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Intraspecific variation in resource use by individuals of different
age, sex or size may reflect differing energetic requirements and
physiological constraints. Males and females often show
differences in diet owing to sexual size dimorphism, different
life histories and/or habitat use. Here, we investigate how sex
and size influence the long-term foraging ecology of belugas
and narwhals in Greenland, using stable isotopes of carbon and
nitrogen from bone collagen. We show that males have a higher
trophic level and a larger ecological niche than females in West
Greenland belugas and in East Greenland narwhals. In
addition, for these two populations, we find that δ15N increases
with size, particularly in males. We hypothesize that sexual size
dimorphism together with strong maternal investment drive
these differences. By contrast, we find no differences in foraging
ecology between sexes in West Greenland narwhals and observe
no influence of size on trophic level. This may reflect the
influence of interspecific competition in West Greenland, where
the distributions of belugas and narwhals overlap, and/or
geographical resource partitioning among different summer
aggregations of narwhals. Our results suggest that sex and size
variations in diet are population dependent, and probably the
result of varying ecological interactions.

1. Introduction
The foraging ecology of a population may be driven by the
abundance and distribution of resources, interspecific competition,
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Figure 1. (a) Sample localities (a: Qaanaaq, b: Melville Bay, c: Kullorsuaq, d: Nuussuaq, e: Uummannaq, f : Qeqertarsuaq,
g: Scoresbysund) with sample size and distribution of belugas and narwhals [29]. The WG narwhal population comprises
samples from four localities. Coastline data are from [30]. (b) Bone δ13C and δ15N for male and female WG belugas (nM =
14, nF = 9), WG narwhals (nM = 19, nF = 20) and EG narwhals (nM = 22, nF = 16). Solid circles indicate Bayesian standard
ellipse areas (SEAB). Mean (square) and s.d. (error bars) are indicated.
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and age and sex structure within the population [1–4]. Animals of different age, sex or size may show
variations in resource use such as preferred prey or foraging habitat, owing to differing energetic
requirements and physiological capabilities [5–7]. This may act to reduce intraspecific competition [2]. In
mammals, strong sexual size dimorphism and/or different life histories, including maternal care, between
males and females, can often lead to dietary differences [7]. Females raise their young for several weeks to
years and adjust their foraging behaviour to ensure offspring survival [8].

In the marine environment, differences in foraging ecology between sexes are particularly strong in
pinnipeds [8–11], where males are often heavier and larger than females [12]. It is thought that larger
individuals can target larger prey at higher trophic levels, and that their greater diving capabilities
[13] also enable them to target more benthic species. These differences may be accentuated by spatial
segregation linked to maternal investment, such as females regularly returning to land to feed their
pups [8,10,14]. For many seal species, changes in size-related diving capability [15] and experience
may explain ontogenetic shifts in foraging ecology [3,9,11,16,17]. The same factors could also explain
age-related changes in cetacean diets [18–20]. However, in cetaceans, size differences between males
and females are usually smaller, and despite maternal care over several years, many cetacean species
show similar foraging ecology between sexes [20–25] (although differences have been observed in
sperm whales and killer whales [26–28]).

Here, we investigate sex and size variation in the long-term foraging ecology of the two Arctic toothed
cetaceans, belugas (Delphinapterus leucas) and narwhals (Monoceros monoceros), in Greenland. The two
Monodontidae species coexist in West Greenland, while only narwhals are distributed in East Greenland
(figure 1a). Both species can occur in sex-specific and mixed-sex groups [31–34], and show important
maternal investment [35] and sexual size dimorphism. Male belugas and narwhals are 40–100 cm and
approximately 60 cm longer than females, respectively [31,36,37], and 40–45% heavier [36,37]. Male
narwhals furthermore have an erupted left tooth, the tusk,which is believed to be a secondary sexual trait [38].

The foraging ecology of belugas and narwhals has been studied using stomach contents and stable
isotopes of carbon (δ13C) and nitrogen (δ15N) in soft tissues, which have turnover rates of several
months [39–41], and are limited to reflect seasonal (often spring/summer) diet [42–44]. δ13C reflects
the feeding habitat (pelagic versus benthic, offshore versus coastal) and δ15N the trophic level [45–48].
In Baffin Bay (West Greenland/eastern Canada), Arctic cod (Boreogadus saida), polar cod (Arctogadus
glacialis) and capelin (Mallotus villosus) appear to be the main summer prey of both whale species
[31,42,43,49]. Interspecific competition between belugas and narwhals is therefore likely in West
Greenland, where their distributions overlap [29]. Capelin represent a large proportion of the summer
diet of narwhals in East Greenland [43]. Both whale species undertake seasonal migrations, following
the distribution of sea ice [29,50]. During winter, they stay in ice-covered areas inaccessible to humans,
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limiting dietary information, although Greenland halibut (Reinhardtius hippoglossoides), capelin and squid

(Gonatus fabricii) are believed to be important prey [42,44,49,51]. For both species, sexes show no or little
dietary differences (0.2‰) in stable isotope compositions of soft tissues [42,43].

To gain insights into the longer term foraging ecology of beluga and narwhal populations in
Greenland, we analysed bone collagen δ13C and δ15N, which reflect an individual’s diet over multiple
years [52,53]. Studies examining variation in foraging ecology on the basis of isotopic measurements
of tissues with rapid turnover rates reflect only a limited portion of the year and, for Arctic species,
are consistently biased towards the spring and summer months. By contrast, isotopic analyses of bone
collagen offer an opportunity to examine the average diet across seasons. Thus, this approach
provides insight into sustained foraging patterns that persist over years, circumventing variation
caused by short-term dietary variation. To elucidate differences related to sex and size, we
investigated whether beluga and narwhal foraging ecology differs across space.
 os
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2. Material and methods
2.1. Laboratory analyses
We obtained 300 mg of bone powder from the skulls of 27 belugas and 40 narwhals fromWest Greenland
(WG), and 39 narwhals from East Greenland (EG, figure 1a, electronic supplementary material, table S1).
All samples represented sub-adults or adults. δ13C and δ15N values for 14 WG belugas and 11 WG
narwhals were from [54]. The skulls were collected between 1990 and 2007 during subsistence
hunting, and are housed at the Natural History Museum of Denmark, University of Copenhagen. Sex
information for 100 out of the 106 samples was determined previously by molecular methods [55], an
inspection of sexual organs, or the presence/absence of a tusk in narwhals [56]. We followed the
laboratory procedures described in [54] and in the electronic supplementary material, text.

2.2. Statistical analyses
We ran all statistical analyses in R v. 3.6.1 [57]. Our data satisfied normality and homogeneity of variance
for all subdivisions. To test for dietary differences among the three populations (WG belugas, WG
narwhals, EG narwhals), we compared their δ13C and δ15N using ANOVA and Tukey’s post hoc tests
using the package multcomp [58].

To test for dietary differences between males and females, we compared δ13C and δ15N within
populations using Student’s t-tests. The effects of location and sampling date on our results are
presented in the electronic supplementary material, text; they had limited impact on our conclusions.

To investigate the association between the size of individuals and their isotopic compositions, we ran
a linear regression between skull length (used as a proxy for body length [59]) and δ13C or δ15N within
each population. A linear regression was also run separately for males and females (termed groups)
within populations. Owing to some of the skulls being fragmented or otherwise broken, we were able
to obtain skull measurements for 81 of the 106 belugas and narwhals investigated (see the electronic
supplementary material, text for details).

We compared isotopic niche (a proxy for an ecological niche) among populations, and between
groups (males/females) within each population, using Bayesian multivariate ellipse-based metrics
implemented in the packages SIBER and rjags [60–63]. We calculated standard ellipse areas corrected
for sample size (SEAC), and Bayesian standard ellipses (SEAB) for each population/group. We
estimated SEAB using 105 posterior draws, a burning of 103 and a thinning of 10, and used SEAB to
test for differences in niche width among populations/groups (i.e. the proportion (p) of draws of the
posterior distribution of the SEAB in which the area of one population/group was smaller than the
other). We evaluated isotopic niche similarity between two populations/groups as the proportion (%)
of the non-overlapping area of the maximum-likelihood fitted ellipses of the two.
3. Results and discussion
3.1. Niche differentiation among populations
Our results indicate resource partitioning of belugas and narwhals in West Greenland. The species
occupy distinct, yet slightly overlapping (9%), ecological niches, with belugas showing higher bone



WG belugas WG narwhals EG narwhals
FM FM FM

st
an

da
rd

 e
lli

ps
e 

ar
ea

 (
‰

2 ) 1.5

1.0

0.5

0

Figure 2. Size of the standard ellipse areas (SEA, ‰2) for male and female West Greenland (WG) belugas (nM = 14, nF = 9), WG
narwhals (nM = 22, nF = 16) and East Greenland (EG) narwhals (nM = 19, nF = 20), with the black dot indicating the mode of the
size of the SEAB, the red cross the mean for the SEAC and the box edges the 50, 75 and 95% credible intervals.
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collagen δ13C and δ15N ( p < 0.01, electronic supplementary material, figure S3 and table S3). Detailed
results are provided in the electronic supplementary material, text. This observed niche partitioning
may be the result of interspecific competition, or of differences in dietary preference. Our findings are
consistent with studies indicating that—despite prey overlap between species [28,41–43,46]—belugas
eat less squid, which are at lower trophic levels [43], than narwhals, and also forage on Atlantic cod
(Gadus morhua) and other fishes such as redfish (Sebastes mentella) [64], which feed at higher trophic
levels [65]. Although it is not possible to test for this using our stable isotope data, our findings may
reflect that belugas feed on larger individuals, representing higher trophic levels, than narwhals (if
both species feed on Greenland halibut or Arctic/polar cod [31,42,43,49,51]).

We did not include prey isotopic data, as these are available from soft tissue samples only [43,44,65]
and reflect the short-term seasonal diet of the prey species, while our cetacean stable isotope data from
bone collagen reflect the consumer diet over several years. We attempted to incorporate prey data
[43,44,65] but the resulting mixing polygon was inconsistent with the isotopic compositions observed
in belugas and narwhals after correcting for the Suess effect, which was done for the consumers
following Szpak et al. 2019 [66] and trophic enrichment [67]. This suggests that the prey isotopic data
are not representative of what would have been consumed by these cetaceans either because isotopic
compositions are inaccurate, certain prey sources are missing, or a combination of the two. Despite
belugas being considered a more generalist feeder [68], we find no significant differences in isotopic
niche size between species (electronic supplementary material, figures S3, S4 and table S3).

For narwhals, we find regional differences, with no niche overlap and higher δ13C and δ15N in West
Greenland than in East Greenland ( p < 0.01; electronic supplementary material, table S3 and figure S3;
figure 1b). This finding supports the long-term habitat segregation of narwhals west and east of
Greenland, as has been shown by telemetry studies [50], and is also in agreement with stable isotope
analysis of skin tissue; Watt et al. 2013 showed that Baffin Bay narwhals, whose main prey are benthic
fish species including halibut, Arctic cod and polar cod, have a less pelagic diet than East Greenland
narwhals, which consume a larger proportion of capelin [43]. Higher δ13C and δ15N in West relative
to East Greenland is also reported in fishes [43] and other marine mammal species [69], suggesting
regional differences at the base of the food web.
3.2. Sex and size differences in foraging ecology
While δ13C does not differ significantly between sexes in any population ( p > 0.05), our results indicate
sex and size differences in the foraging ecology of West Greenland belugas and East Greenland narwhals
based on δ15N (figure 1b; electronic supplementary material, figure S5). Males have significantly higher
δ15N (WG belugas p = 0.03, EG narwhals p = 0.01) and larger ecological niches than females ( p≥ 0.99;
electronic supplementary material, table S3; figures 1b and 2). This contrasts with the analysis of δ13C
and δ15N obtained from skin samples, which did not show any difference in niche size between sexes
in narwhals in both Baffin Bay and East Greenland [43]. These discrepancies between stable isotope
values estimated from bone and skin probably reflect the more rapid turnover rate of skin (months
versus years), and therefore short-term versus long-term ecological differences between sexes owing to
their differing energetic and physiological needs (see below). Moreover, bone collagen stable isotope
data reflect year-round foraging, averaged over several years, including the winter, where most of the
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foraging occurs for narwhals [49], and which is not reflected in stable isotope data from skin tissue
collected in the summer.

Larger belugas and East Greenland narwhals tend to have higher δ13C ( p = 0.05 and p = 0.01,
respectively) and higher δ15N ( p < 0.01; electronic supplementary material, figure S5). The pattern is
stronger than that reported using skin tissue from belugas sampled in southeast Baffin Island, where
older individuals show marginally higher (<0.5‰) δ13C and δ15N [42], again possibly owing to
differences in integration times between skin and bone collagen.

We hypothesize the sex-specific differences in foraging ecology observed in West Greenland belugas
and East Greenland narwhals are driven by a combination of sexual size dimorphism and maternal
investment, as has been observed in pinnipeds [3,8,9,16]. Larger individuals may be able to dive
deeper, as they have a greater capacity to store oxygen in their tissues [15,70], allowing them to target
higher trophic-level benthic prey. Larger belugas spend significantly less time at the surface than
smaller individuals [71]. Their larger size may also enable them to catch and handle larger individuals
of the same prey species that are at higher trophic levels (e.g. halibut or cod). Alternatively, fine-scale
habitat segregation between sexes, as observed in Beaufort Sea belugas, could explain sex differences
in diet [72].

The significantly positive correlation between trophic level and size is observed in male belugas and
male East Greenland narwhals ( p < 0.01; figure 3). The absence of a similar pattern in females may reflect
their maternal investment. Despite female odontocetes raising their calves for several years and investing
significant energy resources in their growth and survival, many species show no apparent sex-based
dietary differences [20–25]. The offshore and deep-diving lifestyle of both belugas and narwhals may
exacerbate sex-specific differences in feeding ecology, as females, whatever their size, may (at least for
periods of time) adjust their diving and foraging behaviour to that of their calves, which have lower
aerobic capabilities [73]. Both belugas and narwhals are predated by killer whales [74], and females
probably invest in protecting their calves from this predator. Our hypothesis correlates well with
studies of diving behaviour. In eastern Canada, female belugas with calves spend a higher proportion
of time at the surface than females without calves and have lower diving rates [71].

Maternal investment may explain the more pronounced sex differences in foraging ecology obtained
from stable isotope analysis of bone collagen than of skin tissue [42,43]. All females may not be
accompanied by a calf during the particular season (often spring/summer) represented by a soft
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tissue sample, whereas most adult females probably have had a calf (or multiple calves) over the

integration of time represented by bone collagen.

3.3. The lack of sex and size variation in diet in West Greenland narwhals
We find no evidence of differentiated foraging ecology between males and females in narwhals in West
Greenland ( p > 0.05), and the size of the ecological niche is similar between sexes ( p = 0.11; figures 1b and
2). Furthermore, we find a correlation between length and δ13C ( p = 0.01, electronic supplementary
material, figure S5) only, in particular in females (figure 3), with no size differences in δ15N ( p = 0.79;
figure 3; electronic supplementary material, figure S5), suggesting sex and size variation in diet may
be population specific.

The pattern may reflect interspecific competition with belugas in areas where the species distributions
overlap. The niche of a species and within-population variation in ecology may be constrained by
interspecific competition [2]. Belugas may potentially target larger prey at higher trophic levels, and
hence being a larger male narwhal would present no advantage for accessing higher trophic-level
resources. Alternatively, a lack of differentiation in stable isotope values does not necessarily imply
there are no dietary differences, as different prey can have similar isotopic values. Therefore, there
could be sex and size differences in diet, linked to the same factors as for the other populations,
including maternal investment, but which we do not detect with our data.

We investigated whether combining sampling across four locations (Qaanaq, Melville Bay, Uummannaq
and Qeqertarsuaq, figure 1a) for West Greenland narwhals influenced our results (electronic supplementary
material, text). We do not observe any differences between sexes within the one locality (Qaanaaq) from
which we had a sufficient sample size for sex comparison (see the electronic supplementary material, text).
Thus, including several localities probably does not influence our findings of a lack of sex differences in the
foraging ecology of West Greenland narwhals. Among certain localities, we recover variation in δ15N,
although we observe no variation in δ13C (electronic supplementary material, figure S6). This may reflect
geographical partitioning within the large West Greenland (i.e. Baffin Bay) population, which is composed
of several stocks [29]; every year, different stocks of narwhals in West Greenland migrate between various
coastal summer localities, and offshore in Baffin Bay during winter [50]. We suggest such geographical
resource partitioning may be another mechanism to decrease intraspecific competition.
4. Conclusion
We report long-term differences in foraging ecology between sexes in West Greenland belugas and East
Greenland narwhals. These findings probably reflect a combination of sexual size, dimorphism, maternal
investment and a deep-diving lifestyle. However, we find no differences in diet between sexes in West
Greenland narwhals, indicating that sex differences in foraging ecology are population specific, and
may be driven by intra- and interspecific competition. Our study highlights the applicability of stable
isotope analysis of bone collagen for revealing long-term dietary differences among individuals with
different life histories or physiological needs, which may remain undetected in the analysis of soft
tissues with shorter turnover.
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