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Leukemia inhibitory factor (LIF) is a monomeric glycoprotein and belongs to the IL6 

subfamily of the large "four-helix super-family" of cytokines. LIF acts on responding cells 

by binding to a heterodimeric membrane receptor complex composed of the ligand-specific 

LIF receptor (LIFR) and its coreceptor glycoprotein 130 (gp130 or IL6ST), which is shared 

by all the IL6 family receptor complexes. Despite common signal transduction mechanisms 

(JAK/STAT, ERK MAPK, and PI3K/AKT), LIF can exert opposite effects by stimulating or 

inhibiting cell differentiation, proliferation and renewal, and survival, depending upon cell 

type and maturity, and it has been regarded as the most pleiotropic member of the IL6 family 

of cytokines (1). LIF is now recognized to be at the heart of many physiologic processes 

throughout life, starting from embryo implantation to tissue-specific homeostasis, such as 

platelet formation, proliferation of some hematopoietic cells, bone formation, adipocyte lipid 

transport, adrenocorticotropic hormone production, neuronal survival and formation, muscle 

satellite cell proliferation, and acute-phase production by hepatocytes (2).

LIF is best known as a stem cell factor. Originally, it was independently purified and cloned 

as the embryonic stem cell differentiation inhibitory activity, which specifically suppresses 

the spontaneous differentiation of mouse embryonic stem cells in vitro (3-5). On the basis of 

this property, LIF is used extensively in experimental biology by virtue of its key ability to 

maintain the self-renewal and pluripotency of mouse embryonic stem cells and induced 

pluripotent stem cells. Moreover, studies on LIF knockout mice have revealed that LIF has 

physiologic, nonredundant actions in maternal receptivity to blastocyst implantation, 

placental formation, and in the development of the nervous system, and is essential for 

blastocyst implantation and the normal development of hippocampal and olfactory receptor 

neurons (6). In addition, in LIF−/− mice mammary gland involution is delayed and reduced 

apoptosis is seen, while mammary glands show precocious development during pregnancy, 
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indicating that LIF also plays a crucial role in involution following weaning (7). Finally, LIF 

also has important immunosuppressive functions during embryo implantation by regulating 

the numbers and migration of macrophages, uterine natural killer cells, and eosinophils (8, 

9), and similar effects were observed in a very recent study showing that LIF prevents CD8+ 

T-cell infiltration into the tumor while at the same time activating protumoral macrophage 

function in the tumor microenvironment thus enhancing the immunosuppressive nature of 

the tumor (10).

LIF was uncovered in the late 1980s independently by several research groups, based on the 

different biological effects it has in distinct cellular models, and was hence given multiple 

names. It was first cloned as an inducer of differentiation and inhibitor of proliferation in the 

M1 myeloid leukemic cell line (11) and therefore called leukemia inhibitory factor (LIF), 

which has remained the most commonly used name, despite it being the least appropriate 

(2). At the same time, it was also purified as human IL DA (HILDA) based on its ability to 

stimulate proliferation of murine myeloid DA2 cells (12), and as melanoma-derived 

lipoprotein lipase inhibitor that can induce severe cachexia in tumor-bearing nude mice (13). 

Despite the potential link between LIF and cancer implied by these early discoveries, and 

some reports of LIF production by cancer cells and purported effects on certain cancer cell 

lines in vitro, its importance in cancer has only recently come to the fore, especially with the 

first direct in vivo physiologic evidence (14).

Over a decade ago, the expression of both LIF and LIFR was found to be upregulated and 

associated with the development of breast cancer, regulated by epigenetic modification in the 

gene promoter region with distinct DNA methylation patterns (15, 16). But it was only 

recently that in vivo evidence emerged from xenograft studies, showing that LIF is 

implicated in breast cancer tumorigenesis, EMT, and metastasis by activating multiple 

signaling pathways such as STAT3 and AKT-mTOR, with higher LIF levels being 

significantly associated with a poorer relapse-free survival in patients with breast cancer (17, 

18). Furthermore, LIF acts in both autocrine and paracrine manners, and plays a role in 

cross-talk between tumor cells and fibroblasts to mediate the proinvasive activation of 

stromal fibroblasts (19). LIFR was also reported to be upregulated to confer drug resistance 

to HDAC inhibitors (20). Excitingly, a new study by Viswanadhapalli and colleagues 

published in this issue adds further in vivo evidence documenting the physiologic 

importance of LIF in breast cancer and also provides detailed mechanistic understanding and 

valuable insights into its translational application (21). One of the most intriguing findings in 

this study is that upregulated LIF expression occurs more prominently in triple-negative 

breast cancer (TNBC), the most aggressive breast cancer subtype with a higher propensity 

for metastasis and therapy resistance. Starting by profiling LIF and LIFR expression in 

various subtype-representative cell lines, the authors observed that by and large TNBC cells 

have higher expression of LIF and LIFR compared with ER+ breast cancer cells and normal 

mammary epithelial cells. Consistently, the TNBC cell lines with higher LIF and LIFR 

expression had much better response to LIFR inhibition in cell viability assays. Moreover, 

the efficacy of LIFR inhibition as a therapeutic strategy was evaluated in TNBC patient-

derived xenografts ex vivo and in vivo. Altogether, these findings highlighted the possibility 

that LIFR-mediated signaling can be an attractive therapeutic target for breast cancer, 

particularly TNBC. In this precision medicine era, it is crucial to find the proper patients for 
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a targeted therapy so as to maximize therapeutic efficacy, and in this scenario LIFR 

inhibition specifically for TNBC subtype is attractive. Moreover, because TNBC is the more 

aggressive breast cancer subtype that is more likely to relapse and harder to treat, effective 

targeted therapies are urgently needed but lacking so far. However, further thorough 

validation in a large number of breast cancer cases is needed to confirm the specific 

correlation between LIF upregulation with the TNBC subtype, and then to verify the 

correlation between LIF levels and prognosis in patients with TNBC. In addition, 

characterization of the therapeutic effects in this study was focused solely on the tumor cells. 

Given the reported effects of LIF on both tumor cells and associated fibroblasts (19), future 

studies should also comprehensively examine the effects on the stromal components in the 

tumor microenvironment. In this connection it should be noted, however, that LIFR 

signaling has also been reported to function as a metastasis suppressor through the Hippo-

YAP pathway (22) and confer a dormancy phenotype in breast cancer cells disseminating to 

bone (23), and therefore further evaluation in a more physiologically relevant context is 

needed to assess the roles of LIF on metastasis in breast cancer.

Genomic characterization by The Cancer Genome Atlas (TCGA) of over 20,000 primary 

tumors and matched normal samples spanning 33 cancer types revealed that the most highly 

dysregulated LIF expression occurs in pancreatic ductal adenocarcinoma (PDAC). 

Consistently, the physiologic significance and underlying cellular and molecular 

mechanisms of LIF action have been best illustrated in PDAC by several recent studies. In 

an effort to comprehensively investigate the paracrine interaction between the pancreatic 

cancer and stromal stellate cells (PSC), our systematic proteomic studies uncovered LIF as a 

key paracrine factor mainly generated by activated PSCs and inducing responses in cancer 

cells (14). We blocked LIF signaling by either genetic deletion of LIFR in cancer-deriving 

epithelial cells or by pharmacologic inhibition with a neutralizing anti-LIF antibody in the 

KPC genetically engineered mouse model of PDAC to evaluate the physiologic effects of 

LIF in PDAC. Both types of blockade markedly slowed tumor progression and augmented 

the efficacy of chemotherapy leading to prolonged survival of KPC PDAC tumor-bearing 

mice, mainly by enhancing cancer cell differentiation and reducing epithelial–mesenchymal 

transition status. Besides the functional significance of LIF in PDAC tumorigenesis, our 

studies also revealed that LIF can be an attractive circulating marker for monitoring tumor 

status and response to therapy. In a study focusing on the neural aspects of PDAC, the 

Tomasini group unraveled another function of LIF in PDAC to support PDAC-associated 

neural remodeling, suggesting a further therapeutic benefit of LIF blockade to alleviate pain 

and therefore improve life quality (24). In addition, in an effort to investigate the 

mechanisms underlying the diversity of cancer-associated fibroblast (CAF) heterogeneity, 

the Tuveson group discovered that LIF is a key driver for the development of inflammatory 

CAFs (25, 26). All these studies consistently revealed the activated PSCs are the major 

source of LIF production in pancreatic tumors; although, a fraction of tumor cells also 

express LIF as a secondary source (27). Elevated LIF in patients with pancreatic cancer 

could also be an underlying cause of cachexia, which is common in patients with PDAC and 

is the underlying cause of many disease-related complications and sometimes even death 

(28, 29).
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Besides breast and pancreatic cancer, upregulated LIF secretion was also observed and 

shown to be associated with pathologic conditions in other solid tumors such as 

glioblastoma, nasopharyngeal carcinoma, prostate cancer, ovarian cancer, and osteosarcoma 

(30-35). However, due to the lack of inhibitory agents targeting the LIF/LIFR signal 

cascade, its value as a therapeutic target currently cannot be reliably evaluated. A small-

molecule inhibitor of the LIF–LIFR axis would be highly desirable, due to the potential for 

oral bioavailability, greater tumor penetrance, and lower cost of production. However, the 

development of such an inhibitor is practically quite challenging, given the fact that LIF 

does not bind in a pocket but rather makes a number of contacts along a flat surface of the 

Ig-like domain of LIFR, making it hard to find a groove to dock a blocking molecule into.

Nevertheless, by screening an initial series of synthesized compounds rationally designed to 

dock into the interface of LIF–LIFR interaction based on the crystal structure of LIF/LIFR 

and subsequent optimization of a lead compound by medicinal chemistry modification, 

Viswanadhapalli and colleagues successfully developed a compound, EC359, that can bind 

at the LIF/LIFR binding interface to effectively block LIF-triggered LIFR signaling 

activation (21). Although the binding affinity of EC359 to LIFR, as measured by microscale 

thermophoresis technique (MST) assays, was approximately 10-fold lower than the 

approximately 1 nmol/L Kd for LIF binding to LIFR, surprisingly EC359 exhibited good in 
vitro and in vivo inhibitory activity with an IC50 of 10–50 nmol/L for in vitro cell viability 

assays. Moreover, the specificity of EC359 for inhibition of LIF–LIFR interaction was 

supported by at least two lines of evidence—a good correlation between the dose-dependent 

reduction of cell viability by EC359 treatment and LIF and LIFR expression levels in 

various breast cancer cell lines, and the effective inhibition of LIF-mediated STAT3 

activation using STAT3-Luc reporter assays. Moreover, the low toxicity of EC359 in vitro 
(on low-LIFR–expressing ER+ breast cancer lines or LIFR-knockout TNBC cells) and in 
vivo (on body weight) underscored its specificity. Last but not least, EC359 also possesses 

favorable pharmacologic features, supporting its therapeutic application in vivo. Notably, 

besides LIF, EC359 also blocked LIFR signaling elicited by other ligands, including 

Oncostatin M (OSM), Ciliary Neurotrophic Factor (CNTF), and Cardiotrophin 1 (CTF1). 

This might be an advantage or a problem depending on the specific case, broadening the 

spectrum of inhibition but in the meantime dampening the specificity and possibly leading to 

higher toxicity, and a careful evaluation will be necessary in each case. To inhibit the LIF–

LIFR axis more specifically, a better strategy may be to block LIF activity with a 

neutralizing antibody, as we recently demonstrated (14), or by the use of soluble form of the 

receptor extracellular domain to act as a ligand-binding trap (36). Encouragingly, a 

humanized neutralizing anti-LIF antibody, MSC-1, has recently been developed as a LIF 

blocker and is being tested as a cancer therapeutic in a phase I clinical trial 

(ClinicalTrials.gov: NCT03490669).

An earlier effort to develop small-molecule inhibitors of cytokine signaling led to the 

discovery that bazedoxifene, originally designed as a selective estrogen receptor modulator, 

can act as an inhibitor of gp130 signaling (37), and was able to inhibit IL6 and IL11-induced 

activation of STAT3 in human pancreatic cancer cells and their proliferation in culture with 

an IC50 approximately 10 μmol/L, and also reduce xenograft tumor growth in mice (38). 

Although bazedoxifene was not tested for inhibition of LIF/LIFR signaling per se, 
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simulations showed that bazedoxifene could dock onto gp130 via the D1 domain, and 

experimentally prevented gp130 dimerization with the IL6 and IL11 receptors, bazedoxifene 

might also inhibit LIF/LIFR signaling. In this regard, the Forni group recently reported the 

results of testing bazedoxifene either as a monotherapy or in combination with 

chemotherapy in 13 patients with pancreatic and gastric cancer, with encouraging results, 

with 3 of the 6 patients who were biopsied showing reduced phospho-STAT3, including a 

patient with PDAC (39).

As commonly agreed, cancer frequently hijacks developmental programs to facilitate its 

progression and survival. Therefore, it should not be a surprise that LIF, one of the key 

molecules in development, has been coopted to play important roles in promoting 

tumorigenesis. However, LIF's physiologic significance in cancer has not been well 

recognized until recently. With the new development of the EC359 small-molecule LIFR 

inhibitor, the bazedoxifene gp130 inhibitor, and the anti-LIF antibody MSC-1, we are 

optimistic that the therapeutic potential of LIF blockade in many tumor types will be widely 

tested in the near future.
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