and huntingtin interacting protein 1 (HIP1).262 Other studies have 

implicated the miR-10b family which is upregulated in the serum and brain of HD patients.
255, 263–265 In silico analysis revealed that miR-10b-5p targets BDNF, which displays 

reduced levels in HD leading to neuronal dysfunction.264 MiR-10b-5p expression in the 

prefrontal cortex has been correlated with HD age of onset in HD patients.263 This indicates 

that miR-10b-5p could serve as an important biomarker in HD treatment; however, it has not 

been examined in peripheral fluid.

Evidence of other miRNAs with potential involvement in HD pathology include miR-137, 

miR-148a and miR-214 which have been shown to directly target HTT and reduce HTT 
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protein levels in HEK293T cells.266 In STHdh(Q111)/Hdh(Q111) cells, miR-214 was also 

responsible for the downregulation of β-catenin often seen in HD.267 MiR-196a has been 

identified as significantly upregulated in HD265 and bioinformatics analyses indicated it may 

target inflammation and apoptosis-related pathway.263, 268, 269 MiR-196a overexpression 

was shown to increase neurite outgrowth in neuroblastoma cells269 and suppress Ran-

binding protein 10 (RANBP10), a protein which is elevated in HD mice.270 MiR-196a also 

suppressed apoptosis in neural progenitor cells and differentiated neural cells in HD non-

human primates.271 In STHdh(Q111)/Hdh(Q111) cells, increased levels of p53 led to 

downregulation of miR-146a.272 Subsequent overexpression of miR-146a attenuated cell 

cycle abnormalities and decreased apoptosis in the same cell model.273 Similarly, in the 

R6/2 mouse model, miR-34a-5p levels have been shown to decrease with increased p53 

expression, although the relationship between p53 and miRNA expression has not been 

elucidated.274

Downregulation of miR-22 was observed in the brains of both YAC128 and R6/2 transgenic 

mice.257 In vitro, miR-22 has been shown to provide neuroprotection in multiple primary 

striatal and cortical cell models of HD including mHTT and 3-NP exposure by reducing 

caspase activation and apoptosis.275 MiR-132 overexpression in the striatum of R6/2 mice 

was neuroprotective and delayed disease progression despite having no effect on mutant 

HTT.276 MiR-27a overexpression in R6/2-derived neuronal stem cells decreased mHTT 

aggregates, potentially by upregulating multidrug resistance protein 1 (MDR-1), a 

transporter of mHTT.277 Lastly, overexpression of an artificial miRNA targeting mHTT in 

sheep expressing human HD CAG repeat decreased HTT levels by 50–80% at 1 and 6 

months following treatment.278 This study supports the therapeutic potential of miRNA 

modulation in the large animal brain.

One study identified the existence of a natural antisense HTT transcript (HTTAS), which 

manifests in two splice variants HTTAS_v1, containing exons 1 and 3, and HTTAS_v2, 

containing exons 2 and 3.279 Up to 50% loss of HTTAS_v1 has been observed in the human 

HD frontal cortex and depending upon levels of overexpression and HTTAS_v1 repeat 

length, HTT can be decreased by 20–90% in HEK293 and SH-SY5Y cells.279 Multiple 

mouse models of HD have shown decreased levels of the lncRNA Abhd11os.280 Lentiviral-

mediated overexpression of Abhd11os was neuroprotective, while knockdown of Abhd11os 

exacerbated mHTT toxicity.280 Other differentially expressed lncRNAs identified in cell and 

animal models are maternally expressed 3 (MEG3) and NEAT1.281–283 NEAT1 levels were 

increased in the brains of HD patients and R6/2 mice and NEAT1 overexpression in 

neuroblastoma cells was shown to protect against H2O2-induced oxidative stress.282 

Similarly, NEAT1 overexpression protected neuroblastoma cells cotransfected with HTT 

expression plasmids from cytotoxicity.284 However, knockdown of NEAT1 or MEG3 was 

also shown to decrease mHTT aggregation and p53 expression in neuroblastoma cells281, 

indicating the roles of these lncRNAs in HD needs to be studied further.
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EPIGENETICS AND ACUTE BRAIN INJURY

Ischemic Stroke

Stroke is a major cause of death and disability worldwide.10, 285 Ischemic stroke (cerebral 

ischemia) is caused by the blockage of blood flow to the brain and results in energy 

depletion, mitochondrial dysfunction, excitotoxicity and ultimately cell death. During the 

reperfusion phase, return of the blood supply introduces inflammatory factors and induces 

oxidative stress which then cause secondary brain damage.286–288 Following ischemia/

reperfusion injury, the cells within the penumbra (the area surrounding the infarcted core) 

are destined to die; however, some if not all, have the ability to recover if given therapeutic 

intervention.289, 290 At this time, recombinant tissue plasminogen activator (TPA) is the only 

stroke medication approved for treatment.291, 292 TPA works to digest clots through the 

degradation of fibrin293, 294; however, no significant decrease in mortality has been shown 

after treatment and increased incidence of intracerebral hemorrhage is linked to TPA.295 

Recent studies showed that epigenetic changes play a significant role in modulating 

secondary brain damage and neurological dysfunction following stroke and hence may 

represent much-needed potential stroke therapeutic targets (Table 4).

The contribution of DNA hypermethylation to poor outcomes after cerebral ischemia has 

been well characterized. After middle cerebral artery occlusion (MCAO) induced focal 

ischemia in mice, levels of 5-mC were shown to be elevated in the striatum and cortex of 

mice.296 Heterozygous DNMT knockout mice or mice heterozygous for a mutant DNMT 

allele showed smaller infarcts after mild ischemic damage.296, 297 Furthermore, treatment 

with the DNMT inhibitor 5-aza-dC or other demethylating agents protected wild-type 

rodents after focal ischemia.296, 298, 299 However, in a severe ischemic mouse model, DNMT 

expression was not increased nor were mice protected by DNMT gene deletion.296 

Interestingly, genomic methylation has been shown to be better predictor of biological age 

and stroke outcome than chronological age.300, 301

Recent studies also evaluated the role of 5-hmC in post-stroke brain damage. Following 

MCAO in mice, 5-hmC increased quickly after reperfusion (by 5 min) and remained 

elevated up to 2 days of reperfusion following focal ischemia.32, 302 It was observed that the 

post-stroke induction of 5-hmC was mediated by TET3 in the peri-infarct region or TET2 in 

the whole brain.32, 302 Pharmacological or genetic inhibition of 5-hmC exacerbated 

ischemia/reperfusion injury, while TET activation via ascorbate enhanced the expression of 

protective genes, prevented degeneration, and improved motor function recovery after focal 

ischemia.302 A recent study in mice reported that 5-hmC is increased in the mitochondrial 

genome after focal ischemia where it may influence mitochondrial gene expression and ATP 

levels.303

Inhibition of histone deacetylation was shown to protect the brain after stroke. VPA 

administration prevented deacetylation of H3 and H4 and ameliorated hippocampal CA1 

neuronal death after global ischemia in adult rats.304 Treatment with VPA or sodium 

butyrate or TSA was shown to inhibit microglial activation, downregulate nitric oxide 

synthase and upregulated heat shock proteins leading to improved behavioral outcomes and 

reduced infarct volume in a rats following permanent MCAO.305 Importantly, VPA and 
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sodium butyrate were shown to be most beneficial when given at 3 to 6 h of reperfusion after 

focal ischemia in rodents indicating the translational potential of these drugs in stroke 

therapy.305 Administration of SAHA following transient MCAO in mice was shown to 

suppress ischemia-induced H3 deacetylation which led to decreased proinflammatory levels 

of cytokine IL1β and increased levels of the chaperone HSC70.306 SAHA treatment also 

decreased size of the infarction after transient MCAO.306 Pre- or post-stroke treatment with 

the HDAC inhibitor 4-PBA was also shown to reduce infarct volume significantly in a 

mouse model of hypoxia-ischemia.307 An in vitro study using white matter cells isolated 

from the mouse optic nerve showed that HDAC inhibitor treatment (SAHA or MS-275) 

before or after oxygen glucose deprivation (OGD) preserved white matter architecture and 

reduced excitotoxicity.308

Several rodent studies have shown that miRNAs are significantly altered within the brain 

after cerebral ischemia.309–311 Additional studies have identified a number of miRNAs 

involved in various aspects of stroke pathophysiology including excitotoxicity (miR-223, 

miR-107, miR-125b), oxidative stress (miR-23, miR-99), apoptosis (miR-21, miR-25, 

miR-15, miR-497, miR-29), edema (miR-29, miR-9, miR-375, miR-150, miR-130, 

miR-320) inflammation (miR-22, miR-203, miR-9, miR-132), neurogenesis (miR-17) and 

angiogenesis (miR-107, miR-376, miR-140).312 Several key miRNAs studied within the 

field of stroke are discussed in more detail below.

Both focal and permanent ischemia have been shown to reduce miR-424 expression in the 

plasma of stroke patients and within the blood and brain of rodents.313, 314 Overexpression 

of miR-424 was shown to reduce focal ischemia-induced oxidative stress and infarct in the 

mouse brain by increasing Nrf2 and MnSOD.314 In a mouse model of permanent focal 

ischemia, miR-424 overexpression reduced edema and inflammatory processes by inhibiting 

microglial activation.313 MiR-424 expression was increased in human endothelial cells 

subjected to hypoxia and promoted angiogenesis by stabilizing HIF-1α. In the plasma of 

stroke patients, miR-424 levels were upregulated in lymphocytes and neutrophils, which was 

negatively correlated with TNF-α, IL-10, and IGF-1 expression as well as infarct size.315 

Several studies have shown that miR-124 is increased after stroke and delivery of a miR-124 

mimetic confers neuroprotection in both transient MCAO and OGD models.316–318 

MiR-124 was shown to promote angiogenesis and inhibit excitotoxicity, apoptosis, BBB 

damage, and inflammation through modulation of glutamate receptors319, 320, Notch 

signaling321, DNA repair protein Ku70322, REST inhibition, calpain reduction316, 

PI3K/AKT activation323, upregulation of antiapoptotic proteins317, and regulation of and 

M2-like microglia/macrophage activation318 in several in vitro and in vivo models of rodent 

cerebral ischemia. MiR-155 was shown to upregulate inflammatory cytokines like IL-10, 

IL-4, and IL-6 in mice324 and increase apoptosis through the Rheb/mTOR pathway in rats325 

following focal ischemic injury. Inhibition of miR-155 significantly decreased infarction in 

mice following transient MCAO by increasing nitric oxide (NO) production and the 

expression of Notch1 and endothelial NO synthase.326, 327

While the miRNAs discussed above have shown consistent roles in animal models of 

cerebral ischemia, the impact of other key miRNAs is more complex. For example, 

following mouse transient focal ischemia, miR-181a increased within the infarcted region 
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where it was shown to negatively regulate binding immunoglobulin protein (GRP78/

HSPA5), a protein involved in ER function and inhibition of apoptosis.328, 329 However, 

within the penumbra, miR-181a expression decreased and positively regulated GRP78, 

implicating miR-181a in ischemic pathogenesis as well as ischemic recovery.328 The 

evidence thus far indicates that miR-181 inhibition is protective as it has been shown to 

reduce infarct and inflammation by decreasing glutamate transporter 1 (GLT-1), apoptosis 

and mitochondrial dysfunction in rodent models of cerebral ischemia.330–332 Similarly, 

miR-210 has been implicated in both protection and injury following cerebral ischemia. For 

example, miR-210 overexpression has been shown to upregulate BDNF levels, reduce 

neuronal apoptosis and improve neurological severity scores following transient focal 

ischemia in rats and mice.333, 334 However, both pre- and post-MCAO inhibition of miR-210 

improved neurological outcomes by reducing inflammation following mouse transient 

MCAO.335

As with neurodegenerative disorders, a significant effort has been made to develop 

biomarker procedures that can identify stroke with minimal invasiveness. MiRNA profiles 

have been established in serum336–341, plasma342–346, whole blood347–349, exosomes350, and 

CSF.341 MiR-145339, 340, 348 and let-7e341, 347 were identified as key miRNAs in multiple 

profiling studies. Based off the miRNA let-7e in serum, Peng et al. was also able to predict 

acute stroke in patients with 73.4% sensitivity and 82.8% specificity.341

Several studies have also been carried out to profile changes in lncRNA expression after 

stroke.351, 352 These studies implicate lncRNAs associated with genes involved in 

lipoprotein production, ABO blood type, prostaglandin synthesis, hematopoietic cell lineage, 

and glycolysis/gluconeogenesis.351, 352 Several lncRNAs have been shown to play 

significant roles in cerebral ischemia pathology. For example, MEG3 was increased 

following cerebral ischemia in mice where it was shown to bind p53 and promote post-

ischemic neuronal death.353 MEG3 silencing reduced infarct size, improved neurological 

scoring, and promoted angiogenesis in rats and mice subjected to MCAO.354, 355 MEG3 has 

been implicated in apoptosis by targeting the miR-21/programmed cell death 4 pathway.355 

ANRIL (CDKN2BAS) overexpression in diabetes mellitus rats upregulated VEGF, NF-κB, 

p-IκB/IκB and stimulated angiogenesis following MCAO.356 FosDT has been shown to 

increase following focal ischemia and associates with the chromatin modifying proteins 

sin3a and coREST to induce REST.357 Knockdown of FosDT and REST have been shown to 

decrease infarct size and improve functional recovery up to 7 days of reperfusion following 

focal ischemic injury.357, 358 Other lncRNAs implicated in ischemic stroke include H19, 

which provided BV2 cells neuroprotection following OGD when silenced68, N1LR, which 

prevented apoptosis in neuroblastoma cells when overexpressed359, and GAS5, which 

provided neuroprotection via decreased competition with miR-137 following MCAO in mice 

or OGD in cortical neurons when overexpressed.360

A key lncRNA identified in cerebral ischemia is MALAT1 (a.k.a NEAT2) which has been 

shown to be upregulated after OGD and MCAO.67, 361 Knockout of MALAT1 increased 

pro-apoptotic and pro-inflammatory factors and infarct size, and has been shown to directly 

associate with Bim and E-selectin following MCAO in mice.67 MALAT1 was shown to 

mediate autophagy and protect brain microvascular endothelial cells after OGD treatment.
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362 Conversely, MALAT1 inhibition downregulated autophagy, which induced 

neuroprotection following MCAO in mice363 indicating MALAT1 involvement in cerebral 

ischemia is complex and warrants additional research.

Hemorrhagic Stroke

Subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH) are two 

cerebrovascular events resulting in bleeding of the tissue around the brain and bleeding 

within the brain tissue, respectively. Hemorrhagic strokes account for only a small portion of 

strokes, but lead to high rates of disability364, 365, appear earlier in life than ischemic 

events365–367, and are responsible for over 25% of potential years of life lost to stroke.
368, 369 Not only do hemorrhagic strokes often lead to secondary cerebrovascular events like 

vasospasms, ischemia, and hydrocephalus365, 370–373, but they also cause non-neurological 

complications like heart, lung, kidney, and liver injury or failure.365, 374 Risk factors for 

SAH and ICH include inflammation375, malformations and tumors376, anticoagulation 

medication377, and heavy alcohol consumption.378 Lack of screening technology and the 

reliance on surgical approaches for treatment are major contributors to the devastating 

effects of these brain bleeds.379–381 Epigenetics alterations represent potential mechanisms 

through which hemorrhagic stroke may not only be detected, but also treated (Table 5).

Research on the role of DNA methylation in hemorrhagic stroke is still in its infancy, but a 

few studies indicate this epigenetic modification may play a role in hemorrhagic stroke 

pathology. For example, ITPR3, a gene involved in vasospasms caused by SAH382, was 

significantly hypermethylated in patients that experience delayed cerebral ischemia 

following SAH.383 In addition, SAH patients with delayed cerebral ischemia had higher 

levels of DNMT1 as well as lower levels of ITPR3 mRNA and TET1.383 In an autologous 

blood injection model of mouse ICH, TET1, TET2, TET3 and 5hmC were downregulated 

from 24–72 hours following hemorrhage.384 AKT2, PDPK1, and VEGF genes displayed 

decreased hydroxymethylation and increased methylation, resulting in a downregulation of 

AKT2, PDPK1 and VEGF expression.384

Histone modifications relating to brain bleeds like SAH and ICH have not been thoroughly 

explored; however, as with each disorder and injury discussed in this review, HDACi may be 

a promising therapeutic strategy. SAHA administration after spontaneously induced ICH in 

mice was shown to not only reverse H3 hypoacetylation but also decrease apoptosis, hemin-

induced cytotoxicity, behavior deficits, and microglial and astrocytic activation.385 Similar 

to the neuroprotective effects of SAHA, VPA administration in a rat model of ICH inhibited 

inflammation and caspase activity, upregulated BCL-2 and BCL-XL while downregulating 

BAX.386

Despite the lack of classical epigenetic marker studies in SAH and ICH, several studies have 

been performed assessing the role of noncoding RNAs. Extensive research into circulating 

biomarkers for hemorrhagic stroke has been conducted. A serum study evaluating miRNA 

levels has shown that miR-502–5p, miR-1297 and miR-4320 levels are higher in SAH 

patients when compared to control groups.387 Furthermore, miR-502–5p and miR-1297 

were even significantly higher in those with severe SAH when compared to non-severe 

SAH.387 Another serum study identified 86 differently expressed miRNA, 69 upregulated 
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and 17 downregulated, between three severities of intracranial aneurysms and the healthy 

control group.388 Important gene pathways found in this study included smooth muscle cell 

proliferation, apoptosis, myosin generation, and actin cytoskeleton organization.388 Plasma 

studies have identified miR-16 and miR-25 as dysregulated in intracranial aneurysm 

patients389 while inflammatory miRNAs are most pronounced in ICH patients.390 Studies in 

intracranial aneurysm tissue showed aberrations in several miRNA in common including 

miR-23b, miR-24–1, and isoforms of miR-143 and miR-145.391, 392 These studies both 

indicate gene networks involved in smooth muscle cell proliferation and movement may be 

involved.391, 392 Finally, potential biomarkers in cerebrospinal fluid393–395 and animal 

models396, 397 have also been proposed.

After ICH, plasma and brain tissue levels of miR-124 were increased followed by a slow 

decrease with patient recovery.398 This is mirrored in an induced ICH rat model, with 

miR-124 levels returning to normal by day 60.398 In an erythrocyte lysate model of ICH, 

miR-124 was significantly downregulated in microglia.399 However, when microglia were 

transduced with miR-124, M1 markers decreased, M2 markers increased, and microglia-

induced cytotoxicity of neurons decreased.399 In vivo, mimics of miR-124 also reduced 

water content of the mouse brain.399 This study further showed that miR-124 acts by way of 

BCL-2, BCL-XL, and C/EBP-α to produce these neuroprotective effects.399

In ICH and SAH, let-7a and let-7c also play important roles and have shown to have 

neuroprotective efficacy. In both thrombin-induced cytotoxicity models and induced ICH rat 

models, let-7c was significantly upregulated.400 Administration of a let-7c antagomir 

reduced numbers of MPO+ neutrophils and OX42+ microglia in the basal ganglia and 

cortex.400 In addition, let-7c antagomir treatment improved functional outcome and 

decreased cell death by restoring IGF1 and p-AKT.400 In the endovascular perforation SAH 

mouse model, melatonin improved neurological scores and reduced brain water content 

through the H19 lncRNA, which associates with let-7a and the let-7a target NGF.401

A number of other miRNAs that have shown therapeutic potential by modulating 

inflammatory responses have also been identified. Administration of miR-126–3p mimic 

reduced MPO+ neutrophils, OX42+ microglia, and apoptosis in ICH rats.402 Restoration of 

miR-126 in ICH rats showed neuroprotection, by VEGF upregulation and caspase-3 

inhibition.403 MiR-144 upregulation in ICH mice was shown to downregulate the mTOR 

pathway.404 Inhibition of miR-144 with an antagomir reduced autophagy and inflammation 

as well as improved function in ICH mice.404 Augmentation of miR-132 in ICH mice 

reduced brain edema and restored integrity to the BBB.405 MiR-233 was shown to directly 

bind to and downregulate NLRP3 of the inflammasome after ICH in mice406, providing 

another mechanism through which inflammation can be prevented. Finally, restoration of 

miR-27a-3p levels after collagenase-induced ICH in rats improved functional recovery by 

inhibiting aquaporin-11, increasing BBB integrity, and decreasing edema.407

Dysregulation of lncRNA expression has been observed in several models of hemorrhagic 

stroke. A study in rats found 64 upregulated and 144 downregulated lncRNA in early brain 

injury after SAH.408 In mice, SAH led to upregulation of 103 lncRNAs and downregulation 

of 514 lncRNAs.409 A preliminary study on ICH in rats found 625 differentially expressed 
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lncRNA corresponding to 826 mRNA.410 Within human studies, 2926 differentially 

expressed lncRNA were identified in intracranial aneurysm tissue and superficial temporal 

arteries.411 However, further research is needed to identify the specific roles of lncRNAs in 

hemorrhagic stroke pathogenesis.

Traumatic Brain Injury (TBI)

Traumatic brain injury (TBI) affects nearly 4 million Americans each year and accounts for 

a large percentage of injury-related deaths.412 Diffuse brain injuries, affecting the entire 

brain, and focal brain injuries, affecting a specific area of the brain, are most commonly 

caused in the field of battle or motor vehicle accidents.412–415 TBI presents with a host of 

neurological symptoms from contusions and hemorrhage to mood changes and memory loss.
412, 413, 416 At the molecular level, homeostasis of excitatory neurotransmitter release is 

disrupted, axonal stretching and shearing occurs, and neurodegenerative pathology like 

amyloid plaques may appear.412, 417–421 Although the epigenetic study of TBI is in its 

infancy, results pointing towards therapeutic intervention are promising (Table 6).

In a weight drop model of TBI in adult rats, global cellular DNA hypomethylation was 

observed within 24 hours and up to 48 hour post-injury.422 Activated microglia/macrophages 

were identified as the major source of the reduced 5-mC in the peri-lesion area.422 Within 

repeated blast-injury model of TBI in rats, significant differential methylation between 

neurons and glia has been shown in the transforming growth factor β (TGF-β) pathway, 

which includes genes like MAP2K6, RUNX3, NODAL, and SMAD1 which regulates cell 

survival.423 Hypermethylation and decreased expression of the aralkylamine N-

acetyltransferase AANAT gene that mediates serotonin-to-melatonin conversion was also 

observed.423 In blast-induced TBI in rats, there was a negative correlation between blast 

severity and global DNA methylation levels in the hippocampus, indicating that the degree 

of injury may influence methylation imbalance.424 In a rat blast model of TBI, hippocampal 

DNMT1, DNMT3b, TET2, TET3 and TDG expression increased while prefrontal cortical 

DNMT3b expression was decreased and TET2 expression was increased two weeks 

following injury.425 In addition, controlled cortical impact (CCI) induced TBI in rats 

upregulates insulin-like growth factor 1B (IGF-1B) hippocampal and cortical mRNA levels.
426 Three days after injury, when IGF-1B mRNA levels are highest, the P1 promoter region 

and sites upstream/within exon 5 are hypermethylated while the P2 promotor region is 

unchanged and sites downstream of exon 5 are hypomethylated with respect to sham 

animals.426 IGF-1B has been implicated in neural plasticity and regeneration and is 

considered as a potential therapeutic target after TBI.427

Several epigenetic marks of histone acetylation that activate gene expression including 

H3k9ac and H3K4me3 at the P1 promoter region, H3K9ac, H3K14ac, H3K36me3, and 

H3K4me3 at the P2 promoter region, and H3K9ac, H3K36me3, and H3K4me3 at exon 5 of 

IGF-1B are also increased after CCI injury in rats three days after injury.426 In the 

hippocampal CA3 region, both acetylation and methylation were decreased 6–72 hours after 

CCI injury in another rat study.428 Following closed head injury TBI in mice, administration 

of the HDAC inhibitor ITF2357 was shown to be neuroprotective by preventing H3 

deacetylation.429 Several other HDAC inhibitors were also tested after TBI. VPA decreases 

Bertogliat et al. Page 18

Neurochem Int. Author manuscript; available in PMC 2021 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lesion volume and improves motor function in rats subjected to CCI TBI.430, 431 Combined 

administration of sub-effective VPA and lithium doses had the same influence on mice 

subject to CCI injury.432 Fluoxetine induces neurogenesis in CCI injury mice; however, no 

improvement in gait or spatial learning and memory is seen.433 Furthermore, sodium 

butyrate administration to mice subject to CCI injury increases histone acetylation, but does 

not significantly improve function unless combined with behavioral training.434

Several studies have shown that dysregulation of hundreds of miRNAs occurs in the rodent 

hippocampus and cortex following TBI as early as 1 hour, and up to 7 days post injury.
435–440 Distinctive miRNA expression profiles have been observed in a temporal manner 

following TBI, indicating the association of various miRNAs with differing stages of TBI 

progression. Altered miRNAs have been associated with processes that regulate 

transcriptional regulation, oxidative stress, metabolism, synaptic signaling and signal 

transduction, inflammation, neurogenesis, angiogenesis and apoptosis.435, 437, 439 

Interestingly, a mouse study using a weight drop model of TBI, showed that differential 

expression of miRNAs may also be observed depending on the severity of TBI.441

A study performed in the rat hippocampus found 10 miRNAs that were consistently altered 

from 1 hour to 7 days following moderate TBI. Of these, miR-144, miR-153 and miR-340–

5p were elevated and their predicted targets calcium/calmodulin-dependent serine protein 

kinase, nuclear factor erythroid 2-related factor (Nrf2) and alpha-synuclein were 

downregulated, respectively.437 Although the roles of miR-144, miR-152 and miR-340–5p 

in TBI have not been evaluated, their targets have been shown to play important roles in 

neuroprotection and are implicated in learning and memory following TBI in rats.437, 442 

Other miRNAs with important roles in TBI include miR-23a and miR-27a which have been 

shown to reduce apoptosis and modulate autophagy in a neuroprotective manner following 

overexpression or mimetic treatment in rodent models of TBI.443–445 MiR-124–3p was 

shown to increase in microglia and microglial exosomes from mouse brain extracts after 

treatment with repetitive CCI injury.446 Administration of exosomes derived from microglia 

overexpressing miR-124–3p improved mice neurological recovery following repetitive CCI 

by downregulating mTOR and reducing inflammation.446 Let-7c-5p overexpression was also 

shown to reduce inflammatory processes by attenuating microglial activation, which led to 

reduced brain edema improved neurological scores in mice subjected to CCI.447 

Interestingly, miR-155 has been shown to be both neuroprotective448, 449 and damaging to 

the brain.450 The differences in experimental design may have led to these results as the first 

study tested miR-155 knockout mice with CCI448, the second used the formononetin drug to 

modulate miR-155 in rats using weight drop injury449 and the third tested RNA silencing of 

miR-155 in mice with CCI.450

Other studies have shown that miR-21 expression is consistently upregulated from 6h to 72h 

in the cortex and from 24h to 72h in the hippocampus following CCI in rodents436, 440, 451, 

indicating miR-21 may play a pivotal role in pathology of TBI progression. In a study 

evaluating age differences, miR-21 was upregulated in adult mice subject to brain injury; 

however, miR-21 was not altered following injury in elderly mice.452 Despite increased 

expression of miR-21 upon TBI, miR-21 mimetic administration has been shown to be 

neuroprotective against scratch-cell injury in cortical neurons453 as well as rats subjected to 
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fluid percussion.454 Co-culture of scratch-injured neurons with miR-21–5p-overexpressing 

neurons or administration of miR-21–5p overexpressing exosomes was also neuroprotective.
455 Finally, MiR-21 mimic administration in rats with or without hydrogen gas treatment 

improved functional outcome following CCI or fluid percussion injury, respectively.456, 457 

In addition to hippocampal tissue, miR-21 expression increased in extracellular vesicles after 

TBI, suggesting its promise in future biomarker screens.458

There have been several attempts to establish miRNA profiles to serve biomarker 

development. Differential expression has been surveyed in serum459–462, plasma463–467, 

CSF462, 468–470, saliva468, and extracellular vesicles471 of humans and animals. Several 

therapeutic interventions such as exercise hypothermia have been shown to alter the miRNA 

profiles and improve cognitive function and recovery following TBI in rodents.472–474 The 

let-7 family has been involved in multiple studies467, 469 and may prove to be a promising 

pathway in TBI.

Emerging evidence indicates lncRNAs may be implicated in TBI. Microarray studies have 

revealed significant alterations in lncRNA expression in the brain following rodent models 

of TBI.475–477 Administration of MALAT1 deficient exosomes derived from adipose stem 

cells caused rats to develop larger lesions following CCI.478 Bioinformatics analysis 

revealed that MALAT1 might modulate pathways related to inflammation and cell 

regeneration, indicating potential therapeutic effects of MALAT1 in TBI.478 In mice 

subjected to CCI, NEAT1 overexpression inhibited apoptosis and inflammation, while 

knockdown of NEAT1 downregulated hundreds of genes, many of which are involved in 

synaptic and axonal health.479

Epilepsy

Epilepsy, a group of neurological disorders characterized by recurrent seizures, affects 50 

million people globally.480, 481 Epilepsy encompasses both focal and generalized seizures; 

however, most common is temporal lobe epilepsy (TLE) which often presents with 

hippocampal sclerosis.481–484 Epilepsy can be brought about by trauma, an infection, or 

improper neurodevelopment leading to neuronal hyperexcitability that can lie latent for 

years.481, 485 The disorders are commonly marked by anxiety, cognitive defects, and 

decreased social interaction.481, 486, 487 Although antiepileptic drugs are given to reverse 

excitability, they do not target the root cause of the disorder and over 30% of patients 

become drug resistant.483, 485, 488, 489 In addition, surgical intervention has a nearly 50% 

failure rate.483, 490 Target genes in epileptogenesis that lead to several pathways of 

dysfunction have been established, including synaptic plasticity, ion transport, and 

inflammation, suggesting epigenetic therapies may be possible (Table 7).483, 491–497

There have been several attempts to characterize DNA methylation within epilepsy. Global 

hypermethylation has been observed in epileptic human and mouse hippocampal specimens 

affecting pathways such as neuron remodeling and maturation.498, 499 Levels of DNMT1 

and DNMT3a were increased in human TLE neocortices specifically in NeuN-positive 

neurons, but not GFAP-positive astrocytes.500 Comparisons of brain tissue between drug-

refractory epileptic patients and control patients showed differential methylation of 224 

genes.501 A ketogenic, high fat, low carbohydrate diet was shown to reverse global 
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hypermethylation and ameliorate seizure progression in pilocarpine-induced epileptic 

rats499, indicating that aberrant methylation promotes pathology. Interestingly, induction of 

epilepsy in rats through focal amygdala stimulation, systemic pilocarpine injection, or lateral 

fluid-percussion induced traumatic brain injury did not result in a similar spatiality or degree 

of methylation despite global hypermethylation across all three models.502 This suggests 

that although global hypermethylation is a general feature of epilepsy, distinct DNA 

methylation patterns exist depending on etiology.502

In humans with focal epilepsy and febrile seizures, the promoter of carboxypeptidase 6 

(CPA6), a gene involved in familial and sporadic cases of epilepsy, is highly methylated 

compared to controls.503 Patients with TLE were shown to have increased reelin promoter 

methylation, a gene important to hippocampal development.504 Subjects with juvenile 

myoclonic epilepsy have varied methylation of cation-chloride transporters, with lower 

sodium-potassium-chloride cotransporter 1 methylation and higher potassium-chloride 

transporter member 5 methylation in the epilepsy group.505 Increased methylation of 

ionotropic glutamate receptor 2 (GRIA2) has been observed in hippocampal slices of mice 

and rats subjected to kainic acid-induced epilepsy, which was reversed with administration 

of the DNMT inhibitor RG108.506 TLE patients and pilocarpine-induced epileptic rats 

display decreased levels of Ras-guanine nucleotide-releasing factor 1 (RASgrf1) in the 

neocortex and hippocampus, respectively.507 In mice subject to acute epileptic seizures 

using kainic acid, the RASgrf1 promoter was methylated, suppressing levels of RASgrf 

mRNA; however, treatment with the DNMT inhibitor RG108 reversed this trend as well as 

reduced seizures.508 During memory consolidation in kainic acid-induced TLE rats, 

methylation of BDNF was significantly decreased leading to an upregulation of BDNF 

mRNA and increased memory deficit; however, following administration of methionine, 

BDNF methylation was increased, BDNF mRNA was decreased, and memory deficits were 

reversed.509

The methylation pattern of noncoding gene promoters has also been studied. In human 

hippocampus specimens, 12 differentially methylated miRNA were discovered, with half 

hypomethylated and upregulated and half hypermethylated and downregulated.498 This same 

study found hypermethylation of several lncRNAs including UCA1, ADARB2-AS1, 

LINC324, and MAP3K14-AS1.498 In a study characterizing epileptic whole blood samples, 

87% and 85% of differentially methylated lncRNA and miRNA promoters were 

hypermethylated, respectively.510 Differentially methylated lncRNA were related mRNAs 

involved in ion/gated channel activity, GABA receptor activity, and synaptic transmission 

while differentially methylated miRNA were related to neuronal projection and 

differentiation, protein kinase activity, and axonal guidance.510

Several studies have attempted to characterize the landscape of histone modifications within 

epilepsy. Expression of HDAC5 and HDAC9 was shown to increase significantly in mice 

subject to kainic acid, while expression of HDAC5 and HDAC9 decreased in pilocarpine-

induced epileptic mice.511 In addition, both epileptic groups of mice showed a sharp 

decrease in HDAC7 expression during the acute seizure period.511 Kainic acid-induced 

epileptic mice displayed decreased HDAC1, 2, and 11 expression in the acute phase (2–6h 

after kainic acid treatment) followed by a subsequent increase of all class I HDACs from 12–
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48 hours.512 Pilocarpine-treated mice model showed similar acute results, but HDAC2, 3, 

and 8 were decreased during the chronic phase (14 and 28 days following pilocarpine 

treatment).512 In rats, pilocarpine exposures led to decreased hippocampal acetylation of H4 

at the GRIA2 promoter, downregulating GRIA2 mRNA expression.513 However, 

administration of the HDACi TSA reversed deacetylation and prevented GRIA2 mRNA 

downregulation.513 Interestingly, this study also found that H4 acetylation increased at the 

BDNF promoter P2.513 The findings of this study complement the previously discussed 

methylation studies and point to both DNA methylation and histone acetylation playing a 

role in GRIA2 and BDNF levels in epilepsy.

Rodent studies have shown promise for HDACi treatment in epilepsy. Administration of SB 

or VPA in WAG/Rij rats (a model for absent epilepsy that displays H3 and H4 

hypoacetylation) increased brain histone acetylation, decreased HDAC1 and HDAC3 

expression, and reduced seizures.514 Furthermore, the protective effects were intensified by 

co-administration of SB and VPA.514 SB was also used in a mouse kindling model of TLE 

which showed decreased HDAC expression, reduced seizures, and decreased mossy fiber 

sprouting.515

The field of noncoding RNA within the pathogenesis, prediction, and prevention of epilepsy 

has been extensively explored. MiR-134 has been found to be an important factor in 

dendritic spine density and morphology in pilocarpine- or kainic acid-induced mouse models 

of epilepsy.516, 517 MiR-134 inhibition reduced seizures in multiple rodent models of 

epilepsy.516–518 In the pilocarpine mouse model of status epilepticus, dendritic spine volume 

increased upon administration of a cholesterol-tagged locked nucleotide acid (LNA) 

miR-134 antagomir in CA3 pyramidal neurons.516 Pre-treatment with the LNA antagomir 

and subsequent induction of status epilepticus resulted in increased survival and decreased 

seizures.516 Another study showed that miR-134 LNA antagomir reduced dendritic spine 

density in CA3 pyramidal neurons, but still prevented seizures in kainic acid-treated mice.
517 In the mouse pentylenetetrazol-induced model of epilepsy, LNA miR-134 antagomir 

treatment reduced the number of spontaneous seizures and convulsive behavior.518 Similarly, 

rats subjected to the perforant pathway stimulation model showed reduced spontaneous 

seizures with LNA miR-134 antagomir treatment.518

Status epilepticus induced by kainic acid in mice was shown to increase levels of miR-132 

as well as its binding to Argonaute-2.519 Subsequent inhibition of miR-123 with an LNA 

antagomir reduced hippocampal neuronal death.519 MiR-124 was significantly reduced after 

kainic acid induction in rats and subsequent supplementation with synthetic miR-124 

inhibited NSRF, effectively contributing to neuroprotection against epilepsy.520 However, 

miR-124 supplementation also promoted inflammation, by enhancing microglia activation, 

effectively contributing to the epileptic state.520 Another study showed that 

intrahippocampal administration of miR-124 reduced the severity and occurrence of seizures 

in both the pentylenetetrazole- and pilocarpine-induced rat models of epilepsy by repressing 

of CREB, a key protein in epileptogenesis.520, 521 Importantly, it has been shown that 

miR-124 was decreased in the hippocampus of adult patients with TLE520, while miR-124 

was upregulated in the hippocampus of children with mesial TLE522, revealing dynamic 

differences of this miRNA with age and etiology.
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Pilocarpine-induced temporal lobe epilepsy in mice resulted in the upregulation of 22 

lncRNA and downregulation of 83 lncRNA in the hippocampus.523 Another mouse study 

identified the dysregulation of 384 lncRNA in the pilocarpine model and 279 in the kainic 

acid model when analyzing whole brain, olfactory bulb, and cerebellum tissue.524 The 

lncRNA UCA1 was shown to increase in tandem with NF-κB after pilocarpine-induced 

epilepsy in the brain of rats525 and UCA1 overexpression inhibited apoptosis and suppressed 

seizures.526 Finally, the lncRNA H19 is significantly upregulated in the latent period of 

pilocarpine-induced and kainic acid-induced epilepsy in rats where it was shown to regulate 

apoptosis through sponging of let-7b.527 Microarray analysis following knockdown or 

overexpression of H19 in kainic-acid induced epileptic rats revealed involvement of H19 in a 

number of epileptogenic processes including demyelination, immune response, and 

inflammation.528 Inhibition of H19 was shown to protect against hippocampal neuronal 

death in kainic acid-treated rats527, indicating a potential role for H19 as a therapeutic target 

in epilepsy.

Several studies have been conducted to identify miRNA biomarkers of epilepsy in serum, of 

which the most accurate predict the disorder with 81.2% sensitivity.529, 530 Other studies 

have observed expression profiles that distinctly identify epilepsy in human cerebrospinal 

fluid531, rat hippocampus and peripheral blood532, rat hippocampal granule cells and 

plasma533, and rat synaptosomes.534, 535 Profiling studies have also characterized miRNA 

from the hippocampus of epilepsy patients with TLE, showed overall failure of mature 

miRNA processing due to Dicer loss in TLE and identified dysregulation of a number of 

miRNAs involved in immune response.536, 537 Mooney et al. has provided a comprehensive 

database known as EpimiRBase providing a plethora of miRNA-epilepsy associations in 

both human and animal studies538 facilitating future work in identifying key miRNAs 

involved pathophysiology or as biomarkers.

CONCLUSION & FUTURE DIRECTIONS

Advancements in epigenetics have revolutionized our understanding into the mechanisms 

involved in brain diseases. The evidence thus far from various disease models from cell lines 

to the post-mortem human brain reveals a critical role for epigenetic dysfunction in 

neurodegenerative diseases and acute brain injury. These studies demonstrate that epigenetic 

imbalances in DNA methylation and histone modifications by molecular readers, writers and 

erasers predispose the brain to disease as well as influence neurological recovery. While the 

role of epigenetics in diseases of the brain is still emerging, it is clear that restoration of 

epigenetic imbalances may provide potential treatments that lead to recovery. HDAC 

inhibitors have emerged as an overlapping therapy among all of the brain diseases discussed. 

However, despite the protective effects shown in animal studies, some studies have shown 

certain downsides to HDAC inhibitor therapy including inflammation, oxidative stress and 

apoptosis.539–541 Therefore, additional research is needed to further delineate the molecular 

mechanisms by which HDAC inhibitors function in various CNS disorders. Profiling of 

blood biomarkers is another promising clinical epigenetic approach that may help diagnosis 

and therapeutic development for CNS disorders. Biomarker profiling of DNA methylation 

and miRNA has already been used to develop prognostic and diagnostic indicators in brain 

disorders, and epigenetic profiles in neurological diseases continue to be developed. More 
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recently, lncRNA profiling has emerged as an additional potential biomarker tool. 

Modulation of various epigenetic regulatory mechanisms has been shown to provide 

therapeutic potential against several pathophysiological mechanisms. However, the current 

challenge lies in further elucidating the interplay between epigenetic changes and the 

downstream effects on gene expression and the complex cellular environment of the 

diseased brain.
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Fig. 1: DNA methylation and hydroxymethylation.
DNA methylation occurs through the addition of a methyl (CH3) group to the cytosine of 

DNA by DNA methyltransferases (DNMTs) to produce 5-methylcytosine (5-mC). DNA 

methylation leads to densely packed heterochromatin that is consistent with gene 

inactivation. 5-mC can subsequently be converted to 5-hydroxymethylcytosine (5-hmC) by 

the ten-eleven translocation (TET) dioxygenases. Hydroxymethylation loosens chromatin to 

promote gene activation.
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Fig. 2: Histone methylation.
Histone methylation is the addition of methyl (CH3) groups to arginine and lysine side 

chains by histone methyltransferases (HMTs). The effect of histone methylation on gene 

transcription is dependent on the location and degree of methylation. For example, 

methylation of histone 3, lysine residue 4 (H3K4) is an activating mark whereas H3K9 is a 

deactivating mark.
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Fig.3: Histone acetylation.
Histone acetylation occurs with the addition of acetyl (CH3CO) groups to lysine side chains 

by histone acetyltransferases (HATs). Acetylation reduces the steric clash between histones 

and DNA, opening up chromatin for gene transcription. Histone deacetylases (HDACs) 

reverse this modification and repress gene transcription.
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Table 1.

Therapeutic Potential of Epigenetic Modulators in Alzheimer’s Disease

Model Therapeutic Potential Modification Citation

Neuroblastoma Cells SAM reduces vitamin B12/folate deficiency-induced 
overexpression of PS1 and BACE

DNA methylation Fuso et al., 2005

Neuroblastoma Cells SAM reduces PS1 expression and Aβ plaques DNA methylation Scarpa et al., 2003

TgCRND8 mice SAM+SOD reduced vitamin B deficiency-induced AD 
features

DNA methylation Cavallaro et al., 2017

AD Humans SAM reduces inflammation in AD patients and improves 
MMSE

DNA methylation Chen et al., 2016

CK-p25 mice shRNA knockdown of HDAC2 reduces memory impairment Histone acetylation Graff et al., 2012

Tg2576 mice 4-PBA reverses brain hypoacetylation and reduces 
phosphorylated tau

Histone acetylation Ricobaraza et al., 2009

Tg2576 mice Caloric restriction and NAD+ treatment is neuroprotective via 
α-secretase

Histone acetylation Qin et al., 2006

3xTg-AD mice Nicotinamide reduces phosphor-species of tau (Thr231) and 
improves memory

Histone acetylation Green et al., 2008

rTg4510 mice AK1 is non-toxic and potentially neuroprotective Histone acetylation Spires-Jones et al., 2012

APPPS-21 mice MiR-34c seed inhibitors reverse memory deficit MiRNA Zovoilis et al., 2011

Hippocampal Neurons MiR-34c transfection reduces dendritic length and density MiRNA Kao et al., 2018

Neuroblastoma MiR-195 overexpression reduces Aβ-induced cytotoxicity MiRNA Zhu et al., 2012

Hippocampal Neurons Lentiviral overexpression of miR-101 decreases APP and Aβ MiRNA Vilardo et al., 2010

AD PC12 cells and 
hippocampal neurons

miR-16 mimic targets APP and reduces Aβ-induced 
cytotoxicity

MiRNA Zhang et al., 2015

APP/PS1 mice Lentiviral overexpression of miR-124 improves behavior 
through BACE1

MiRNA Du et al., 2017

HEK293T LNA inhibition of miR-485–5p or overexpression of BACE1-
AS increase BACE1 levels

MiRNA, lncRNA Faghihi et al., 2010

Human plasma Biomarker technique of 2 miRNAs identify AD with 95% 
specificity

MiRNA Kumar et al., 2013

Human serum exosomes Biomarker panel of 16 miRNAs identify AD with 87% 
sensitivity

MiRNA Cheng et al., 2015

Neuroblastoma Cells NEAT1 knockdown reduces AB-induced apoptosis and p-Tau 
levels

LncRNA Ke et al., 2019
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Table 2.

Therapeutic Potential of Epigenetic Modulators in Parkinson’s Disease

Model Therapeutic Potential Modification Citation

Tg-α-syn mice Lentiviral administration of DNMT1 restores nuclear 
localization dysregulated by α-syn

DNA methylation Desplats et al., 2011

Tg-α-syn Drosophila SB and SAHA decrease apoptosis in dorsomedial 
neurons

Histone 
acetylation Kontopoulos et al., 2006

N27 cells Anarchic acid reverses Dieldrin-induced H3/H4 
acetylation and apoptosis

Histone 
acetylation Song et al., 2010

N27 cells Anarchic acid reverses Paraquat-induced H3/H4 
acetylation and apoptosis

Histone 
acetylation Song et al., 2011

Tg-α-syn Drosophila AKG2 reduces α-syn-induced neurotoxicity in 
dorsomedial neurons

Histone 
acetylation Outeiro et al., 2007

Dopaminergic neurons SB and TSA increase GDNF and BDNF expression Histone 
acetylation Wu et al., 2008

Dopaminergic neurons SAHA is protective against neurotoxin-induced 
apoptosis

Histone 
acetylation Chen et al., 2012

MN9D cells, MPP+ miR-124 mimic calpain 1, p25, and cdk5 to prevent 
cytotoxicity

MiRNA Kanagaraj et al., 2014

Tg-LRRK2 Cortical neurons Overexpression of miR-205 reduces LRRK2 protein 
concentration and rescues neurite outgrowths

MiRNA Cho et a., 2013

Cortical neurons Overexpression of miR-7 and miR-153 downregulates 
SNCA mRNA expression

MiRNA Doxakis, 2010

Tg-α-syn Neuroblastoma cells
Overexpression of miR-7 prevents α-syn-induced 
sensitivity to H2O2 cytotoxicity

MiRNA
Junn et al., 2009

Neuroblastoma cells, MPP+ Overexpression of miR-7 or VDAC1 reduces MPP+-
induced oxidative stress and cell death

MiRNA Chaudhuri et al., 2016

MiR-155−/− mice
miR-155 knockout reduces inflammatory response to α-
syn

MiRNA Thome et al., 2016

Human plasma A miRNA biomarker strategy predicts PD wit 91% 
sensitivity and 100% specificity

MiRNA Khoo et al., 2012

Cortical neurons, MPP+ MiR-7 and miR-153 is protective via mTOR and 
SAPK/JNK pathways

MiRNA Fragkouli & Doxakis, 2014

Neuroblastoma cells, MPP+ MiR-7 targets RelA to provide neuroprotection MiRNA Choi et al., 2014

Tg-α-Syn mice, MPTP MiR-7 targets NLRP3 to provide neuroprotection MiRNA Zhou et al., 2016

C57 mice, MPTP and 
neuroblastoma cells, MPP+

Overexpression of miR-124 downregulates apoptotic 
and autophagic pathways

MiRNA Wang et al., 2016

PC12 cells, 6-OHDA MiR-221 prevents cytotoxicity by targeting PTEN MiRNA Li et al., 2018

C57 mice, MPTP H2S treatment downregulates miR-135a-5p to increase 
ROCK2 expression

MiRNA Liu et al., 2016

Neuroblastoma cells, MPTP MiR-185 overexpression prevents apoptosis MiRNA Wen et al., 2018

PC12 cells, MPP+ MiR-181c overexpression prevents apoptosis MiRNA Wei et al., 2017

Neuroblastoma cells, rotenone Inhibition of miR-384–5p reverses ER stress MiRNA Jiang et al., 2016

Neuroblastoma cells, MPP+ Knockout of HOTAIR attenuates neurotoxicity LncRNA Wang et al., 2017

Tg-LRRK2 Drosophila Overexpression of miR-7 or miR-184* in dopaminergic 
neurons targets DP and E2F1 as well as rescues flies 
from mLRRK2

MiRNA Gehrke et al., 2010

C57 mice, MPTP and 
neuroblastoma cells, MPP+

Inhibition of HAGLROS is protective by regulation of 
miR-100 and the mTOR pathway

LncRNA Peng et al., 2019

Neuroblastoma cells, MPP+ P21 knockdown reduces ROS, neuroinflammation, and 
apoptosis

LncRNA Ding et al., 2019
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Model Therapeutic Potential Modification Citation

Neuroblastoma cells, MPP+ Knockdown of SNGH1 or overexpression of 
miR-15b-5p is neuroprotective

LncRNA, miRNA Xie et al., 2019

Neuroblastoma cells, MPP+ Knockdown of SNGH1 decreases α-Syn aggregation 
through miR-15b-5p upregulation

LncRNA, miRNA Chen et al., 2018

MN9D cells, MPP+ and C57 
mice, MPTP

Silencing of SNGH1 acts through miRNA and the 
mTOR pathway to provide neuroprotection

LncRNA Qian et al., 2019

C57 mice, MPTP Downregulation of SNGH1 acts through upregulation of 
miR-7 suppress inflammation

LncRNA, miRNA Cao et al., 2018

MN9D cells, MPP+ Knockdown of MALAT1 deceases α-Syn-mediated 
cytotoxicity

LncRNA Chen et al., 2018

Neuroblastoma cells, MPP+ 
and C57 mice, MPTP

β-Asarone downregulates MALAT1 to prevent α-Syn 
accumulation

LncRNA Zhang et al., 2016

Neuroblastoma cells and 
HEK293T cells, paraquat

NEAT1 is upregulated and mediates fenofibrate and 
simvastatin-induced neuroprotection

LncRNA Simchovitz et al., 2019

Neuroblastoma cells, MPP+ Silencing NEAT1 derepresses miR-124, reduces 
inflammatory markers, and decreases apoptosis

LncRNA, miRNA Xie et al., 2019

Neuroblastoma cells, MPP+ NORAD overexpression decreases apoptosis, ROS, and 
LDH

LncRNA Song et al., 2019

Neuroblastoma cells, MPP+ UAC1 knockdown reduces caspase activity and 
apoptosis

LncRNA Lu et al., 2018

Wistar rats, 6-OHDA UAC1 downregulation is neuroprotective by way of 
oxidative stress and inflammation reduction

LncRNA Cai et al., 2019
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Table 3.

Therapeutic Potential of Epigenetic Modulators in Huntington’s Disease

Model Therapeutic Potential Modification Citation

mHTT Drosophila Selisistat improves survival and decreases cytotoxic 
inclusions

Histone 
acetylation Smith et al., 2014

mHTT Drosophila AK1 and AGK2 are neuroprotective by way of sterol 
biosynthesis downregulation

Histone 
acetylation Luthi-Carter et al., 2010

Htn-Q150 C. elegans Knockdown of HDA3 reduces polyglutamine toxicity Histone 
acetylation Bates et al., 2006

Tg-R6/2 mice HDACi 4b reverses H3 hypoacetylation and improves 
functional recovery

Histone 
acetylation Thomas et al., 2008

HTT-Q73 PC12 cells miR-10b-5p mimic increases cell survival MiRNA Hoss et al., 2014

HTT-Q84 Neuroblastoma cells Overexpression of miR-196a increases neurite 
outgrowth

MiRNA Fu et al., 2015

R6/2 mice MiR-132 overexpression provided neuroprotection 
and delayed disease progression

MiRNA Fukuoka et al., 2018

Tg-R6/2 mice Overexpression of miR-196a enhances neurite 
outgrowths and improves learning and memory

MiRNA Her et al., 2017

HD neural progenitor cells Overexpression of miR-196a normalized 
mitochondrial activity and decreased apoptosis

MiRNA Kunkanjanawan, et al., 2016

STHdh(Q111)/Hdh(Q111) cells Exogenous expression of miR-146a, miR-432, and 
miR-19a reversed cell cycle defects and apoptosis

MiRNA Das et al., 2015

STHdhQ7/HdhQ7 cells
Overexpression of HYPK and Hsp70 reverses 
miR-125b, miR-146a, and miR-150 expressions while 
reducing mHTT aggregates

MiRNA
Ghose et al., 2011

Neuronal stem cells derived 
from R6/2 mice MiR-27a overexpression decreased mHTT aggregates MiRNA Ban et al., 2017

mHTT sheep HTT targeting by way of artificial miRNA safely 
reduces mHTT mRNA and protein

MiRNA Pfister et al., 2018

Primary Striatal cell and 
cortical neurons, mHTT and 3-
NP

MiR-22 overexpression is neuroprotective
MiRNA

Jovicic et al., 2013

R6/2 neurons MiR-27a overexpression decreases mHTT aggregates 
by way of MDR-1

MiRNA Ban et al., 2017

Neuroblastoma cells, H2O2
Neat1 transfection increases tolerance to oxidative 
stress

LncRNA Sunwoo et al., 2017

HEK293 cells and 
neuroblastoma cells

Overexpression of HTTAS_v1 decreases HTT levels 
in a gene-specific manner

LncRNA Chung et al., 2011
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Table 4.

Therapeutic Potential of Epigenetic Modulators in Ischemic Stroke

Model Therapeutic Potential Modification Citation

129/SV mice, MCAO 5’-aza-dC as well as TSA reduced infarct size DNA methylation Endres et al., 2000

SD rats, HI 5’-aza-dC protects against nicotine-induced 
susceptibility

DNA methylation Li et al., 2013

Wistar rats, photothrombotic 
stroke

TST or TST+5’-aza-dC upregulates BDNF and 
improves neurological score

DNA methylation Choi et al., 2018

HT22 cells
5’aza-dC downregulates DNMT1, induces S phase 
arrest, and inhibits early apoptosis while promoting 
late apoptosis

DNA methylation
Yang et al., 2017

ICR mice, MCAO SC1 reverses mitochondrial 5hmC upregulation by 
inhibiting TET2 leading to increased levels of ATP

DNA 
hydroxymethylation Ji et al., 2018

C57 mice, MCAO Overexpression of Polycomb proteins SCMH1 and 
BMI1 is neuroprotective

Polycomb protein Stapels et al., 2010

Cortical neurons, CA and 3-
NP

Overexpression of BMI1 acts by way of antioxidant 
genes to provide protection

Polycomb protein Abdouh et al., 2012

Wistar rats, 4-VO VPA confers inflammatory protection and improves 
functional recovery

Histone acetylation Xuan et al., 2012

SD rats, MCAO VPA, SB, or TSA prevent hypoacetylation of H3, 
prevent inflammation, and reduce infarct volume

Histone acetylation Kim et al., 2007

C57 mice, MCAO SAHA reverses H3 hypoacetylation, promotes 
Hsp70 and BCL-2, and reduces infarct volume

Histone acetylation Faraco et al., 2006

C57 mice, HI 4-PBA improves functional recovery via protection 
from apoptotic mechanisms

Histone acetylation Qi et al., 2004

Optic nerves, OGD SAHA and MS-275 rescue white matter Histone acetylation Baltan et al., 2011

Cortical neurons Despite reducing ischemic infarct, HDAC inhibitors 
are cytotoxic to cells they do not protect

Histone acetylation Langley et al., 2008

SD rats, forebrain ischemia MiR-181a antagomir decreases CA1 neuron death MiRNA Moon et al., 2013

Primary astrocytes, GD MiR-181a inhibition decreases apoptosis via 
upregulation of BCL-2 and MCL-1

MiRNA Ouyang et al., 2012

C57 mice, MCAO Overexpression of miR-124 is neuroprotective by 
downregulation of REST and Usp-14

MiRNA Doeppner et al., 2013

C57 mice, MCAO MiR-124 agomir reduces infarct volume MiRNA Sun et al., 2013

C57 mice, MCAO Liposomated miR-124 reduces inflammatory 
markers and infarct volume

MiRNA Hamzei et al., 2016

PC12 cells, OGD MiR-124 mimic activates the PI3K/AKT pathway 
and reduces apoptosis

MiRNA Wang et al., 2017

SD rats, MCAO MiR-124 knockdown or miR-124 antagomir is 
neuroprotective

MiRNA Zhu et al., 2014

SD rats, MCAO MiR-155 inhibition reduces infarct volume MiRNA Xing et al., 2016

C57 mice, MCAO MiR-155 inhibition reduces infarct volume MiRNA Caballero-Garrido et al., 
2015

Oligodendrocyte precursors MiR-146a overexpression increases myelination MiRNA Liu et al., 2017

Neuroblastoma cells, OGD MiR-146a inhibition prevents apoptosis via Fblx10 
upregulation

MiRNA Li et al., 2017

C57 mice, MCAO
Lentiviral overexpression of miR-424 is 
neuroprotective via cell cycle arrest and 
inflammatory suppression

MiRNA
Zhao et al., 2013

C57 mice, MCAO MiR-424 antagomir is neuroprotective by way of 
oxidative stress prevention

MiRNA Liu et al., 2015
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Model Therapeutic Potential Modification Citation

C57 mice, MCAO The inhibitor TAT-p53-DBD270–281 uncouples 
MEG3 from p53 to provide neuroprotection

LncRNA Yan et al., 2016

SHR rats, MCAO Knockdown of FosDT derepresses REST genes and 
improves functional recovery

LncRNA Mehta et al., 2015

C57 mice, MCAO MiR-181a antagomir reduces inflammation and 
infarct size while improving behavioral recovery

MiRNA Xu et al., 2015

PC12 cells, OGD MiR-210 overexpression protects against apoptotic 
events

MiRNA Qiu et al., 2013

C57 mice, MCAO MiR-210 overexpression increases BDNF and 
improves neurological scores

MiRNA Zeng et al., 2016

SD rats, MCAO MiR-210 promotes vagus nerve stimulation-
mediated recovery

MiRNA Jiang et al., 2015

C57 mice, MCAO Inhibition of miR-210 attenuates inflammatory 
response

MiRNA Huang et al., 2018

C57 mice, MCAO Inhibition of MALAT1 is neuroprotective by way of 
decreasing autophagy

LncRNA Guo et al., 2017

SD rats, MCAO Sh-MEG3 administration improves functional 
recovery and promotes angiogenesis

LncRNA Liu et al., 2017

Human serum Peng et al. used let-7e to predict acute stroke with 
73.4% sensitivity and 82.8% specificity

MiRNA Peng et al., 2015

C57 mice, MCAO MEG3 knockdown prevents apoptosis LncRNA Yan et al., 2017

BV2 cells, OGD H19 knockdown reduces inflammation to provide 
neuroprotection

LncRNA Wang et al., 2017

Neuroblastoma cells, OGD Overexpression of N1LR prevents apoptosis LncRNA Wu et al., 2017

C57 mice, MCAO and 
cortical neurons, OGD

Knockdown of GAS5 is neuroprotective via 
decreased competition with miR-137

LncRNA, miRNA Chen et al., 2018
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Table 5.

Therapeutic Potential of Epigenetic Modulators in Hemorrhagic Stroke

Model Therapeutic Potential Modification Citation

Intracranial aneurysm 
humans

RIC, a method used to protect against post-SAH events, 
dysregulates cell cycle and inflammatory genes

DNA methylation Nikkola et al., 2015

CD-1 mice, ICH SAHA reverses H3 and H4 hypoacetylation to provide 
neuroprotection

Histone acetylation Sukumari-Ramesh et al., 
2016

SD rats, ICH VPA prevents inflammation via activation of H3 genes Histone acetylation Sinn et al., 2007

Microglia, erythrocyte 
lysate ICH

miR-124 mimics reduce M1 markers and increase M2 
markers

MiRNA Yu et al., 2017

C57 mice, endovascular 
perforation

Melatonin is neuroprotective by way of H19-let-7a-NGF 
interaction

MiRNA, lncRNA Yang et al., 2018

SD rats, ICH Let-7c antagomir reduces reactive microglia and neutrophils 
as well as improves functional outcome

MiRNA Kim et al., 2014

SD rats, ICH miR-126 mimics reduces reactive microglia and neutrophils 
as well as apoptosis

MiRNA Xi et al., 2017

C57 mice, ICH Augmentation of miR-132 reduces permeability of the BBB MiRNA Zhang et al., 2017

BALB/c mice, ICH Inhibition of miR-144 downregulates autophagy, reduces 
inflammation, and leads to improved functional recovery

MiRNA Yu et al., 2017

SD rats, ICH Restoration of miR-27a-3p is neuroprotective by way of 
aquaporin-11

MiRNA Xi et al., 2018
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Table 6.

Therapeutic Potential of Epigenetic Modulators in Traumatic Brain Injury

Model Therapeutic Advantage Modification Citation

Sabra mice, CHI ITF2357 reverses downregulation of Hsp70 and H3 
hypoacetylation to provide neuroprotection

Histone acetylation Shein et al., 2009

C57 mice, CCI SB in combination with water maze training improves 
memory

Histone acetylation Dash et al., 2009

SD rats, CCI VPA reduces inflammation and apoptosis Histone acetylation Tai et al., 2014

C57 mice, CCI VPA in combination with lithium prevents H3 
hypoacetylation and reduces lesion volume

Histone acetylation Yu et al., 2013

SD rats, CCI VPA prevents the hypoacetylation of H3 and H4 while 
decreasing the permeability of the BBB

Histone acetylation Dash et al., 2010

C57 mice, CCI Fluoxetine prevents H3 and H4 hypoacetylation while 
inducing hippocampal neurogenesis

Histone acetylation Wang et al., 2011

Wistar rats, HCb RvD1 administration is neuroprotective via ALX/FPR2 MiRNA Bisicchia et al., 2018

SD rats, FPI MiR-21 agomir upregulates (Ang-1)/Tie-2 to decrease BBB 
leakage

MiRNA Ge et al., 2015

SD rats, CCI H2 gas increases miR-21 and improves BBB permeability MiRNA Wang et al., 2018

Wistar rats, weight drop Formononetin reverses miR-155 downregulation and 
improves functional recovery

MiRNA Li et al., 2017

C57 mice, CCI MiR-155 antagomir prevents against inflammation and 
reduces lesion volume

MiRNA Henry et al., 2019

C57 mice, CCI MiR-23a and miR-27a mimics provide neuroprotection via 
decreased apoptotic markers

MiRNA Sabirzhanov et al., 2014

Cortical neurons, scratch MiR-21 overexpression is neuroprotective MiRNA Han et al., 2014

HT-22 neurons, scratch MiR-21–5p overexpressing cells or exosomes aid in 
neuroprotection of other neurons

MiRNA Li et al., 2019

SD rats, fluid percussion MiR-21 agomir prevents apoptosis and promotes angiogenesis MiRNA Ge et al., 2014

SD rats, weight drop MiR-23a overexpression downregulates ATG12 to suppress 
autophagy

MiRNA Sun et al., 2018

SD rats, weight drop MiR-27a overexpression downregulates FoxO3a to suppress 
autophagy

MiRNA Sun et al., 2017

BV2 microglia, rTBI and 
C57 mice, rTBI

Exosomes derived from miR-124–3p overexpressing 
microglia are neuroprotective

MiRNA Huang et al., 2018

C57 mice, CCI Let-7c-5p mimic decreases microglial activation to provide 
functional recovery

MiRNA Lv et al., 2018

C57 mice, CCI Neat1 knockdown is neuroprotective LncRNA Zhong et al., 2017

SD rats, weight drop MiR-144 antagomir improves functional recovery and long-
term potentiation

MiRNA Sun et al., 2017

C57 mice, CCI Voluntary running wheel improves functional recovery and 
dysregulates miR-34a and miR-21

MiRNA Bao et al., 2014

C57 mice, CCI Voluntary running wheel improves functional recovery and 
dysregulates several miRNA

MiRNA Miao et al., 2015

SD rats, fluid percussion Therapeutic hypothermia improves functional recovery and 
dysregulates miR-874 and miR-451

MiRNA Truettner et al., 2011
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Table 7.

Therapeutic Potential of Epigenetic Modulators in Epilepsy

Model Therapeutic Potential Modification Citation

Wistar rats, pilocarpine Ketogenic diet reduces global methylation and seizure severity DNA methylation Kobow et al., 2013

C57 mice, kainic acid RG108 prevents RASgrf1 methylation and reduces seizures DNA methylation Chen et al., 2017

SD rats, kainic acid Methionine restores BDNF methylation to improve memory DNA methylation Parrish et al., 2015

SD rats, pilocarpine TSA reverses deacetylation of H4 at the GRIA2 promoter Histone acetylation Huang et al., 2002

WAG/Rij rats Pretreatment of SB, VPA, or both reduces seizure severity Histone acetylation Citraro et al., 2019

C57 mice, hippocampus kindling SB improves functional recovery and reduces epileptic 
morphology

Histone acetylation Reddy et al., 2018

Human serum Epilepsy can be predicted with 81% specificity by miRNA 
biomarkers

MiRNA Wang et al., 2015

C57 mice, pilocarpine miR-134 antagomir reduced number of mice that developed 
seizures and reduced severity in those that did

MiRNA 24874920

C57 mice, pentylenetetrazol miR-134 antagomir reduces seizure severity and epileptic 
behavior

MiRNA 28325299

C57 mice, kainic acid miR-132 antagomir reduces neurotoxicity after seizures MiRNA 21945804

SD rats, kainic acid Upregulating miR-124 has both anti-epileptic and pro-epileptic 
effects

MiRNA 26947066

SD rats, kainic acid Inhibition of H19 prevents neurotoxicity after seizures LncRNA 29795132
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