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A mathematical model of COVID-19 is presented where the
decision to increase or decrease social distancing is modelled
dynamically as a function of the measured active and total
cases as well as the perceived cost of isolating. Along with the
cost of isolation, we define an overburden healthcare cost and
a total cost. We explore these costs by adjusting parameters
that could change with policy decisions. We observe that two
disease prevention practices, namely increasing isolation
activity and increasing incentive to isolate do not always lead
to optimal health outcomes. We demonstrate that this is due to
the fatigue and cost of isolation. We further demonstrate that
an increase in the number of lock-downs, each of shorter
duration can lead to minimal costs. Our results are compared
with case data in Ontario, Canada from March to August
2020 and details of expanding the results to other regions
are presented.

1. Introduction
As of February 2021, there have been over 106 million cases of
COVID-19 worldwide, over 808 000 cases in Canada, and over
284 000 cases in the province of Ontario. The early stages of the
outbreak focused on mathematical modelling of disease dynamics
such as transmission and the basic reproduction number [1,2].

It quickly became clear that asymptomatic spreading was
important and that undetected infections were important to
consider in models [3]. This caused a global policy shift towards
travel restrictions, community closures and social distancing
implementations. The impacts of mathematical modelling on
policy are documented in [4].
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The implementation of non-pharmaceutical intervention (NPI) such as social distancing quickly

became an important mathematical modelling task (cf. [5–8]). The majority of these models focus on
fixed policy implementations such as reducing contacts on a given date and reinstating them on
another. There are two main issues with this, the first is that it requires knowledge of the
implementation and relaxation times. While this can be explored in model simulations and optimized
for best results, its independence from the model itself can make it hard to adapt to other diseases,
strains, or important factors. A second problematic issue is that it assumes an instantaneous policy
compliance, i.e. that people will immediately reduce contacts upon implementation and stop upon
relaxation. While this can be impacted by an adherence parameter, it does not allow for a dynamic
response which is more realistic of human choice. Therefore, a dynamical social distancing model that
reacts to the disease dynamics is more realistic.

A dynamic intervention strategy where intervention was turned on and off based on the state of the
epidemic was considered in [8] where a decrease in both total infections and social distancing duration
was observed compared with a fixed-duration intervention which they also considered. However,
modelling the dynamics of intervention entirely on the disease progression assumes that people will
immediately distance or relax at some threshold. This suggests that a periodic solution will emerge
centred around the critical disease threshold and this appears to happen in [8]. While it is quite
realistic that disease dynamics drive people into isolation, it is a separate mechanism, namely the cost
of staying home, that people consider when relaxing their isolation habits. Cost is seldom considered
in models, with most of the focus on larger economic influence [9,10]. These economic factors
certainly play a role in individual cost but psychological factors such as loneliness and habit
displacement are important as well.

For this paper, we propose a differential equation model for the spread of COVID-19 with separate
dynamics for isolation and relaxation dependent on disease progression and relaxation cost, respectively.
The disease progression information typically comes from media reports and has been investigated in
the context of infectious diseases such as influenza (cf. [11–14]) and is usually used to reduce the
susceptibility of individuals who are positively influenced by media. The relaxation cost is less often
considered and its inclusion recognizes that repeated lock-downs would have diminishing returns as the
cost to stay home becomes too overwhelming. A dynamic response model allows for more realistic
policy strategies for disease mitigation and mortality prevention. Our model focuses on the spread of the
disease in Ontario, Canada, but could be adapted with other parameters to other regions.

Our study is outlined as follows. In §2, we introduce the model and the dynamic response functions
for social distancing and relaxation. We also introduce the parameters including those which we fit to
data from [15]. We define health, economic and total costs of the pandemic. The health cost is based
on overloading existing healthcare resources while the economic cost is the personal or societal cost of
social distancing. We show the excellence of fit to our data in §3 and present a series of results based
on different scenarios where policy parameters that control distancing and relaxing are varied. We
consider scenarios where both health and relaxation costs are equally weighted or where health cost is
much more strongly influencing the total cost. We consider a modification to the relaxation rate so
that it depends on both cost and cases and see that multiple outbreak peaks can occur. We discuss the
implications and conclusions of our work in §4.
2. Model
We consider a mathematical model for COVID-19 consisting of classes of people with various exposure to
the disease. These classes are listed in table 1 where we note that the removed groups include people who
have died from the virus which we do not separately consider. For each of the population classes, we
assume there are three levels of social distancing indicated by a variable subscript zero, one or two. If
the subscript is 0 then there is no social distancing, subscript 1 indicates that there is social distancing
which reduces the contact probability by some percentage while for subscript 2, the contact
probability is zero, i.e. full isolation. We introduce a further subscript, M which represents the
mitigation of spread due to individuals who have tested positive and are isolated. We assume that
only P, IS and IA populations can test positive and that these people will immediately and completely
isolate effectively placing them in the social distance two category for the duration of their disease.

We follow the usual SEIR model framework (cf. [21,22]) which we illustrate in figure 1 with equations
detailed in appendix A.



Table 1. Variable and parameter definitions

definition value comment

S susceptibles, people who can catch the virus 0.9998N initial

condition

E exposed, people who have caught the disease but are not yet infectious 0 initial

condition

P pre-symptomatic, people who are infectious but have not had the

disease long enough to show symptoms

0 initial

condition

IS infected-symptomatic, people who are infectious and have started

showing symptoms

2.00 × 10−4N initial

condition

IA infected-asymptomatic, people who are infectious but never show

symptoms

0 initial

condition

RS removed-symptomatic, people who were symptomatic and infectious,

but are no longer infectious

0 initial

condition

RA removed-asymptomatic, people who were asymptomatic and infectious,

but are no longer infectious

0 initial

condition

N population of Ontario 13 448 494 2016 census

Ncrit critical population at which healthcare resources are overwhelmed 81 301 chosen

R0 basic reproduction number 2.40 [16,17]

β transmission rate of disease after coming in contact with the infected

class

0.223 d−1 see (2.10)

δ reduction in transmission due to social distancing in class 1 0.250 chosen

α reduction in transmission due to being asymptomatic 0.500 chosen

σ rate at which exposed class enter pre-symptomatic class 2.00 d−1 [16]

ϕ rate at which pre-symptomatic class can begin showing symptoms 4.60−1 d−1 [16,18,19]

Q proportion of infected individuals who show symptoms 0.690 median

value

γ rate at which an infected person is no longer infectious 10.0−1 d−1 [20]

μmax maximal rate at which someone moves from a less socially distant class

to a more socially distant class

1.00 d−1 chosen

νmax maximal rate at which someone moves from a more socially distant

class to a less socially distant class

1.00 d−1 chosen

μI rate at which people showing symptoms choose to isolate 0.010 d−1 chosen

q0 proportion of S0 socially distancing into S1 0.9 chosen

q2 proportion of S2 relaxing social distancing into S1 0.6 chosen

qI proprotion of symptomatic individuals IS0 who isolate into IS1 0.6 chosen

ρA testing rate for someone not showing symptoms to test positive 8.70 × 10−3

d−1
see appendix

B

ρS testing rate for someone showing symptoms to test positive 3.48 × 10−2

d−1
see appendix

B

Mc critical active cases to induce social distancing 2.09 × 103/

Ncrit

see appendix

B

M0 active cases that lead to half the maximal rate of social distancing 4.18 × 103/

Ncrit

see appendix

B

(Continued.)
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Table 1. (Continued.)

definition value comment

kc critical approximate disease doubling rate to induce social distancing 16.2−1 d−1 see appendix

B

k0 approximate disease doubling rate that leads to half the maximal rate

of social distancing

4.06−1 d−1 see appendix

B

Cc critical cost to induce social relaxation 50 d chosen

C0 cost that leads to half the maximal rate of social relaxation 100 d chosen
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Figure 1. Graphical representation of the SEIR model used throughout the manuscript. We use fading to indicate a reduction in
transmission which comes from distancing/isolation and also from the asymptomatic disease carriers being less infectious. These
effects are quantified by δ and α respectively in the full model detailed in appendix A. For a condensed graphical
representation, we have indicated a representative parameter on particular arrows; however, in general each parameter has a
subscript (i, j ) indicating the originating and terminal compartment respectively, details of which are in the main text. The
parameter μ (red arrowhead in figure) indicates distancing to a higher category while ν (green arrowhead in figure) indicates
relaxing down to a lower category. F(Ij) represents the force of infection indicating that susceptible people require interaction
with one of the infected classes for successful disease transmission. The portion of the model in the green rectangle is the
model when social distancing and testing is not considered.
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For themodel,we assume that vital statistics are not important on the time scaleswe consider sowe take a
fixed populationN. We also normalize the model by another populationNcrit which is the amount of people
needing healthcare resources that puts the system at full capacity. Figure 1 shows the various model
parameters which are summarized in table 1. Each transition parameter has a subscript (i, j) with i the
originating class and j the terminal class. The exception to this is βi,j, where i is the class of the susceptible
personand j the class of the infected contact.Wemake the followingassumptionsabout themodelparameters:

(i) the parameters δ, σ, ϕ, γ and Q are constant and the same for each social distancing class as the
disease progression characteristics are unaffected by social distancing. The social distancing
partition parameters q0, q2 and qI are also constant.

(ii) bS0IS0
¼ b a constant which incorporates both contact and disease transmission probability. We

assume that people not showing symptoms shed a lower viral load and hence reduce
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transmission by a constant factor α and that those in social distancing class 1 reduce their contacts

by a constant factor of δ, effectively also reducing their transmission. For example, bS0IA0
¼ ab,

bS1IS0
¼ db and bS1IA1

¼ ad2b.
(iii) people in the infected symptomatic class IS0 choose to isolate at a constant rate μI with qI going into

IS1 and (1− qI) going into IS2 . They stay in the social distancing class until they have recovered
from the disease, i.e. νI = 0. Furthermore, this means that someone already social distancing in
state 1 or 2 who becomes symptomatic remains in that social distance class. We note that
individuals in IS0 , IS1 and IS2 know that they are sick but have not tested positive for the
disease. If they test positive, they transition to ISM and are completely quarantined.

(iv) there are two testing rates ρA and ρS for asymptomatic (including pre-symptomatic) and
symptomatic individuals, respectively, with ρS > ρA as we assume that symptomatic people are
more likely to seek out a test as they have symptoms. Asymptomatic people are likely to only
seek a test out if they believe, through contact tracing or otherwise, they have come into
contact with someone who has the virus, or through targeted testing initiatives. Despite the
fact that testing numbers fluctuate with the progression of the disease, we take the testing rates
to be constant which makes them an effective testing rate. This is consistent with studies
estimating global infections per symptomatic test case (cf. [23,24]). To help restrict the model,
we take ρS = 4ρA which is a similar value as observed in [24], which compared data from
Germany, South Korea and the USA.

(v) we assume that only people in the P, IS or IA classes will test positive if a test is administered.
Therefore, we explicitly assume people in the E class do not have a high enough viral load to shed.

(vi) people who have tested positive are isolated (effectively put in social class 2) until recovery and
cannot transmit the disease. This ignores infections to family members living in a household with
an isolated member or infections to healthcare workers who are conducting tests or treating
COVID-19 patients. See [25] for considerations of a model with household structure included.

2.1. Social distancing and testing
Since peoplewithout symptomsare unaware ofwhether they have the virus or not,we assume that both social
distancingand relaxing rates are independentof thedisease class theyare in.We thereforedefine μ as the rate of
social distancing fromstate 0withproportion q0 going to state 1 and (1− q0) going to state 2.We similarlydefine
ν as the rate of decreasing social distance from state 2 with proportion q2 going to state 1 and (1− q2) going to
state 0. We define those social distancing from state 1 to state 2 as μ/2 to account for the fact that anybody in
state 1has alreadyundergoneone transition andso theyshouldbe sloweratmakinga secondary transition. For
a similar reason, we define the social distancing relaxation from state 1 to state 0 as ν/2.

Testing provides two important quantities reported by the media that can help inform social distancing,
the total number of cases M and the active cases MA (each also scaled by Ncrit) which are defined by

_M ¼ rS(IS0 þ IS1 þ IS2 )þ rA(IA0 þ IA1 þ IA2 þ P0 þ P1 þ P2) (2:1a)

and

MA ¼ PM þ ISM þ IAM : (2:1b)

If the disease is in the exponential phase of spread then the doubling rate can be deduced from the
cumulative case information, M, to yield

kM ¼ (dM=dt)
M ln 2

: (2:2)

We assume that this can approximate the doubling rate at all times and is what locally drives social
distancing. However, while the disease growth rate is important, it should be weighed against the
number of active cases as well and therefore we propose a social distance transition function

m ¼ mmax
[kM � kc]þ

[kM � kc]þ þ k0 � kc

� �
[MA �Mc]þ

[MA �Mc]þ þM0 �Mc

� �
, (2:3)

where μmax is the maximal rate of social distancing, [ · ]+ is defined such that,

[ � ]þ ¼ max ( � , 0):
Social distancing is not something that people want to do and the parameters kc and Mc represent critical
doubling rates and active case numbers, respectively, below which people will not social distance, which
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is the role of the maximum function. These parameters can be thought of as policy parameters since

implementing lock-downs, closing businesses and halting social gatherings will impact these values. The
parameters k0 and M0 represent doubling rates and case numbers where social distancing reaches its
half-maximum.

We assume that social relaxation, ν, is proportional to the cost of social distancing, c, in dollars, which
we model as

_c ¼ kNcrit ((S2 þ E2)þ (1� d)(S1 þ E1)): (2:4)

The parameter κ is the cost per person per day of being in social distancing class 2. Those in social
distance state 1 effect their transmissibility by a factor δ and we assume this comes at a reciprocal
burden cost of (1− δ) relative to κ. For example, if δ = 1 then the 1 and 2 states are both fully isolated
and contribute an equal maximal cost. The parameter Ncrit appears in (2.4) because of the scaling on
the populations. We only include susceptible and exposed classes in (2.4) because we assume there is
a greater benefit to having transmitting classes (Pi, Ii) stay home. Arguably, exposed people who will
soon become infectious should stay home too, but as they would test negative, they would think they
are healthy and therefore we assume they contribute to the cost. For simplicity, we ignore the cost of
recovered people social distancing which will be invalid if many people have recovered but policy
prevents them from returning to their workplaces etc. As written, the cost accumulates with time. We
could remedy this by including a decay factor −μcc in (2.5) but we assume that the time scale of
recovery is much longer than that of the pandemic. Since c does not factor in day-to-day economic
costs in non-pandemic times, it is normalized so that zero cost represents the cost of society pre-
pandemic. Similarly, then the maximum additional costs come from those isolating completely in
social distance state 2.

Defining cost as we have in (2.4) attributes a single dollar amount, κ to social distancing. This is a
general opportunity cost which will vary from person to person and include direct economic costs in
the form of people staying home from their jobs, but also indirect economic costs such as the
psychological tolls of being isolated for a long period of time. As we have not stratified our model by
demographics such as age and poverty level, we are not able to capture demographic effects on the
cost. This generality in the model means that identifying an actual dollar amount per day, κ, is
difficult. Instead, we define

c ¼ kNC

allowing us to eliminate κ in (2.4) to yield,

_C ¼ Ncrit

N
((S2 þ E2)þ (1� d)(S1 þ E1)): (2:5)

With this definition, C is measured in days. Since κN represents the cost per day of every person in the
population being full isolated then C represents the equivalent cost in days of the entire province
isolating. Interpreting a reasonable value of κ will allow governments and policy makers to transform
the cost into a daily total in dollars.

Defining the relaxation cost using (2.5), we propose ν be modelled by

n ¼ nmax
[C� Cc]þ

[C� Cc]þ þ C0 � Cc
, (2:6)

where νmax is the maximal rate at which social distancing can be relaxed, C0 is the cost which triggers the
half-maximal rate, and Cc is the cost required to trigger social relaxation. Cc is also a policy parameter as
mental health promotion, economic stimulus, and wage subsidy programs can influence the cost people
can endure before social relaxation.

To understand the true cost of the pandemic, we must balance the relaxation cost, C, with the
overburden healthcare cost, H, which we define as

H ¼
X
i

ðt1i
t0i

MA dt, (2:7)

where t0 is the time where active cases exceed Ncrit/2 and t1 is the time they return below Ncrit/2. We
choose this value as many provinces use this as an indicator of overload since by the time cases reach
Ncrit resources are completely overwhelmed. An alternative definition of the healthcare cost could be
to integrate over the whole duration of the pandemic. In this formulation, zero health cost could only
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come from having no cases at all. Additionally, it means that a very small daily active caseload sustained
over several years could be equivalent to or worse than an extreme overload of the system over a couple
of weeks. By defining (2.7), we are assuming that the healthcare system has measures in place to manage
caseloads below Ncrit/2. Even small case numbers will contribute to death and chronic illness, but we
assume that below Ncrit/2 these are solely a function of the disease, while above the threshold, the
impact on healthcare strain is likely to be a contributing factor.

The choice of integrating H in (2.7) balances intensity of the outbreak along with duration. The sum
allows for multiple outbreaks where the hospital resources are exceeded. The reason we measure active
cases is that we assume all COVID-19 cases entering the hospital will be tested. Realistically a portion of
the untested symptomatic cases will also impact the healthcare system and therefore this can be
considered an underestimated cost. Having defined the overburden healthcare cost, we can then
define the total cost as

CT ¼ v
H
H1

þ (1� v)
C
C1

, (2:8)

where H∞ is the overburden healthcare cost with no social distancing intervention (μmax = 0) and C∞ is
the largest isolation cost allowable. We define ω as a weighting factor between the two cost contributions.
Sci.8:201770
2.2. Parameter determination
We first consider a variant of the full model that does not include social distancing or testing (green-dash
rectangle of figure 1) which is given by,

_S ¼ �Ncrit

N
(bSPSPþ bSISSIS þ bSIASIA)

_E ¼ Ncrit

N
(bSPSPþ bSISSIS þ bSIASIA)� sE

_P ¼ sE� fP

_IS ¼ QfP� gSIS

_IA ¼ (1�Q)fP� gAIA

_RS ¼ gSIS

_RA ¼ gAIA:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(2:9)

This reduced model represents the disease transmission dynamics prior to widespread knowledge of
COVID-19. Following [16], we assume that people without symptoms are half as infectious as those
with symptoms and therefore take α = 1/2.

The disease free state is [S, E, P, IS, IA, RS, RA] = [N/Ncrit, 0, 0, 0, 0, 0, 0] and we identify the basic
reproduction number R0 as the non-zero eigenvalue of the next generation matrix produced from (2.9)
(cf. [26,27]),

R0 ¼ b(gSgA þ 2QfgA þ fgS(1�Q))
2fgSgA

: (2:10)

Taking R0 from measurements such as the studies in [16,17] which estimate R0 = 2.4 we can rearrange
(2.10) to determine a value for β.

We assume that this base transmission rate between the susceptible and symptomatic populations is
the same as that between S0 and IS0 in the social distancing model (A 1), i.e. bS0IS0

¼ b. The parameters
considered for the base model are presented in table 1 and we comment on some of the assumptions
made.

As of 16 July 2020, the hospitalization rate of COVID-19 in Ontario, Canada was 12.3% and there were
approximately 10 000 hospital beds available for people which together define Ncrit = 81 301. We choose
μmax = νmax = 1 under the assumption that people generally need at least 1 day to change their routines.
We arbitrarily assume that C0 = 2Cc and that k0 = 4kc to help constrain the model. This means that the
relaxation cost needed to initiate the half-maximum rate is twice as many days as the onset of social
relaxation while the disease needs to double twice for the half-maximal social distancing rate to occur.
We chose Cc = 50 based on Ontario imposing a stage-one lock-down in March 2020 that lasted almost
100 days coupled with the fact that it did not impact the entire province.
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We predicted the values of kc, Mc and ρA (recalling that ρS = 4ρA) by fitting our model to active and

total case data from [15] between 10 March and 18 August 2020 inclusive. We used a nonlinear least-
squares method for the fitting, the details of which are in appendix B. Using the Ncrit scale, we can
convert the values of Mc and M0 from table 1 to 2090 and 4180 people, respectively. The values of μI,
q0, q2 and qI are arbitrarily chosen. However, as is seen in appendix B where a sensitivity analysis is
performed, these parameters are not very influential on model results. The most influencing
parameter is μI. Considering that at the half-maximal rates, the social distancing rate is μ = 1/4 and
that a recent study from [28] suggested that up to 90% of Americans go into work sick then a further
90% reduction would yield μI≈ 0.025 which is the same order of magnitude as the chosen value.

We took a median value for the symptomatic rate,Q, of 69% following a variety of studies (see [29–34]).
rnal/rsos
R.Soc.Open

Sci.8:201770
3. Results
We simulated (A 1) using Matlab 2020a with parameters in table 1. We took 10 March 2020 as the initial
time with an initial condition that 0.02% of the population was infected with symptoms and placed the
remaining 99.98% of the population in the susceptible class.

We demonstrate the results from data-fitting the parameters kc, Mc and ρA in figure 2a,b. Comparing
data with simulation, we observe a difference in the early peak-time of 4.7 days and a difference in peak
active cases of 359 people. We extend our simulation beyond 18 August 2020 and compare with data up
to 6 January 2021 in figure 2c,d. We see that the fit is good until around the end of September 2020. We
discuss how to improve this fit in appendix B where we also discuss comparisons with social mobility
data. We observe the impact of the disease on total cost (2.8) by simulating the full model (A 1) and
varying the critical threshold at which people social distance (Mc) and the critical cost before social
relaxation begins (Cc). We consider 1/4, 1/2, 2 and 4 times the base values given in table 1. The value
for kc from data fitting is already quite extreme and we do not vary this. We plot heat maps for the
total cost CT in figure 3 for different weights ω with the maps coloured relative to the maximal and
minimal costs. We compute H∞ by simulating the model with parameters in table 1 and taking
μmax = 0. We take C∞ as the highest cost that emerges from all of the simulations. We note that ω = 0 is
just the relaxation cost C given by (2.5) scaled by C∞ while ω = 1 is just the overburden health cost H
given by (2.7) scaled by H∞. Reducing Mc means that people require less active cases before triggering
their social distance behaviour. If we denote this behaviour as vigilance then smaller values of Mc

lead to increased vigilance. Therefore, in figure 3, vigilance increases from bottom to top as Mc

decreases. Cc increases from left to right, which corresponds to a higher tolerance for social distancing
meaning that people delay their relaxation behaviour. We associate this to increased spending as
people can absorb more cost.

When ω is small, corresponding to more weight being put on relaxation cost, figure 3 intuitively
shows that increasing Cc increases the total cost. This changes when ω approaches 1, where increasing
Cc can decrease total cost. This is also intuitive because when ω = 1 there is no contribution of social
distancing to the total cost, but the advantage that people are staying home and not getting sick.
Therefore, encouraging that behaviour only leads to better outcomes. These two different behaviours
suggest that there is a value of ω where both increasing and decreasing Cc may lead to increased total
costs. Indeed this phenomenon can be observed in figure 3a where the optimal spending occurs at
Mc ¼ M�

c=4 and Cc ¼ C�
c .

A very non-intuitive trend occurs in figure 3 which is that increasing vigilance (smaller Mc) increases
total cost. The only exception to this is in figure 3f when Cc ¼ 4C�

c and the minimum total cost occurs
when Mc ¼ M�

c . To understand this result, we focus on the case ω = 1 where only the overburden
health cost is considered. First consider Cc ¼ C�

c=4 and Mc ¼ M�
c . As vigilance increases, we expect

that maximum active case load to decrease as people are social distancing with greater frequency. We
see that this is indeed the case in figure 4a as we change from M�

c to M�
c=2. However, we also see that

the duration of the epidemic straining healthcare resources is longer and the small decrease in peak is
not enough to overcome this duration. We contrast this case to when Cc ¼ 4C�

c and a minimum
overburden healthcare cost is observed at Mc ¼ M�

c . The active case load is plotted in figure 4b for
2M�

c , M�
c , and M�

c=2. Increasing vigilance from 2M�
c to M�

c decreases the peak and increases the
duration. However, unlike the case in figure 4b, the depression is significant enough to cause an
overall decrease in total cost. However, as vigilance is increased further to M�

c=2, the peak increases
and duration decreases leading to an increase in cost. The non-intuitive result that higher vigilance
leads to worse outcomes can be explained by isolation fatigue. A higher vigilance causes people to
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enter isolation too early. Once they hit a certain cost threshold they relax back to their regular social
habits and then cannot sustain further isolation when the second wave of the pandemic arrives.

We define H∞ in the case when no social distancing occurs and therefore the relative overburden
healthcare cost H/H∞ tends to its maximum value of one as social distancing is relaxed. However, as
demonstrated in figure 3, increasing vigilance can also lead to H/H∞ tending to 1. This suggests that
for every spending level, Cc, there is an optimal social distancing Mc to minimize the overburden
health cost. Indeed, this is the case as demonstrated in figure 5 for the case ω = 1 and Cc ¼ C�

c=4 where
we report the critical number of active cases to isolate, Mc as a percentage of the population N. The
value M�

c is indicated by the black line and demonstrates that based on the data from Ontario, social
distancing vigilance was initially too severe. This is a very important policy result since if isolation is
too vigilant then the fatigue from isolation cost has a very negative impact long term. This result can
easily be extended to other regions by using different parameters.

Plots of all of the active cases and costs for the scenarios in figure 3 can be found in the electronic
supplementary material along with the populations of each isolation class to visualize the impact of
social distancing and relaxation. The cumulative number of symptomatic-infected people for each
scenario is plotted in figure 6. It can be seen that decreasing vigilance causes a more uniform
accumulation of cases while increasing relaxation cost delays the peak of infection. In all cases, the
same number of total people are infected as in the baseline case where testing occurs but no social
distancing happens. This is expected as complacency and fatigue from NPIs eventually force the cost
of social distancing to be too high for people to remain away from others. However, these delays can
provide time for vaccination and other medical efforts to minimize the impact of the disease.
3.1. Multiple secondary waves
The model as derived only allows for one large secondary wave following the peak in Ontario
around early May 2020. Since the relaxation rate, ν, is solely a function of relaxation cost (2.5)
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which is always increasing, isolation fatigue becomes too overwhelming that there is resistance
for prolonged isolation. This model is likely to be appropriate for regions that have a strong
aversion to social distancing. For other regions, it is likely that relaxation will be a function of cost
and active cases as people will prioritize their health in a sustained outbreak and thus not want to
relax if case numbers are sufficiently large. If we refer to the rate in (2.6) as ν0 then we propose
modifying ν to

n ¼ n0[hMc �MA]þ, (3:1)
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where η is a concern factor and is the number of critical cases Mc that stops social relaxation regardless of
cost. Implementing this change allows for secondary infection peaks as evidenced in figure 7 where we
use parameters in table 1 and arbitrarily take η = 1/2 for figure 7a and η = 1/5 for figure 7b. It is important
to note that these changes do not impact the initial peak fitted to data in figure 2 and only alter future
projections. Furthermore, as of January 2021, Ontario is still in the midst of its first secondary peak. For
these reasons, it is difficult to estimate η as several peaks will need to have occurred.

We repeat the cost analysis as in figure 3 for the modified relaxation cost (3.1), however, we fix
Mc ¼ M�

c , the value from table 1 and instead modify η. The results are presented in figure 8.
Figure 8 shows a different result compared with the case of figure 3, when (2.5) was used for the

relaxation. In the latter case, there was a general trend upward in cost that had little difference
between the value of Mc; however, in figure 8 there is a strong dependence in η. This is because the
multi-secondary outbreaks caused by reducing relaxation with high active cases extends the duration
of the epidemic which only increases the cumulative cost. The high impact of this is noticed as well
with C∞ = 230 days for figure 3, while C∞ = 614 days for figure 8. H∞ remains the same in both cases
since that is calculated with no social distancing at all (and therefore no social relaxation).

The introduction of the modified relaxation cost (3.1) has an impact on the health cost, as seen most
dramatically in figure 8f where ω = 1. For small values of Cc when η = 1/4, there is no cost at all as the
critical threshold is never reached. Non-intuitively, increasing spending (larger Cc) which provides
incentive for people to stay home leads to worse health outcomes. The rationale for this is similar to
what was observed in [8], where keeping people isolated for a longer duration increases their fatigue
and resistance to staying isolated in future instances leading to large outbreaks. The impact of
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increased spending on active cases with η fixed is demonstrated in figure 9. It is important to note that for
a given spending Cc, the minimum total cost is not necessarily with the smallest value of η (e.g. figure 8e
when Cc ¼ C�

c=4). This is because there is a critical value of η below which no additional healthcare
savings occur but increasing expenses occur for relaxation. These results suggest a careful policy
direction with more isolation periods of shorter duration.

The plots of cases and total infections for each of the scenarios in figure 8 can be found in the
electronic supplementary material along with plots of each isolation class to demonstrate the social
distancing and relaxing behaviour. We plot the cumulative symptomatic-infected proportions for each
scenario in figure 10.
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Unlike the scenarios in figure 6 associated with the relaxation cost (2.5), basing relaxation on active
cases as well can impact the terminal number of cumulative infections. Continually reducing η decreases
the total number of infected people which provides more evidence that increasing the relaxation cost
threshold Cc can cause more people to become infected. However, similar to figure 6, increasing Cc

leads to a longer delay before significant infection numbers occur.
4. Conclusion
We have presented a model for COVID-19 that allows for dynamic social distancing and relaxation based
on the measured active cases and individual cost of isolating. The aim of this approach is that it more
accurately reflects human behaviour and psychology unlike the modelling approach where behaviours
are turned on and off at predetermined times. Understanding how people will react to a change in
policy surrounding lock-downs or bans on social gatherings is essential in gauging the impact that
COVID-19 and mitigation strategies will have on infections and mortality. Improving this modelling
aspect can make sure that policies are put into place at the right time so people will react accordingly.

By modelling behaviour dynamically, we were able to produce non-intuitive results regarding the
relative total cost of the disease, namely that increasing vigilance and relaxation cost does not
necessarily lead to a decrease in total cost. This is because of the desire for people to socialize leading
to isolation fatigue. We have demonstrated that in certain circumstances, however, the overburden
healthcare cost can be eliminated entirely.

An advantage of the dynamic framework used in this model is that it is not restricted to Ontario nor
is it even restricted to COVID-19. Changing the disease and behaviour parameters will allow this model
to adapt to other scenarios. For COVID-19, policy makers would be advised to use data in the relatively
early stages of a lock-down to fit behaviour parameters. Earlier time point data helps reduce the
likelihood that the relaxation cost threshold has been exceeded so that the behaviour parameters are
more accurate. Otherwise, k�c and M�

c become stronger functions of the choice for C�
c . As discussed in

appendix B, there are also issues of assuming static parameters when the duration of time series is
taken too long. The limited data and types of data available should discourage too much parameter
fitting. Having determined the parameters to a given set of data, cost analysis using (2.8) can be done
leading to results similar to figures 3 and 8. Understanding the influence of tangible actions such as
forced closures, wage subsidies, etc. on parameters such as Mc, Cc and η probably requires surveys
and other follow-up studies.

It is important to acknowledge that this model does not take into account vaccination or other
pharmaceutical interventions. These have an important role in not only limiting the healthcare impact
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Figure 10. Total cumulative symptomatic cases ( plotted as a percentage of the total population) with the modified cost function
(3.1). The baseline case refers to no social distancing, i.e. μmax = 0. (a) η = 1/4, (b) η = 1/2, (c) η = 1, (d ) η = 2 and (e) η = 4.
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but also in outbreak peak time and duration. The introduction of the modified cost in (3.1) causes
significant delays between peaks at increased spending. The duration of the pandemic can then be
several years longer than when fatigue is strong resulting in a single large outbreak peak. This
additional duration may be significantly longer than the time for an effective vaccine to be developed
and deployed and this needs to be considered in future work. Another important consideration is that
social distancing is not truly discrete in that people do not suddenly reduce their contacts. In reality, it
is a spectrum with fluid contact rates and this needs to be further explored. Finally, taking the testing
rates constant should be relaxed and reflect that both the testing capacity and willingness for
individuals to test is a function of disease progression.
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Appendix A. Differential equation model
The differential equation model visualized in figure 1 is given by

_S0 ¼ �FS0 � mS0S1S0 � mS0S2S0 þ nS1S0S1 þ nS2S0S2

_S1 ¼ �FS1 � mS1S2S1 þ mS0S1S0 � nS1S0S1 þ nS2S1S2

_S2 ¼ mS0S2S0 þ mS1S2S1 � nS2S0S2 � nS2S1S2

_E0 ¼ FS0 � mE0E1
E0 � mE0E2

E0 þ nE1E0E1 þ nE2E0E2 � sE0

_E1 ¼ FS1 � mE1E2
E1 þ mE0E1

E0 � nE0E1E1 þ nE2E1E2 � sE1

_E2 ¼ mE0E2
E0 þ mE1E2

E1 � nE2E0E2 � nE2E1E2 � sE2

_P0 ¼ sE0 � mP0P1
P0 � mP0P2

P0 þ nP1P0P1 þ nP2P0P2 � fP0 � rAP0

_P1 ¼ sE1 � mP1P2
P1 þ mP0P2

P0 � nP1P0P1 þ nP2P1P2 � fP1 � rAP1

_P2 ¼ sE2 þ mP0P2
P0 þ mP1P2

P1 � nP2P0P2 � nP2P1P2 � fP2 � rAP2

_PM ¼ rA(P0 þ P1 þ P2)� fPM

_IS0 ¼ QfP0 � mIS0 IS1
IS0 � mIS0 IS2

IS0 � gSIS0 � rSIS0

_IS1 ¼ QfP1 þ mIS0 IS1
IS0 � mIS1 IS2

IS1 � gSIS1 � rSIS1

_IS2 ¼ QfP2 þ mIS0 IS2
IS0 þ mIS1 IS2

IS1 � gSIS2 � rSIS2

_ISM ¼ rS(IS0 þ IS1 þ IS2 )þQfPM � gSISM
_IA0 ¼ (1�Q)fP0 � mIA0 IA1

IA0 � mIA0 IA2
IA0 þ nIA1 IA0 IA1 þ nIA2 IA0 IA2 � gAIA0 � rAIA0

_IA1 ¼ (1�Q)fP1 � mIA1 IA2
IA1 þ mIA0 IA1

IA0 � nIA1 IA0 IA1 þ nIA2 IA1 IA2 � gAIA1 � rAIA1

_IA2 ¼ (1�Q)fP2 þ mIA0 IA2
IA0 þ mIA1 IA2

IA1 � nIA0 IA2 IA2 � nIA2 IA1 IA2 � gAIA2 � rAIA2

_IAM ¼ rA(IA0 þ IA1 þ IA2 )þ (1�Q)fPM � gAIAM

_RS0 ¼ gSIS0
_RS1 ¼ gSIS1
_RS2 ¼ gSIS2
_RSM ¼ gSISM
_RA0 ¼ gAIA0

_RA1 ¼ gAIA1

_RA2 ¼ gAIA2

_RAM ¼ gAIAM

(A 1)

where Fsi is the force of infection,

FS0 ¼
Ncrit

N
(bS0P0

S0P0 þ bS0IS0
S0IS0 þ bS0IA0

S0IA0

þ bS0P1
S0P1 þ bS0IS1

S0IS1 þ bS0IA1
S0IA1 ) (A 2a)
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and

FS1 ¼
Ncrit

N
(bS1P0

S1P0 þ bS1IS0
S1IS0 þ bS1IA0

S1IA0

þ bS1P1
S1P1 þ bS1IS1

S1IS1 þ bS1IA1
S1IA1 ), (A 2b)

In deriving the model, we have normalized the population by Ncrit which represents the population
that causes the healthcare system to be at capacity.
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Appendix B. Parameter fitting and model sensitivity
Many of the parameters associated with the natural progression of the disease are unknown as are several
of the intervention parameters such as social distancing and testing. We use data from [15] for the 161
days between 10 March and 18 August 2020 on active and total cases to elucidate some key
parameters. To do this, we solve our model (A 1) with the parameters in table 1 excluding kc, k0, Mc,
M0, ρA and ρS which we fit to the data. We run our model for 161 days using an initial condition that
0.02% of the population was initially infected with the remaining 99.98% being symptomatic. The
actual number of people with COVID-19 is a matter of speculation and the arbitrary choice of the
initial value will affect the fitting parameters, particularly the testing rates which are intimately linked.
We do not partition any of the initial infected population into symptomatic or asymptomatic also due
to the lack of clarity on true numbers. To help constrain the model, we take k0 = 4kc so that the
doubling rate has to double twice to trigger the half-maximal social distancing. We also take M0 = 2Mc

so that the number of active cases need to double to trigger the half-maximal social distancing rate.
Finally, since we assume that symptomatic people are more likely to get tested than asymptomatic
people we take ρS = 4ρA. These constraints should not be too restricting, probably impacting the fitted
values of the remaining free variables kc, Mc and ρA.

We use a nonlinear least-squares iterative procedure to identify the parameters. This leads to the
values kc=1/16.24 d−1, Mc = 2.57 × 10−2 and ρA = 8.7 × 10−3 d−1 as in table 1 with a residual norm of
9.5 × 10−3. A graphical representation of the fit between data and model is in figure 2.

B.1. Extended fitting
The parameter fittings for figure 2 lead to excellent agreement beyond the fitting time window up to
around 30 September 2020. From there, the model begins to overestimate the case load. Observing the
data points, we note a series of intermittent plateaus are reached with a general overall increasing
trend. One possible explanation for slower growth than we initially anticipated is that we have
assumed a static parameter set. In reality, there will be dynamic changes to behaviour if strategies fail
or cases continue to climb. In particular, people will probably have an increased sensitivity to the rate
of change of cases more so than the actual number.

To improve the fit, we consider two values of kc and k0, the one we have previously fitted in figure 2
and a second value associated with a panic in significant case increases. To fit the second set of values,
we take the data from 6 September to 16 October 2020 and fit a new kc and k0 with all other parameters
fixed and taken from table 1. Using the same nonlinear least square method as for the first fit, this leads
to kc = 0 and k0 = 7.01 × 10−2. We note that this is very reflective of a panic type behaviour whereby no
growth rate will prevent social distancing and the rate required to reach the half-maximal growth is
significantly reduced.

Defining a base set and panic set for kc and k0 we simulate the model again. We assume that
the base values hold until 6 September. From 6 September to 16 October, the panic values drive the
model. Afterwards, we assume that behaviour alternates between base levels and panic levels,
probably with fatigue so that panic cannot be sustained for very long. We plot a particular example
of alternating behaviour in figure 11 where we take base values for 17 October to 10 November
and then panic values for 10 days at which point we return to normalcy until 5 December 2020.
We then take 10 more days of panic values before returning to normalcy for the remainder of
the simulation.

We note that there are many ways to fit this data such as adjusting the time intervals for each
behaviour or fitting a series of new parameters for each plateau region. Furthermore, the assumption
of constant reporting rates probably does not reflect the day-to-day variability in testing, i.e. people
opting for weekday tests over weekend tests. Therefore, we emphasize that the aim of figure 11 is to
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demonstrate that a poor fit to data in the second wave as seen in figure 2 does not necessarily mean that
the underlying model has failed, but that behavioural assumptions have probably changed.

B.1.1. Sensitivity analysis

Having fit data to the model, we then performed a sensitivity analysis on the parameters ρS, ρA, qI, μI, q2,
q0, q, γ, ϕ, σ and α. We used table 1 for the fixed parameters and as mean values for the varying
parameters, each distributed uniformly between maximum and minimum values. We used the Latin
hypercube sampling technique with 10 000 iterations and a Spearman partial rank correlation
coefficient (PRCC) to measure monotonicity. We tested the sensitivity to the cumulative infected
(symptomatic and asymptomatic), susceptibles, peak time for the outbreak, and the value at the peak
of the outbreak. We plot the results in figure 12 The most significant parameter is the recovery rate γ
(assumed the same for both classes) which seemingly has inverse behaviour to what is expected. That
is, an increase in the recovery rate seems to cause more people to become sick. This is because the
basic reproduction number is fixed at 2.4 and therefore changing γ effectively changes the
transmission β making a higher recovery rate lead to a more transmissible disease. Aside from this,
the most significant parameters unsurprisingly are the testing rates ρS and ρA as well as the
symptomatic proportion q. This supports the importance of testing and social distancing. Interestingly,
there is not much sensitivity to the peak time and value of the outbreak confirming the need for long-
term planning regarding vaccination and hospital resource management.

We did not perform a sensitivity analysis on Cc or Mc as these are policy parameters. Their sensitivity
is effectively measured by comparing costs in figures 3 and 8.

B.1.2. Mobility data

Google has provided a dataset of community mobility created from users with the location history active
on their mobile devices [35]. The dataset has six categories which are retail and recreation, grocery and
pharmacy, parks, transit stations, workplaces, and residential. Most categories compare a percentage
change in visitors to a baseline which is the median activity in a five-week period encompassing 3
January to 6 February 2020. The exception to this is residential category which measures the change
in duration.

It is hard to directly compare mobility data and social distancing/relaxation. For example, there could
be no change in activity at a store in terms of visitors, but changes in policy such as enforced physical
distancing or limited capacity shopping. This means that the number of visitors to a location may not
change even though their social distancing behaviour has. This is evidenced in the Google mobility
data for grocery and pharmacy where relatively little change is observed despite significant policy
changes including mandatory masks. The residential category offers limited insight as there are only
24 h in a day so duration variability cannot be that high.

We considered the retail and recreation category to be the most reflective of distancing activity as it is
generally a non-essential activity. For a baseline in our model, we assumed that without COVID-19, there
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would be no social distancing. If we define the social distancing population,

D ¼ S1 þ S2 þ E1 þ E2 þ P1 þ P2 þ PM þ IS1 þ IS2 þ ISM þ IA1 þ IA2 þ IAM , (B 1)

i.e. it covers anyone who is isolating, then we consider the percentage change from baseline to be the
fraction of the total population D/N that is social distancing. We take this percentage to be negative
since social distancing is a reduction in their activity. A comparison between our simulation and
Google’s community mobility data for Ontario from 10 March 2020 to 6 January 2021 is in figure 13. We
emphasize the importance of qualitative trends. We note that our model predicts a similar uptake in
isolation (about 55%). Our model reaches this level more gradually and then sustains it until a
relaxation occurs whereas the data shows a steady increase to the relaxation point. Regional lock-downs
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probably contributed to the very sudden drop in retail usage. Furthermore, as previously stated, an
increase in retail activity does not mean it was done while decreasing isolation. We note that our model
sees a second decrease in activity which also qualitatively fits with the retail mobility data.
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