TABLE I:
Category | Subcategory | Features or Methods Used | Cognitive & Thought Disorder(s) Assessed |
---|---|---|---|
Text-based | Lexical features | Bag of words vocabulary analysis Linguistic Inquiry & Word Count (LIWC) [6] Lexical Diversity (TTR, MATTR, BI, HS, etc.) Lexical Density (content density, idea density, P-density) Part-of-speech (POS) tagging |
Semantic dementia (SD) [4]; Alzheimer’s disease (AD) [5] Mild cognitive impairment (MCI) [7], schizophrenia (Sz/Sza) [8]; AD [9] AD [5], [10], [11]; primary progressive aphasia (PPA) [12], Sz/Sza [13], bipolar disorder (BPD) [13] MCI [14]; AD [5], [11], [9]; PPA [12]; chronic traumatic encephalopathy (CTE) [15]; Sz/Sza [13], BPD [13] MCI [14]; PPA [12]; AD [5], [9]; Sz/Sza [16], [17], [18] |
Syntactical features | Constituency-based parse tree scores (Yngve [19], Frazier [20]) Dependency-based parse tree scores Speech graphs and attributes |
AD [5], [9]; MCI [14]; PPA [12] MCI [14] Sz/Sza [21], [22]; BPD [21], [22]; MCI [23] |
|
Semantic features | Word & sentence embeddings: - LSA [24] - Neural word embeddings (word2vec [26], GloVe [27], etc.) - Neural sentence embeddings (SIF [29], InferSent [30], etc.) Topic modeling: - LDA [31] - Vector-space topic modeling with neural networks Semantic role labeling [34] |
Sz/Sza [25], [16], [17] Sz/Sza [28], [18], [13]; BPD [13] Sz/Sza [18], [13]; BPD [13] Sz/Sza [28], [8] AD [32], [33]; MCI [33] Sz/Sza [28] |
|
Pragmatics | Sentiment analysis | Sz/Sza [28] | |
Acoustic | Prosodic features | Temporal (pause rate, phonation rate, voiced durations, etc.) Fundamental frequency (F0) and trajectory Loudness and energy Emotional content |
MCI [14], [35], [36], [37]; AD [35], [38]; Sz/Sza [39] Frontotemporal lobal degeneration (FTLD) [40] AD [38]; BPD [41] AD [38] AD [38] |
Spectral features | Formant trajectories (F1, F2, F3, etc.) Spectral centroid [43] MFCC statistics [44] |
PPA [42]; AD [5] AD [38] PPA [42]; AD [5] |
|
Vocal quality | Jitter, shimmer, harmonic-to-noise ratio (HNR) | PPA [42]; AD [5], [38] | |
ASR-related | Phone-level detection of filled pauses & temporal features Improving WER for clinical data | MCI [36], [37] AD [45], [9]; neurodegenerative dementia (ND) [46], [47], [48] |