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Abstract
Like humans, many companion animals experience a gradual decline in skeletal muscle mass and function during later 
years of life. This process, analogous to sarcopenia in humans, increases risk for morbidity and mortality. Periods of reduced 
activity due to injury or illness, followed by an incomplete recovery, can accelerate the loss of muscle mass and function. 
Emerging research from human studies suggests that moderate amounts of high-quality protein may attenuate the loss 
of muscle, while preventing accumulation of fat during periods of disuse. Whey protein is a consumer-friendly and readily 
available source of high-quality protein. It supports skeletal muscle maintenance during normal aging and may also 
provide anabolic support during periods of illness, injury, and recovery. Ongoing research efforts continue to refine our 
understanding of how protein quality, quantity, and meal timing can be optimized to support retention of muscle mass and 
function during aging. Priority research areas include supplementation with high-quality protein during illness/injury to 
stimulate anabolism by targeting molecular mechanisms that regulate skeletal muscle metabolism.
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Introduction
In humans adults, age-related skeletal muscle loss occurs 
at a rate of 1% to 2% per year beginning around 50 yr of age 
(Keller and Engelhardt, 2013). This insidious loss of muscle is 
termed “sarcopenia” and is clinically defined 3 ways: a loss of 
skeletal muscle mass, low muscle strength, and poor physical 
performance (Santilli et  al., 2014; Cruz-Jentoft et  al., 2019). 
Sarcopenia is associated with an increased risk of physical 
disability, poor quality of life and mortality (Santilli et al., 2014), 
and is not limited to humans. Sarcopenia has also been reported 
in companion animals, such as senior cats and dogs (Cupp et al., 

2007). Over an 8-yr period, aging cats lost 34% of their lean body 
mass (LBM) at a rate of 4.3%/yr (Cupp et al., 2007). Similarly, in 
aging dogs, the rate of LBM loss over a 4 yr period was 2.4%/yr 
(Adams et al., 2015).

In contrast to the slow progression of sarcopenia, as little 
as 3 to 4 d of reduced physical activity due to injury or illness 
accelerates muscle mass loss. Older adults (> 65 yr) tend to 
experience a greater loss of muscle during disuse compared 
with their younger counterparts (Paddon-Jones et  al., 2004; 
Arentson-Lantz et  al., 2020). However, recent data from 
our group show that even healthy, middle-aged adults (~50 
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yr), with a largely youthful phenotype, also experience an 
accelerated loss of muscle during periods of inactivity (English 
et al., 2016). For context, in older adults, 7 to 10 d of bed rest 
can result in >1 kg loss of lean mass, primarily from postural 
muscle in the legs (Drummond et al., 2012; Dirks et al., 2016; 
Arentson-Lantz et al., 2019a; Kilroe et al., 2020). The duration 
of disuse matters, although the rate of skeletal muscle 
deconditioning is thought to be greatest during the first few 
days of muscle inactivity (i.e., first 7 d). In many instances, a 
reduction in lean mass can be detected after only 2 d of disuse 
(Kilroe et al., 2020).

The cumulative impact of repeated episodes of muscle 
loss followed by incomplete recovery occurs in parallel with 
sarcopenia and unless managed, may hasten the onset of frailty 
(English and Paddon-Jones, 2010). While the majority of research 
on modifiable behaviors and dietary practices that support 
healthy aging has been conducted in humans, some findings 
have been confirmed in companion animals (Laflamme, 2018). It 
is intuitively desirable to identify interventions for both humans 
and companion animals of all ages that can protect muscle mass 
and function during disuse and accelerate recovery (Paddon-
Jones and Rasmussen, 2009; English and Paddon-Jones, 2010). 
Dietary protein is a well-established anabolic stimulus and 
source of amino acids for building and repairing muscle protein. 
In this narrative review, will briefly discuss how high-quality 
dietary protein, such as whey, can be used to support skeletal 
muscle mass during aging and bouts of disuse as well promote 
recovery and reconditioning of muscle.

Regulation of Muscle Protein Synthesis
At the broadest level, skeletal muscle mass is regulated by muscle 
protein synthesis (MPS) and muscle protein breakdown (MPB; 
Rennie et al., 2004). Although there are a myriad of stimuli that 
alter the balance of MPS and MPB, two of the primary, modifiable 
drivers are physical activity (Bodine, 2006; Kumar et  al., 2009; 
Wall et  al., 2016) and dietary protein ingestion (Moore et  al., 
2009; Witard et al., 2014). In the presence of adequate physical 
activity and nutrition, the rates of MPS and MPB are cyclically 
balanced and muscle mass is maintained or increased in cases 
of growth or purposeful physical training (Kumar et  al., 2009; 
Brook et  al., 2015). Conversely, with increasing age (Mitchell 
et al., 2012), periods of physical inactivity, inadequate nutrition, 
illness or injury (Breen et al., 2013), MPB can chronically exceed 
MPS resulting in a loss of muscle mass, strength and physical 
performance (Mitchell et al., 2012; Santilli et al., 2014).

The underlying molecular etiology of muscle loss is 
complex and multifactorial. Although muscle atrophy is 
generally characterized by the rate of MPS being persistently 
lower than the rate of MPB, this is achieved through several 
pathway-specific signaling cascades. Catabolic diseases and 
other myopathies like chronic obstructive pulmonary disease, 
and symptoms of catabolic conditions, e.g., cancer cachexia, 
increase MPB rates primarily through the activation of certain 
proteolytic pathways, including the ubiquitin–proteasome 
pathway (Johns et al., 2013). In contrast, age-related muscle loss, 
as well as disuse-atrophy, is primarily a result of transiently 
reduced MPS rates, particularly in response to dietary protein 
ingestion (termed anabolic resistance), which is characterized 
by a blunted response in the activity of skeletal muscle anabolic 
pathways, such as the protein kinase B (Akt)/mammalian 
target of rapamycin complex 1 (mTORC1) signaling pathway 
(Cuthbertson et  al., 2005; Ferrando et  al., 2010; English et  al., 
2016). The skeletal muscle of older adults  exhibits a reduced 
anabolic response to a protein rich meal after a short 5-d period 
of bed rest, whereas younger adults maintain their postprandial 
MPS rates (Tanner et al., 2015).

Leucine is a branch chain amino acid  that directly and 
indirectly activates mTORC1. This activation in turn coordinates 
a signaling cascade which leads to the assembly of initiation 
factor E4 complex and activation of ribosomal protein S6, 
ultimately resulting in an upregulation in MPS (Drummond and 
Rasmussen, 2008; Sandri et  al., 2013). This leucine-activated 
pathway is considered to be widely conserved across species 
(Yang and Guan, 2007; Suryawan et  al., 2008; Norton et  al., 
2012). In adult humans, a small amount of leucine (~ 3 g/meal) 
is considered an “anabolic trigger” to maximally stimulate MPS, 
if sufficient quantities of the other indispensable amino acids 
(IAAs) are also present. Indeed, leucine appears to be a critical 
anabolic signal that is the primary determinant of muscle 
anabolism in response to a meal (Katsanos et al., 2006; Devries 
et al., 2018a, 2018b).

For humans, a food first approach (vs. supplementation) is 
broadly recommended for overall heath as well as maintaining 
muscle mass. Meals that include a moderate amount (25 to 
30 g) of mixed high-quality plant and animal protein will 
likely contain sufficient leucine to robustly stimulate MPS in 
both young and older adults (Symons et al., 2007; English and 
Paddon-Jones, 2010). However, in some circumstances dietary 
supplementation may be desirable and/or preferable. Whey is 
a rapidly digested protein that has repeatedly been shown to 
effectively and efficiently stimulate MPS in older adults (Burd 
et al., 2012) and during periods of disuse (Antonione et al., 2008).

Whey protein has long been favored by researchers, 
clinicians and many consumers because of its full complement 
of EAAs and rich leucine content (~3.0 g leucine per 25 g of 
whey protein isolate (WPI); Table 1; USDA, 2019). Whey protein 
is commercially available as WPI (WPI: >90% protein), whey 
protein concentrate (WPC35 and WPC80, with 35% and 80% 
protein-dry basis, respectively) and demineralized whey 
protein, which has a 13% protein content and high lactose 
content (Demin 90; Kelly, 2019). Both WPI and WPC80 both 
have excellent digestible indispensable amino acid scores 
(DIAAS) of 1.09 and 0.973, respectively (Table 1). As a note, 
DIAAS is a scientifically validated means of evaluating protein 
quality of a single ingredient or individual foods  in the human 
diet (FAO, 2011), but the rate-limiting amino acid needs of 
target populations should be taken into consideration when 
incorporating whey protein in dietary formulation.

Abbreviations

Akt protein kinase B
DIAAS digestible indispensable amino acid 

score
IAA indispensable amino acid
LBM lean body mass
MPB muscle protein breakdown
MPS muscle protein synthesis
mTORC1 mammalian target of rapamycin 

complex 1
PGC1α peroxisome proliferator-activated 

receptor γ coactivator 1-α
RDA recommended dietary allowance
WPC whey protein concentrate
WPI whey protein isolate
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Current Protein Recommendations
Recommendations from research councils providing 
population-level guidance for dietary protein adequacy in 
human and animals are often not nuanced to differentiate 
between the younger and older adults. Additionally, they are 
often inaccurately interpreted as either the average or upper 
limit for protein intake (Wolfe and Miller, 2008). For example, the 
recommended dietary allowance (RDA) for protein for humans 
is 0.80 g protein/kg/d and was formulated as an estimate of the 
minimum daily average dietary protein required to meet the 
needs of 97% of the healthy adult population (Meyers et al., 2006). 
It should also be recognized that current recommendations for 
both humans and companion animals do not take into account 
any additional catabolic burden (e.g., disease and disuse) that 
may increase protein needs.

Nutritional Strategies to Maintain Muscle 
Mass
As noted previously, dietary protein in particular is of interest 
because of its role as an anabolic stimulus and source of amino 
acids for MPS. However, strategies to optimize protein intake 
for muscle health in both a healthy, aging population as well 
as during periods of catabolism and recovery continue to be 
refined. Several review articles, including a recent systematic 
review, highlight the diverse approaches researchers have 
utilized to understand best practices for protein intake 
during aging and periods of catabolism and recovery in adults 
(Hanach et al., 2019; Howard et al., 2020; Phillips et al., 2020). 
While the variability in the duration, timing, and frequency of 
protein-based nutrition interventions, and age of participants 
make it difficult to research a consensus, it is likely that 
current protein recommendations (e.g., RDA for protein intake 
in humans: 0.8 g protein/kg body weight/day) are sufficient 
for younger individuals, but are not adequate to meet the 
protein needs of aging and clinical populations. As this field 
of research moves forward, greater emphasis should be given 
to the conceptual difference and realistic expectations of 
nutrition-based strategies that are designed to preserve muscle 
mass and function during aging/catabolic conditions when 
compared with interventions designed to build muscle in a 
younger/active population.

Whey and other dairy-based proteins have been widely 
utilized to evaluate the efficacy of protein supplementation 
in attenuating the age-related decline of muscle mass and 
function (Dominique et  al., 2018; Hidayat et  al., 2018; Hanach 
et al., 2019). A  recent systematic review meta-analysis of over 
36 randomized-controlled trials showed no meaningful effect of 
protein supplementation on LBM, muscle strength, or physical 
performance in community-dwelling middle-aged and older 
adults (>50 yr), even when in combination with resistance 
exercise (Dominique et  al., 2018). While this may be initially 
perceived as a negative finding, the authors  point out that 
participants were considered to be a healthy population who 
regularly consumed protein in excess of the RDA. Therefore, 
we should consider that consuming moderate portions of high-
quality protein in a mixed meal is largely sufficient to support 
muscle health in healthy, older adults.

The insidious nature of sarcopenia (~1% LBM lost each year 
or 400 to 500 g of LBM in 70 kg man; Kyle et al., 2001) presents 
challenges for detecting meaningful changes in LBM in response 
to nutrition-based interventions. Disuse-based models (bed rest 
or limb immobilization) are useful for studying aging muscle, 
because of the accelerated loss of LBM and function that occurs 
in a relatively short amount of time (days vs. years). A limitation 
of bed rest/immobilization studies is that they represent “best 
case scenario” for aging or a period of physical inactivity related 
to illness/injury without the underlying catabolic effects of a 
disease that often occur in clinical populations. However, these 
models remain powerful tools to understand the fundamental 
pathways driving muscle loss and assess protein-based 
interventions to protect aging muscle health.

Our group recently examined how improving dietary protein 
quality with whey protein counters the negative impact of disuse 
on body composition and function of healthy older adults (~70 
yr old) in the context of a bed rest model (Arentson-Lantz et al., 
2019b). Subjects were randomized to either a control group and 
provided a diet with a mix of plant and animal-based proteins 
or the experimental group where whey protein replaced some 
of the whole food sources of protein. In both groups, protein 
intake was held to ~ 0.9 g protein/kg d (~16% of total kcal), 
which moderately exceeds the RDA for protein. Subjects in 
the whey group lost roughly 35% less leg lean mass than the 
control group following 7 d of strict bed rest (−1,035 vs. −680 g 
leg lean mass in control vs. whey group); however, preservation 
of LBM did not translate into to the preservation of strength. 
Whey protein also promoted a modest loss in fat mass (~300 g) 
during disuse (Arentson-Lantz et al., 2019b). Others groups have 
shown that supplementing 20 g of additional leucine-enriched 
whey protein twice daily does not confer any additional benefit 
in older men habitually consuming protein well above the RDA 
(1.0 g protein/kg/d) during a 5-d period of leg immobilization 
(Dirks et al., 2014). Together, these data suggest that improving 
protein quality rather than increasing total energy intake or 
altering macronutrient profiles may offer a protective effect 
for LBM during disuse. Improving protein quality rather than 
increasing protein quantity is a pragmatic, potentially cost-
saving mechanism to optimize muscle metabolism without 
sacrificing other nutrients in the diet that are important for 
overall metabolic health (vitamin D, fiber, etc.).

The mechanisms underlying the beneficial metabolic 
effect of whey protein on muscle mass during disuse are not 
yet fully understood. While the leucine-rich content of whey 
protein is important for maintaining skeletal muscle anabolic 
sensitivity, there may be additional benefits for muscle health. 

Table 1. Characteristics of commonly available protein sources1,2

WPI WPC Casein SPI RPC PPC

∑ IAA, g/25 g 
protein

12.4 11.7 11.0 9.0 6.7 5.9

∑ BCAA, g/25 
g protein

5.6 5.4 4.9 3.4 3.3 2.6

Leucine, g/25 
protein

3.0 2.5 2.3 1.5 1.5 1.4

DIAAS score 1.09 0.97 ND 0.90 0.37 0.82

1WPI, whey protein isolate; WPC, whey protein concentrate; SPI, 
soy protein isolate; RPI rice protein concentrate; PPC, pea protein 
concentrate; IAA, indispensable amino acid; BCAA, branched-chain 
amino acid; ND, not determined.
2amino acid content can be found in the USDA National Nutrient 
Database for Standard Reference—http://ndb.nal.usda.gov/ (United 
States Department of Agriculture). DIAAS scores from Rutherfurd 
et al. (2015).

http://ndb.nal.usda.gov/
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In a longer duration bed rest study (19 d) with young men, 
regular consumption of a high protein diet enriched with 
whey (1.8 g protein/kg/d + potassium bicarbonate vs. control 
group, 1.2 g protein/kg/d) protected against disuse-induced 
reductions in skeletal muscle oxidative capacity (Bosutti et al., 
2016). Preliminary work in cell-based studies of may provide 
a potential mechanistic basis for these findings. In C2C12 
myocytes, the addition of leucine stimulates NAD-dependent 
deacetylase sirtuin-1 activity via peroxisome proliferator-
activated receptor gamma coactivator 1-α (PGC1 α) resulting 
in an increase in oxygen consumption (Sun and Zemel, 2009; 
Vaughan et al., 2013). Further work is needed to understand 
how improving dietary protein quality contributes to 
maintaining skeletal muscle bioenergetics during aging 
and disuse.

Amino acid supplementation is a practical alternative for 
individuals experiencing difficulties consuming a sufficient 
quantity or quality of protein at each meal. Indeed, regularly 
providing moderate doses of leucine (~3 to 4 g leucine, similar 
to the leucine content of a serving of whey protein) has a 
protect effective on LBM during disuse. Consuming 3 to 4 g 
of leucine at each meal reduced lean leg mass loss following 
7 d of inactivity by almost 50% in middle-aged and older 
adults (English et  al., 2016; Arentson-Lantz et  al., 2020). The 
protection of LBM by leucine supplementation is primarily 
through preventing the decrease in basal MPS that typically 
occurs during disuse (−10% ± 10% reduction vs. 30% ± 9% 
reduction, leucine supplemented vs. control group; English 
et al., 2016). Others have reported that supplementing young 
men with leucine during 7 d of leg immobilization does not 
attenuate the loss of LBM and function (Backx et  al., 2018). 
These discrepancies in the efficacy of leucine to prevent 
the loss of muscle mass may be related to the age of the 
participants (older vs. young) or mode of disuse (single-leg 
immobilization vs. bed rest).

While leucine content of whey protein provide anabolic 
benefits to muscle health during disuse in adults, further work 
is need to understand how long the benefits can be maintained 
and how they are translated into phenotypic and functional 
outcomes. In a recent 14-d bed rest study supplementing 
middle-aged adults with leucine (3 to 4 g/meal) middle-aged 
adults had a robust protective effect on LBM during the initial 
7 d of inactivity. However, the rate of lean leg mass loss in 
leucine-supplemented subjects was the same as the control 
condition during subsequent 7 d of bed rest (English et  al., 
2016). It is likely that the modest nutritional benefits of leucine/
whey protein are eventually overcome by the pro-inflammatory 
environment associated with longer-term periods of inactivity 
(Karlsen et al., 2020). These and other time-course or saturation 
effects (Verhoeven et al., 2009; Leenders et al., 2011) as well as 
the inherent heterogeneity and variability in study populations 
are important factors when implementing and interpreting 
nutrition-based interventions.

Protein Supplementation and Restoration of 
Muscle Mass During Recovery
There is a clear need to optimize nutrition support for 
recovery of muscle mass and function following disuse. An 
estimated 70% of hospitalized adults are discharged below 
their preadmission level of function and many experience 
long-lasting physical and metabolic impairment (Boyd et al., 
2008). Current rehabilitation approaches focus on increasing 

physical activity to promote activation of muscle and 
improve mobilization. However, following inactivity/injury 
older adults are often unable to perform resistance exercise 
at workloads necessary to stimulate MPS (Howard et  al., 
2020). The inclusion of protein-based nutrition interventions 
may provide an additive anabolic boost for activity-based 
rehabilitation programs. Supplementing orthopedic patients 
with 20 g of EAA twice daily before and after elective surgery 
preserved LBM at 2 wk postsurgery (−3.4% ± 2.2% vs. −14.3 ± 
3.6% quadricep muscle volume; 20 g EAA vs. placebo) and 
accelerated recover of functional mobility (Dreyer et al., 2013). 
However, subjects in the placebo group reported consuming 
less than the RDA for protein (0.65 g protein/kg/d) and it is 
unclear if the additional EAAs conferred any additional 
benefit on muscle health or if the difference in the groups was 
driven by the suboptimal protein intake in the placebo group. 
A  “preloading” supplementation strategy is not feasible for 
unanticipated hospitalization/illness and other groups have 
considered protein supplementation immediately following 
inactivity. Deer et al. (2019) recently completed a pilot study 
where older adults were supplemented with whey protein 
following acute hospitalization. While the study was not 
powered to detect differences between placebo and the whey 
protein intervention, the findings from this study found that 
whey protein supplementation was feasible and well tolerated 
in this clinical population at high risk for loss of muscle mass 
and function (Deer et  al., 2018). Further work is needed to 
understand the unique anabolic needs during restoration of 
muscle mass and function following disuse and how protein 
intake can be accelerate recovery.

Practical Considerations
Whey protein is a consumer-friendly and readily available source 
of high-quality protein to support skeletal muscle maintenance 
during the aging process as well as during periods of disuse and 
recovery. Moving forward, there are several priority areas where 
we should continue to develop and challenge our understanding 
of how protein intake can be formulated to promote muscle 
health.

• Optimize protein quality to support retention of muscle mass 
and function during aging.

• Supplement with high-quality protein, as appropriate, during 
illness/disuse.

• Identify how protein intake/supplementation can be tailored 
to complement current rehabilitation strategies to accelerate 
restoration of muscle mass and function following inactivity.
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