Table 7.
Optimal MAE and median percent error values for the cross-validation method. Validation error is equivalent to test error for cross-validation.
Model | Train MAEa | Validation MAE | Validation percent error |
Ridge regression | 0.262 | 0.275 | 0.62 |
Decision tree regression | 0.181 | 0.207 | 0.28 |
Random forest regression | 0.073 | 0.175 | 0.40 |
AdaBoostb regressionc | 0.164 | 0.167 | 0.27 |
Support vector regression | 0.230 | 0.240 | 0.03 |
aMAE: mean absolute error.
bAdaBoost: adaptive boosting.
cThe model with the lowest test MAE.