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Predation risk for animal migrants can be impacted by physical
condition. Although size- or condition-based selection is often
observed, observing infection-based predation is rare due to
the difficulties in assessing infectious agents in predated
samples. We examined predation of outmigrating sockeye
salmon (Oncorhynchus nerka) smolts by bull trout (Salvelinus
confluentus) in south-central British Columbia, Canada. We
used a high-throughput quantitative polymerase chain
reaction (qPCR) platform to screen for the presence of 17
infectious agents found in salmon and assess 14 host genes
associated with viral responses. In one (2014) of the two
years assessed (2014 and 2015), the presence of infectious
haematopoietic necrosis virus (IHNv) resulted in 15–26 times
greater chance of predation; in 2015 IHNv was absent among
all samples, predated or not. Thus, we provide further
evidence that infection can impact predation risk in migrants.
Some smolts with high IHNv loads also exhibited gene
expression profiles consistent with a virus-induced disease
state. Nine other infectious agents were observed between
the two years, none of which were associated with increased
selection by bull trout. In 2014, richness of infectious agents
was also associated with greater predation risk. This is a rare
demonstration of predator consumption resulting in selection
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for prey that carry infectious agents. The mechanism by which this selection occurs is not yet

determined. By culling infectious agents from migrant populations, fish predators could provide an
ecological benefit to prey.
typublishing.org/journal/rsos
R.Soc.Open
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1. Introduction
Predators [1], infectious agents [2,3] and their interaction [4,5] play important roles in structuring
communities and ecosystems. Both predators and infectious agents can apply strong selection
pressures on prey and hosts, altering population-level phenotypes [4,6–8]. Infection can increase
predation risk [9–11], presumably due to decreased ability to detect and/or evade predators,
and/or increased conspicuousness to predators [12]. Infectious agents also affect animal migrants
[13,14], migrations can act to reduce predation [15,16], and a few studies have found
infection to increase predation risk of migrants (e.g. Mesa et al. [17], Schreck et al. [18] and
Hostetter et al. [19]).

Pacific salmon (Oncorhynchus spp.) are among the most studied animal migrants due to their
ecological, economic and cultural value. One of the migrations undertaken during the Pacific salmon
life cycle is by juveniles, when smolts leave natal freshwater habitats and migrate downstream to the
open ocean. Smolts can experience intense predation during downstream migration [20–22]. Recent
research has linked smolt migration survival to the presence and/or prevalence of pathogens [23] and
external signs of disease [19,24]. However, infection is merely the presence of a pathogen and does
not necessarily indicate disease that could facilitate predation, but disease is difficult to assess in the
field [25,26], especially when natural mortality is not observable [25].

Transcriptomics continue to be an increasingly valuable tool in linking animal responses to
environmental conditions and other factors [27] and has proven to be a highly sensitive indicator
in human disease diagnostics [28–31]. Recently, meta-analysis of multi-cohort microarray data
based on six acute and chronic viral diseases revealed a panel of biomarkers consistently
associated with viral disease development (VDD) in salmon [32]. Validation of the VDD biomarker
panel using independent samples from infectious haematopoietic necrosis virus (IHNv) challenge
studies performed across multiple salmon species, and field samples diagnosed pathologically
with various viral and non-viral diseases showed that accurate classifications differentiating
bacterial versus viral diseases and latent infections versus viral disease could be realized with co-
activation of as few as seven VDD biomarkers. Moreover, as demonstrated in human diagnostic
studies, the molecular panel could identify disease before clinical or morphological evidence can
be observed [32,33], and due to the systemic nature of viral infections, worked well across a range
of tissues. The VDD technology has been successfully applied to study disease development
pathways for Piscine orthoreovirus (PRv) [33] and has led to the discovery of over a dozen novel
viruses in salmon [34,35].

Among sockeye salmon (Oncorhynchus nerka) populations of the Fraser River watershed in British
Columbia, Canada, the population emigrating from Chilko Lake is among the largest and most
intensively studied. Each spring, 10–70 million juvenile sockeye salmon smolts leave the lake and
migrate downstream through a gauntlet of binge-feeding bull trout [36] and experience high mortality
in the clear, slow-moving waters of the Chilko River [37]. Combining acoustic telemetry with non-
lethal biopsies and screening for infectious agents revealed a strong link between mortality of
migratory smolts and IHNv [23], but the mechanism of mortality was unable to be determined. IHNv
is a coldwater virus found in North America, Europe and Asia [38]. IHNv appears most effective at
infecting juvenile fish found in freshwater and at temperatures between 10°C and 12°C [38]. In
juvenile sockeye salmon, IHNv can be highly pathogenic [39,40], inducing high rates of mortality. It is
suggested that sockeye salmon are natural hosts of IHNv [40] and this virus has been present in
Chilko Lake for at least several decades [41].

We assess infection-based predation risk of migrant juvenile sockeye salmon (Oncorhynchus nerka)
smolts by piscivorous bull trout (Salvelinus confluentus) in Chilko Lake. We tested smolt tissue samples
using TaqMan assays for 17 infectious agents suspected or known to cause disease in salmon [25],
including IHNv. We use a subset of high-performing VDD biomarkers to attempt to link predation
and infection with genetic markers of active viral disease states [32].
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2. Methods

2.1. Study area and field sampling
Sampling occurred at the Chilko Lake-River outlet in British Columbia, Canada, where sockeye salmon
smolts emigrate downstream each spring and the federal fisheries agency (Fisheries and Oceans Canada)
installs a river-wide counting fence to estimate outmigrant abundance. To compare infection status
between predated and non-predated smolts, individuals were collected from within bull trout stomachs,
as well as at random from the emigrant population (details below) between 30 April and 15 May 2014,
and between 19 April and 5 May 2015. Bull trout were captured via dip net or hook and line either at
(immediately upstream of) the counting fence or in the 1.3 km stretch between the counting fence and
lake outlet. Stomach contents from bull trout were collected via gastric lavage. When possible, freshly
ingested smolts were individually wrapped in foil and frozen in liquid nitrogen; when this was not
possible, smolts were frozen at −20°C for up to 72 h before transferring to liquid nitrogen or a −80°C
freezer for long-term storage; our assessments are not expected to be impacted by this short-term storage
at −20°C. Non-predated smolts were collected via dip net at the counting fence at night during the
outmigration and selected at random from a small plastic wash basin. Totals of 62 (32 predated, 30 not)
and 39 (30 predated, nine not) smolts collected in 2014 and 2015, respectively, were selected for pathogen
screening. Sample sizes of non-predated smolts in 2015 were low because the second year of the study
was opportunistic with limited funding and the field season was shortened by high flows in the Chilko
River that affected other active research. We also wanted to focus on infectious agents in predated fish,
rather than broadly characterizing the pathogens found in wild sockeye salmon smolts. Every predated
smolt was assigned a condition score as a metric for degree of degradation or digestion such that we
could assess the potential effects of sample degradation on infectious agents and biomarker expression.
Condition scores ranged between zero (no visible signs of digestion) and six (prey item unidentifiable) as
in Furey et al. [42]. To maximize the condition of smolts assessed, in 2014, only samples with condition
scores between zero and two were selected for molecular work. In 2015, only samples with scores
between zero and 1.5 were selected.
2.2. Laboratory sampling and analyses
In the laboratory, smolts were dissected to remove gill and liver tissues using aseptic technique. Tissue
samples were screened for the presence of 17 infectious agents (table 1; electronic supplementary
material, table S1), using high-throughput quantitative real-time reverse transcriptase polymerase
chain reaction (ht-qRT-PCR). Infectious agents selected are among those known to infect salmonids
worldwide. The biomarkers selected are all among those found to be capable of consistently
identifying individuals experiencing viral disease [32]. In addition, 14 host genes found to be a high-
performing subset of genes capable of consistently distinguishing a fish in an active viral disease state
(i.e. VDD) [32] were assessed (electronic supplementary material, table S2). Individuals in a viral
disease state demonstrate powerful co-activation of these VDD genes, which can be identified via
strong separation along the first axis of multivariate analyses including expression of groups of VDD
genes [32]. One of these assays, HERC6, had low assay efficiency and was excluded, leaving 13 host
genes. Three liver samples from predated smolts were removed from analyses due to low reference
gene expression.
2.3. Molecular assessment of infectious agents and smolt gene expression
PCR was conducted on the Fluidigm BioMark™ HD nanofluidic platform (Fluidigm Corp., South
San Francisco, USA). Gill and liver tissues were homogenized separately in TRI reagent (Ambion Inc.,
Austin, TX) and 1-bromo-3-chloropropane was added to the homogenate. Total RNA was extracted by
methods previously described [25,43] using MagMAX™-96 for Microarrays Total RNA Isolation Kits
(Applied Biosystems, Foster City, CA, USA) with a Biomek FXP automated liquid-handling
instrument (Beckman Coulter, Indianapolis, IN, USA) according to the manufacturer’s instructions.
The Biomek FXP was also used to automatically normalize total RNA to 1.0 µg. cDNA was
synthesized from normalized RNA using SuperScript VILO MasterMix (Invitrogen, CA, USA)
following manufacturer’s instructions. The nanolitre volume used for each qPCR reaction on the
BioMark necessitates a pre-amplification step. Thus, 1.25 µl of cDNA from each sample was
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pre-amplified with primer pairs corresponding to all assays in a 5 µl reaction volume using TaqMan

Preamp Master Mix (Life Technologies) (see Miller et al. [32]). Unincorporated primers were removed
using ExoSAP-IT High-Throughput PCR Product Cleanup (MJS BioLynx Inc., ON, CAN), and
samples were diluted 1 : 5 in DNA Suspension Buffer. The assay mix was prepared containing 9 µl
primers and 2 µl probes for the TaqMan assays.

All assays were run in duplicate on the BioMark Dynamic Array. A serial dilution of artificial positive
constructs (APC clones) of all infectious agent assays was run as six samples. This serial dilution allowed
for the calculation of assay efficiency, and the copy numbers of the interest targets. The APC clones
contain an additional probe (VIC) that allows for the detection of potential contamination caused by
these highly concentrated samples. For biomarkers, assay efficiency was assessed using a five-sample
serial dilution of pooled, pre-amplified samples. The serial dilution was created by diluting the
pooled sample in DNA suspension buffer. Three reference gene assays (S100 calcium binding protein
[786d16.1P], coiled-coil domain-containing protein 84 [COIL], and 39S ribosomal protein L40,
mitochondrial precursor [MrpL40]), were included to assess sample quality and normalize biomarker
gene data. A 5 µl sample mix was prepared [2.5 ul of TaqMan Gene Expression Master Mix (Life
Technologies), 0.25 ul of 20X GE Sample Loading Reagent (Fluidigm), 2.25 ul of pre-amplified cDNA],
which was added to each assay inlet of the array following manufacturer’s recommendations. After
loading the assays and samples into the chip by an IFC controller HX (Fluidigm), PCR was performed
with the following conditions: 50°C for 2 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15 s
and 60°C for 1 min.

Cycle threshold (Ct) was determined using the Biomark Real-Time PCR analysis software. Reaction
curves for each positive sample-assay combination were visually evaluated for abnormal curve shapes,
close correspondence between replicates, and the presence of APC contamination as indicated by VIC
positives. Using R [44], efficiency was calculated for each assay, results where only one duplicate was
positive for a sample-assay combination were removed, limit of detection thresholds (above which,
samples were considered negative [32]) applied, VIC positive samples removed and duplicates
averaged. Ct scores for infectious agents were converted to RNA copy number per well using the
standard curve for each assay.

2.4. Reference gene performance and sample degradation potential
For all samples, we assessed the performance of three reference genes (S100 calcium COIL, 786d16.1P and
MrpL40) that should be expressed at relatively similar levels among all samples. We wanted to examine
their performance due to the possibility of samples degrading while in a bull trout’s stomach (which
would only affect predated samples). Samples were removed if expression of any reference gene was
1.5 times the interquartile range below the first quartile of gene- and tissue-specific values (e.g. an
outlier). Only four samples, one liver sample collected in 2014 and three liver samples collected in
2015, met this criterion and were removed. To further assess the potential effects of sampling in both
predated and non-predated samples, we visually assessed the expression of the three reference genes
between predated statuses for all year–tissue combinations.

2.5. Data analyses
To determine if infectious agents were more prevalent (i.e. greater percentage of samples that were
positive) in predated smolts than in smolts caught by dip net, a Fisher’s exact test was conducted for
each pathogen for each tissue and year, along with the calculation of the odds ratio for infection in
predated versus non-predated samples. We used a false-discovery-rate adjusted α = 0.05 to assess
significance. For any infectious agent found to be more prevalent in predated samples, we determined
if fish size (fork length; FL) varied between infection-positive and infection-negative fish using a t-test.
When FL was not measured directly, it was estimated from total length (TL) or post-orbital hypural
(POH) measurements via regression (Furey 2016, unpublished data). To determine if predated smolts
had a greater diversity of infectious agents within their tissues, the Shannon diversity index per
sample was calculated using the ‘diversity’ function in the vegan package [45] in R [44] and
compared via a Mann–Whitney U-test on ranks.

To further characterize the relationships among infection, fish length, tissue sampled, and predation,
generalized models (GLM) were used. Four global models were constructed, one for each year–tissue
combination due to the imbalance in sample sizes of predated and non-predated fish between years
and some infectious agents being present in one year and not the other (see Results). Predation status
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was the response variable, with smolt FL and presence or absence of infectious agents as explanatory

variables. In 2015, 12 smolts did not have any lengths recorded, and these fish were removed from
GLM analyses. Two age classes emigrate from Chilko Lake, British Columbia. Age-1 smolts constitute
on average approximately 96% of the migrating population, while age-2 are substantially larger but
make up approximately 4% of the migration [46]. Of the 32 predated smolts assessed in 2014, eight of
them were age-2 (classified as those greater than 116 mm FL; Brian Leaf, DFO, 2016, pers. comm.), all
of which were predated. In response, age-2 smolts were removed from 2014 GLM analyses, as they
were only present in the predated group (and thus age and FL were confounded). Only infectious
agents that were detected in at least one predated and one non-predated smolt for a given tissue–year
combination were included to prevent unrealistic logistic regression coefficients. Infectious agents that
were found among all samples were also not included. Global models were constructed in R [44].
Candidate models were ranked via the Akaike information criterion corrected for small sample sizes
(AICc) using all-subsets regression via the MuMIn package [47] in R [44]. To prevent overfitting due
to our small sample sizes, the maximum number of parameters in each candidate model was limited
to three (not including the intercept). The model with the lowest AICc was considered further as the
most parsimonious and we present all models with ΔAICc < 3. However, we also present averaged
coefficients among models with ΔAICc < 3. Coefficients were weighted by AICc weight, recalculated
among models with ΔAICc < 3 (table 2, right-hand column). In addition, averaged coefficients were
calculated using the zero method, such that if a variable was not retained in an averaged model, a
zero was included in the averaging, reducing the effect size.

Ct scores were transformed using a standard curve of known infectious agent RNA concentrations to
represent RNA copy number per PCR well. Principal components analysis (PCA) was used to visualize
variability in VDD gene expression among samples. Separate PCAs were run for each year–tissue
combination (four in total). PCA results were assessed visually to determine relationships between
VDD gene expression and both predation and infection status, focusing on groupings of samples
along the first two axes. All analyses were completed in R 3.5.1 [44], with PCAs conducted with the
‘prcomp’ function.
3. Results
3.1. Infectious agents
Among the 17 infectious agents screened for, 10 (including IHNv) were found to be in sampled smolts
between the two years and tissues (table 1). IHNv was only observed in 2014, but its prevalence
dramatically differed between predated (87.5% in gill and 35.5% in liver) and non-predated (20% in
gill and 3.3% in liver) samples. The odds of IHNv infection in gill was 25.8 times greater for predated
than non-predated smolts (Fisher exact test, fdr-corrected p < 0.0001) and 15.3 times greater in liver
(Fisher exact test, fdr-corrected p = 0.007). IHNv prevalence did not differ between age-1 and age-2
predated smolts (electronic supplementary material). t-tests comparing mean fork length between fish
positive and negative for IHNv in 2014 found no significant difference in size in either gill ( p = 0.75)
or liver tissues ( p = 0.86). No pathogen aside from IHNv was found to be statistically more prevalent
in predated samples than non-predated. ‘Candidatus Branchiomonas cysticola’ was found in
approximately 94% of all samples. Although not significantly so, most observed infectious agents
were observed at higher prevalence in predated samples than not, with Flavobacterium psychrophilum
being 1.4–3.9 times more likely to be found in predated smolts among all tissue–year combinations.
Ichthyophthirius multifiliis was not found in any liver samples in 2014, (and only in two liver samples
in 2015, both predated), but in both years of gill samples, the agent was consistently found more
often in predated samples. No pathogen was found to be more prevalent in non-predated samples in
more than one tissue–year combination (table 1); in the three instances where a pathogen was found
more often in non-predated samples, none were statistically significant (all fdr-corrected p > 0.05). The
Shannon diversity index of infectious agents was significantly greater in predated samples for both
gill (Mann–Whitney U-test; p < 0.001) and liver (Mann–Whitney U-test; p = 0.02) tissues in 2014
(figure 1). In 2015 samples, the diversity index did not vary between predated and non-predated
samples in either tissue (Mann–Whitney U-test; p > 0.05).

Use of GLMs revealed similar, but also additional, relationships between infection and predation risk
(table 2) to the pathogen-by-pathogen approach. IHNv was retained in all 2014 models with ΔAICc < 3,
for both gill and liver, with increased predation risk associated with infection. However, the two



Table 2. Summary of generalized linear models (GLMs) describing relationships between predation status (binomial) and the
presence of infectious agents and fork length (FL). Candidate models are ranked by AICc, and only models with ΔAICc < 3 are
shown. The top-ranked model is in italics. First numeric value given for each model is the intercept, and coefficients are shown
for each explanatory variable. Infectious agents are labelled as per their assay name (table 1). Positive coefficients indicate
increased probability of predation (negative coefficients associated with reduced predation risk). AICc weights are shown for each
model, calculated for both all models, but also when only considering models with ΔAICc < 3 (the latter of which was used for
calculating model averaged coefficients, shown below candidate models).

individual model AICc ΔAICc
AICc Weight
(all models)

AICc Weight
(ΔAICc < 3)

2014 - gill

∼ −2.54 + ihnv(+3.64) + ic_mul(+2.20) 46.6 0 0.33 0.38

∼ −1.75 + ihnv(+4.53) + ic_mul(+

2.44) + fl_psy(−1.70)
47.4 0.8 0.22 0.25

∼ −2.08 + ihnv(+3.52) 48.5 1.91 0.13 0.14

∼ +1.63 + FL(−0.04) + ihnv(+3.60) +

ic_mul(+2.07)

48.6 1.95 0.13 0.14

∼ −1.39 + ihnv(+4.21) + fl_psy(−1.39) 49.6 2.94 0.08 0.09

averaged model

∼ −1.58 + ihnv(+3.89) + ic_mul

(+1.73) + fl_psy(−0.55) + FL(−0.006)
2014 - liver

∼ +12.29 + FL(−0.14) + ihnv(+3.56) 61.1 0.00 0.53 0.61

∼ +12.22 + FL(−0.14) + ihnv(+3.55) +

pspv(+0.16)

63.3 2.29 0.17 0.19

∼ +12.31 + FL(−0.14) + ihnv(+3.57) +

fl_psy(−0.15)
63.4 2.32 0.17 0.19

averaged model

∼ 12.28 + FL(−0.14) + ihnv(+3.56) +

pspv(+0.03) + fl_psy(−0.03)
2015 - gill

∼ +22.35 + FL(−0.28) + fl_psy(+2.38) 31.4 0.00 0.59 0.63

∼ +24.52 + FL(−0.31) + fl_psy(+2.66) +

pspv(−1.10)
33.4 2.08 0.21 0.22

∼+18.36 + FL(−0.22) 34.2 2.88 0.14 0.15

averaged model

∼ +22.24 + FL(−0.28) + fl_psy(+2.09) +

pspv(−0.24)
2015 - liver

∼+18.00 + FL(−0.22) 32.8 0.00 0.38 0.40

∼+18.77 + FL(−0.23) + pspv(+1.55) 32.9 0.09 0.36 0.38

∼+18.06 + FL(−0.22) + fl_psy(+0.18) 35.3 2.47 0.11 0.12

∼+18.93 + FL(−0.24) + pspv(1.66) +

fl_psy(+0.91)

35.4 35.4 0.11 0.11

averaged model

∼ +18.40 + FL(−0.22) + pspv(+0.77) +

fl_psy(+0.12)
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Figure 1. Shannon diversity index of infectious agents found in gill and liver tissue of sockeye salmon smolts between those
predated and not predated by bull trout. Asterisks indicate a significant difference in median pathogen richness between
predated and non-predated groups (Mann–Whitney U-test, α = 0.05).
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top-ranked 2014-gill models also revealed a potential increased probability of predation for smolts
infected with Ichthyophthirius multifiliis. Ichthyophthirius multifiliis was also more prevalent in predated
samples in 2015, but because this infectious agent was absent from non-predated samples in this year
(table 1), it was not included in GLMs. The presence of two other pathogens, Flavobacterium
psychrophilum and Pacific salmon parvovirus, was also retained in some models with ΔAICc < 3, but in
general, their coefficients were smaller, and the signs of their coefficients were inconsistent (implying
the agent could be associated with other increased or decreased predation risk; table 2).

3.2. Fork length and age
Among GLMs, the 2014-liver models and all 2015 models suggested that smaller fish were at greater risk
of predation (negative FL coefficient; table 2). This relationship was consistent among year–tissue
combinations, with all models ΔAICc < 3 containing FL, including the top models. In 2014 samples,
mean FL of smolts did not differ between IHNv+ and IHNv- smolts, in both gill (t = 0.46, d.f. = 39,
p = 0.64) and liver (t =−0.12, d.f. = 40, p = 0.90) tissues. Similarly, the prevalence of IHNv (0.875) was
the same between age-1 (21 of 24) and age-2 (seven of eight) predated smolts in 2014, and thus the
inclusion of age-2 fish in our predated sample did not bias IHNv prevalence in predated fish.

3.3. Gene expression
PCAs on 2014 VDD gene expression data (the year in which IHNv was present) revealed three smolts
that exhibited strong separation along the first PC axis (most positive PC1; figure 2). This strong
separation was apparent in both gill and liver tissues (figure 2), and these three same smolts had
among the highest tissue-specific loads of IHNv (figure 2). An additional fourth gill 2014 sample
exhibited the same strong separation on the first PC axis, but was not included in liver analyses due
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to poor reference gene performance. Aside from these individuals, PCA in both years also demonstrated
further shifts in VDD gene expression between predated and non-predated smolts in at least one of the
first two PC axes, regardless of year or tissue (figure 2). There was some tissue- and year-specific
variability; separation for 2015 gill samples was most clearly along PC1, while the other year–tissue
combinations (aside from the three high-IHNv-loaded individuals) demonstrated stronger shifts along
PC2 (figure 2).
3.4. Sample degradation potential
All three reference genes demonstrated higher expression (lower Ct scores) in non-predated samples in
gills for both years (786d16.1P was significantly different in both years, COIL significantly different in
2014, MrpL40 not significantly different in either year; t-test, α = 0.05; figure 3). Conversely, all three
reference genes demonstrated lower expression (higher Ct scores) in non-predated samples in livers in
both years (COIL significantly so in both years, MrpL40 in 2015, and 786d16.1P in neither; figure 3).

There was no significant relationship between IHNv loads and condition score for predated, IHN+
smolts for both gill (Pearson correlation = 0.31, d.f. = 26, t = 1.68, p = 0.10) and liver (Pearson correlation
coefficient = 0.22; d.f. = 10, t = 0.73, p = 0.48). However, IHNv+ gill samples came from predated smolts
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with a significantly higher condition score (i.e. more digested) than predated smolts that were IHNv-
(mean score IHNv+ = 1.4, mean score IHNv- = 0.5, t-test, t = 2.60, d.f. = 30, p = 0.01). However,
condition scores did not differ between IHNv+ and IHNv- predated smolt samples in liver samples
(mean score IHNv+ = 1.5, mean score IHNv- = 1.1, t-test, t = 1.60, d.f. = 29, p = 0.12).
4. Discussion
IHNv-positive smolts in 2014 were 16–25-times more likely to be predated than not. It is uncommon for
studies to make direct links between infection and predation risk outside of experimental settings (but see
[9–11,17,25,48]. Field studies on infection-based risk for fishes have focused on avian predators [18,25].
Miller et al. [25], used an approach similar to ours to demonstrate pathogen-based predation risk for
wild salmon, with rhinoceros auklets (Cerorhinca monocerata) feeding more heavily on marine sockeye
salmon smolts infected with Parvicapsula spp. parasites. Although not focused on predation, Jeffries
et al. [23] found within our study system that most (greater than 80%) IHNv-positive Chilko sockeye
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salmon smolts tracked with acoustic telemetry perished early in the migration, suggesting an association

between IHNv infection and smolt mortality, and our results indicate that predation is the probably
mechanism for at least a portion of this mortality.

IHNv is a single-stranded RNA virus that generates an acute, systemic disease that causes necrosis of
haematopoietic tissues of the kidney and spleen, as well as damage to several other organs [49]. For
juvenile sockeye, virulence is high [39] and can result in high mortality [40] 4–20 days after exposure
[50], but outbreaks are generally limited to cooler waters below 15°C [38]. IHNv’s presence in Chilko
Lake has been known for more than 40 years [41]. How infection of IHNv results in increased
predation by bull trout remains unclear. It is assumed that these infectious agents either reduce a
smolt’s probability of escaping a predation attempt when targeted [17], or increase the predator’s
propensity to target the smolt. Either possibility would probably rely upon changing body coloration
[51] or changing swimming behaviour or performance that can occur with infection [52,53]; IHN can
result in lethargy, hyperactivity, or erratic swimming [53]. Further work, such as experimental swim
trials or high-resolution tracking, is needed to determine the behavioural consequences of infection in
migratory smolts, and how this might result in increased predation risk. Such research would further
develop our understanding of how infections and movements, including migrations, interact to affect
individuals, populations and communities [14,54].

Although IHNv demonstrated the strongest links between predation risk and infection,
Ichthyophthirius multifiliis was also associated with increased predation risk via GLMs for 2014 gill
samples. Ichthyophthirius multifiliis was only found in predated samples in both gill and liver tissues in
2015, and thus an odds ratio could not be calculated and was not included in 2015 GLMs, but in 2014
gill samples, this infectious agent was associated with an approximately fivefold increase in predation
risk. This freshwater ciliate can induce mortality in fishes [55,56], including documented epizootics in
a wild population of spawning Fraser River sockeye salmon [57]. The parasite targets epithelial tissue,
and damage to gills leads to oxygen starvation and acidosis [56]. Thus, I. multifiliis can reduce
swimming capacity of hosts [58]. In contrast to IHNv, the likelihood of infection with this globally
distributed parasite increases with rising water temperature (as a result of reduced generation time;
[56,59]).

Both Flavobacterium psychrophilum and Pacific salmon parvovirus were retained in GLMs, but
inconsistently. Flavobacterium psychrophilum is a bacterium that causes disease in a wide variety of
salmonids and can induce high rates of mortality, but pathogenicity varies widely among strains [60].
We found F. psychrophilum to be more prevalent in predated samples consistently among tissues and
years, but not significantly so. Furthermore, GLM coefficients for this infectious agent were negative
in 2014, suggesting predation risk was lower with infection. However, these negative coefficients only
occur in models that also contain IHNv as an explanatory variable (which was retained in all high-
ranking models); thus, these coefficients refer to the impact of F. psychrophilum on predation risk in
the absence of IHNv. These small but negative coefficients are thus probably due to small sample
sizes and we caution overinterpretation. Similar to our Fisher exact tests, it has been found to be
weakly, but not significantly, associated with mortality in tagged Chilko sockeye salmon smolts [61].
Pacific salmon parvovirus is a recently discovered virus [43] and it is unclear if and how it causes
disease [25], but has been observed in sockeye salmon [32,62,63]. However, Stevenson et al. [61] did
not observe this virus in Chilko sockeye salmon smolt gill tissues.

The presence of an infectious agent, without an indication of tissue damage or an immunological
response (such as the VDD gene panel used in this study), is not evidence of infectious disease.
Therefore, unsurprisingly, most of the infectious agents detected in this study were not associated
with increased predation risk. Furthermore, the virulence of an infection is dependent upon the
interaction of aspects of the host, its environment and the pathogen. Salmon populations that have
coevolved with endemic pathogens may be immunologically equipped to resist physiological
impairment [64] and some pathogens may disrupt homeostasis primarily in the context of
environmental stressors, a pertinent example being the importance of cool temperatures for IHNv
virulence [40].

In addition to the prevalence of specific agents, the diversity of infectious agents detected was higher
in predated samples in both tissues in 2014. Similarly, rhinoceros auklets fed more heavily on sockeye
salmon smolts with higher pathogen richness [25]. Although the mechanism for a correlation between
pathogen diversity and predation status is unclear, we hypothesize that smolts with greater diversity
of infectious agents are probably physiologically compromised. Although diversity metrics (or other
metrics such as relative infection burden [43]) can describe the variability in infections in terms of the
presence and load of multiple infections, infectious agents can interact in complex ways. In certain
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circumstances co-infection can exacerbate existing or generate new physiological issues for the host

[65,66] or even mediate impacts through competitive or antagonistic interactions [67–69]. Thus, further
work should focus not only on specific infections or the number of unique infections, but also the
combination of infections and their loads.

Regardless of the mechanism, we provide evidence that infections can increase predation risk of fish
in the wild. Predation on juvenile salmonids has long been of interest, with research focused on
quantifying the number of salmon lost via avian [70,71] predators and piscivorous fishes [72,73] alike.
However, it appears in this system that the impacts of predation by bull trout and infection are not
additive sources of mortality, but rather compensatory. There is increasing recognition that predators
of salmon exert selective pressures [19,25,74], but it remains difficult to quantify the interactions
among various biological and environmental conditions influencing mortality [25].

Our assessment of infectious agent influences on predation risk is dependent upon multiple
assumptions, including that once ingested, an infected smolt cannot infect others. IHNv-infected smolts,
however, were in worse condition (a proxy for longer duration in the gut) than those that were not
infected (in gill samples, but not liver samples), which may be evidence of transmission post-ingestion.
If cross-contamination of IHNv within the gut does occur, it could be through the gills, which were the
only externally exposed tissue sampled. As IHNv can be present in mucus [75], it is plausible that
cross-contamination could occur (subsequently increasing the prevalence of infectious agent-positive fish
in the predated sample). Restricting sampling to only internal organs in future studies could minimize
this risk. With cessation of circulation post-mortem within the fish, we feel it is highly unlikely that an
infection could travel between gills and liver once in the bull trout’s stomach. Cross-contamination after
ingestion would be more likely if infectious agents could persist and proliferate after host death.
Stomach acid, however, is a hostile environment that is thought to have evolved in vertebrates not only
to aid digestion, but to protect against infectious agents [76,77], which would help to prevent
productivity after ingestion. It is also possible that we observed greater prevalence of IHNv in gills
rather than livers because heavy infections in the gills represented a more developed infection where
the virus can be detected in all tissues, if the liver degrades more quickly post-mortem. Examining
multiple tissues simultaneously may also assist in determining infection or disease progression.

Another assumption of our study is that IHNv is not transferred from bull trout to ingested smolts.
Although IHNv can infect a variety of North American salmonids [78], to our knowledge, it has never
been documented in bull trout, albeit implicated in a historical population collapse in Lake Chelan,
Washington [79]. Susceptibility to IHNv is species- and experience-dependent, with other chars
exhibiting more resilience than sockeye salmon [78]. If bull trout exhibit similar resilience, it seems
likely that their infection rates and loads would be low relative to those observed in sockeye salmon
smolts. If bull trout are susceptible to IHNv or any other screened infectious agent, it is certainly
feasible for these fish to become infected due to repeated exposures via feeding on smolts during the
outmigration. Ingestion of a virus can possibly result in infection transmission [80], leading to
concerns over the use of wild baitfish in hatcheries or moving baitfish into new systems [81]. It
remains unknown, however, if the ingestion of a smolt would provide an appropriate mechanism for
infectious agent transfer from bull trout to smolts, and thus further research could address the
validity of this assumption. Regardless, our work presents compelling evidence for the influence for
fish health to impact predation risk.

Lastly, IHNv infection does not appear to be confounded by smolt size or age. IHNv affects fish quickly
[40], and thus feedingmight not be impacted for a long enough duration to generate size differences among
infected anduninfected smolts. Similarly, IHNvhad equal prevalence in predated samples between the two
age classes of smolts emigrating the lake. Thus, IHNv infection probably affects predation risk independent
of size, which commonly correlates with survival in juvenile fishes [82].

Even though IHNv was not confounded by size, our analyses found evidence of size-based selection,
with bull trout consuming smaller fish, supporting earlier findings in this system [42]. Increased size of
fish can both reduce potential gape-limited predators and improve ability to evade predators [82]. Bull
trout are probably not affected by gape, and thus size-based predation risk is probably due to increased
swimming performance of larger smolts. Smaller sockeye salmon smolts are also disproportionately fed
upon by rhinoceros auklets in the marine environment [74], and thus larger smolt sizes may continually
be selected for throughout both freshwater and marine portions of the outmigration. However, we
acknowledge our sample size is small for investigating size-based predation risk as this paper focuses
more on the role of infection.

Gene expression of markers shown to be predictive of VDD [32] differed between predated and non-
predated smolts. In particular, three individuals with high IHN loads in 2014 separated clearly along the
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first PC axis in both tissues (and a fourth gill sample), a signature observed in other IHNv-infected fish

known to be in a viral disease state [32]. Thus, these individuals, all predated, were probably
experiencing consequences of disease, an anecdotal but rare link between disease and predation. There
was also some separation between other predated and non-predated individuals via PCA (i.e. 2015
samples when IHNv was not present) that could possibly be due to an undetected infectious agent.
However, we hesitate to attribute these differences to predation selection, as these differences were of
smaller magnitude, and we cannot discount the possibility that gene expression was affected by sample
degradation as IHNv+ smolts were in worse condition than those IHNv- (see below). However, we are
confident that the strong response from the four fish with high IHNv loads is not due to degradation, as
these samples separate from non-predated from other predated samples in the opposite direction along
the first PC axis and to a much larger degree (we also observe strong separation when we conduct a PCA
on the predated samples only, providing further evidence of a biologically relevant signal; electronic
supplementary material, figure S1). Recent work assessing gene expression in gill biopsies on smolts
tracked with acoustic telemetry found high IHNv loads to be associated with VDD genes and the first
PC axis, but did not find IHNv presence to correlate with survival [61], unlike this study and Jeffries et al.
[23]. However, Stevenson et al. [61] tagged fewer fish with biopsies relative to Jeffries et al. [23] and still
found age-2 fish that perished in the first 14 km of migration to have high PC1 scores that were
associated with elevated IHNv loads [61]. Thus, more work is needed to determine the dynamics of
IHNv in the system and the interannual variability in its impacts on smolts.

Reference genes demonstrated that predated samples had lower expression that non-predated
samples in gills, but higher expression in liver, although most values were highly overlapping.
Although it is difficult to explain why one tissue would react differently than the other regarding
gene expression, the lower expression of predated gill samples could be the result of sample
degradation. The gills, being an external tissue, would be more exposed to the bull trout’s stomach
acids and digestive processes than the liver tissue. Sample degradation, or any factor that would
result in a shift of gene expression between predated and non-predated samples, would affect our
ability to test for predation-based impacts. For example, we see consistent shifts in gene expression
based on predation status using PCA, but we cannot demonstrate that these differences are not due to
sample degradation alone. The separation between predation statuses apparent via PCA could be
attributed to differences in gene performance in the assays or could reflect cellular post-mortem
transcriptional shifts, which have been documented to occur in zebrafish, mice and humans [33,83].
However, we see much larger separation in multivariate space regarding VDD gene expression in four
samples with high IHNv loads in 2014, that load within the PCA in an opposite direction from other
predated samples. We also still see strong separation of these same individuals along the first PC axis
when conducting a PCA on only predated fish, indicating unique gene expression regardless of
predation status (electronic supplementary material, figure S1). This panel has also been effectively
applied to recently dead and live sampled farmed salmon to differentiate fish in an active viral
disease state, with findings validated through pathology, providing evidence that these signatures are
retained after death [33]. Other recent works suggest that RNA can indeed remain intact post-mortem,
although the responses are gene-specific [83,84]. Therefore, we are confident these three or four
samples are indeed expressing the screened VDD genes in a distinct matter. If post-mortem sample
degradation is a factor for at least some host genes, we do not expect infectious agents to be as
adversely affected, as microbes can survive passage through the gut of a predator, and therefore can
continually produce mRNA transcripts, maintaining our ability to detect their presence after death of
the host. In addition, tissue selection may also affect ability to detect and assess infection and needs to
be considered when interpreting each infectious agent. For example, the kidneys would be more ideal
for further assessments of IHNv, given that this virus causes disease within this tissue.

In conclusion, we provide evidence that specific infections can be associated with higher predation
risks in wild fish, suggesting compensatory mortality. Predation may therefore aid ‘migratory culling’
[13,14], where the physiological impacts of infection prevent successful migration in some individuals,
reducing pathogen prevalence, burdens and transmission in the population. Indeed, Mesa et al. [17]
suggested that avian predation on smolts with BKD may explain why high infectious loads of
Renibacterium salmoninarum are relatively rare in the Columbia River. The potential for migratory
culling has important implications for management such as predator control [85]. If fish are
compromised upon migration, survival may be poor regardless of predators. Thus, control of native
predators may not have the intended effects on prey [86] and it is important to attempt to identify
selection processes predators place on prey such as juvenile salmon (i.e. [12,74]). The ability for
predators to facilitate or affect migratory culling is probably dependent upon the specific qualities of
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the predators, the migrants and their movement behaviours, the infection(s) and experienced

environmental conditions. For instance, the ability of the pathogen to spread before predation, or
potential for other forms of transmission (prey to predator, or vertically during other life stages) are
likely to affect potential for predation-assisted migratory culling. More broadly, it appears imperative
to include infectious agents within monitoring of important fish populations, particularly with the
possibility for individual host–infection relationships to interact with climate change and warming
waters, with some infections potentially becoming less prevalent (such as IHNv, generally limited to
colder waters [38]), and others more [87,88], such as Ichthyophthirius multifiliis [87].
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