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Abstract

Air pollutants impact public health, socioeconomics, politics, agriculture, and the environment. 

The objective of this study was to evaluate the ability of an artificial neural network (ANN) 

algorithm to predict hourly criteria air pollutant concentrations and two air quality indices, air 

quality index (AQI) and air quality health index (AQHI), for Ahvaz, Iran, over one full year 

(August 2009–August 2010). Ahvaz is known to be one of the most polluted cities in the world, 

mainly owing to dust storms. The applied algorithm involved nine factors in the input stage (five 

meteorological parameters, pollutant concentrations 3 and 6 h in advance, time, and date), 30 

neurons in the hidden phase, and finally one output in last level. When comparing performance 

between using 5% and 10% of data for validation and testing, the more reliable results were from 

using 5% of data for these two stages. For all six criteria pollutants examined (O3, NO2, PM10, 

PM2.5, SO2, and CO) across four sites, the correlation coefficient (R) and root-mean square error 

(RMSE) values when comparing predictions and measurements were 0.87 and 59.9, respectively. 

When comparing modeled and measured AQI and AQHI, R2 was significant for three sites 

through AQHI, while AQI was significant only at one site. This study demonstrates that ANN has 

applicability to cities such as Ahvaz to forecast air quality with the purpose of preventing health 
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effects. We conclude that authorities of urban air quality, practitioners, and decision makers can 

apply ANN to estimate spatial–temporal profile of pollutants and air quality indices. Further 

research is recommended to compare the efficiency and potency of ANN with numerical, 

computational, and statistical models to enable managers to select an appropriate toolkit for better 

decision making in field of urban air quality.
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Introduction

Air pollution poses deleterious effects on people’s health, especially those in vulnerable 

populations such as children, elder women and men, and patients who suffer from 

respiratory and cardiovascular diseases (Naddafi et al. 2012; Nourmoradi et al. 2016). Air 

pollution also has detrimental effects on the environment, socioeconomics, agriculture, and 

politics (Zhang et al. 2008; Vlachokostas et al. 2010; Maghrabi et al. 2011; Hou et al. 2016). 

The following six criteria air pollutants are sufficiently harmful for humans and the 

environment that they are routinely monitored by the United States Environmental 

Protection Agency (US EPA), which has set National Ambient Air Quality Standards (40 

CFR part 50) for these species: carbon monoxide, lead, nitrogen dioxide, ozone, particulate 

matter (PM10 and PM2.5), and sulfur dioxide. The EPA reports daily air quality conditions as 

an air quality index (AQI), which is calculated based on these criteria air pollutants (except 

lead). The air quality health index (AQHI), developed by Health Canada and Environment 

Canada (HCEC), is an analogous index considering PM2.5, O3, and NO2.

Meteorology and emissions sources of pollutants are two basic factors influencing the 

aforementioned air quality indices and can be used in computational approaches to predict 
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spatiotemporal pollutant profiles and air quality index values. Various applicable examples 

include the Community Multi-scale Air Quality (CMAQ) model, the Weather Research and 

Forecasting model with Chemistry (WRF-Chem), and artificial neural network (ANN) and 

fuzzy inference systems (Pokrovsky et al. 2002; Cai et al. 2009; Wang et al. 2010; Feng et 

al. 2015; Zhang et al. 2015, 2016). ANN approaches can enhance forecasting accuracy 

relative to previously used statistical procedures (Nagendra and Khare 2005). Types of ANN 

include the back-propagation neural network (BPNN) (Chen and Pai, 2015; Bai et al. 2016), 

multilayer perceptron (MLP) (Wang and Lu 2006; Duräo et al. 2016), radial basis function 

(RBF) (Lu et al. 2004; Iliyas et al. 2013), and adopted neuro-fuzzy inference systems 

(ANFIS) (Shahraiyni et al. 2015; Prasad et al. 2016). Among the earliest applications of 

ANN for air pollution, research was forecasting SO2 levels in Slovenia (Boznar et al. 1993). 

More recent attempts of using ANN include combining remotely sensed aerosol optical 

depth (AOD) and meteorological data to estimate surface PM2.5 levels (Gupta and 

Christopher 2009). Numerous studies have evaluated various aspects of PM2.5 and PM10 

mass concentration in different areas such as Taiwan (Chang and Lee 2007), Italy (Ragosta 

and Gioscio 2009), New Zealand (Elangasinghe et al. 2014), the western Mediterranean (de 

Gennaro et al. 2013), India (Patra et al. 2016), Portugal (Russo et al. 2015), and China (Qin 

et al. 2014; Yao and Lu 2014).

In this study, we apply a ANN model approach to predict hourly criteria air pollutant 

concentrations (O3, NO2, SO2, PM10, PM2.5, CO), daily AQI, and hourly AQHI. The 

analysis focuses on Ahvaz, Iran, which suffers from some of the worst air conditions 

globally owing to severe dust storms. It was recently reported to be the highest ranked city in 

terms of mean-annual PM10 concentration on the Earth (372 μg m−3; Goudie 2014). The 

subsequent analysis focuses on model prediction comparisons to measurement data at four 

sites around Ahvaz, with attention given to how well diurnal profiles are reproduced.

Experimental methods

Study area

Ahvaz is the capital of Khuzestan province located close to the Persian Gulf in southwestern 

of Iran, and it contains the largest river of Iran (Karun) (Fig. 1). Its population is ~ 1.2 

million and has an area of ~ 528 km2 (Naimabadi et al. 2016). The climate in this region is 

hot and humid. This study makes use of hourly data collected between August 2009 and 

August 2010 by the Ahvaz Environmental Protection Organization (AEPO) and Ahvaz 

Meteorological Center. Samples were obtained using the beta attenuation procedure, which 

is often common at routine monitoring stations. Measurements of O3, NO2, CO, SO2, and 

PMs were conducted, respectively, via the use of Beer–Lambert’s law, chemiluminescence, 

non-dispersive infrared spectroscopy, UV fluorescence, and beta radiation (Mazaheri 

Tehrani et al. 2015; Alizadeh-Choobari et al. 2016). Data related to pollutants concentration 

and meteorological parameters affecting the forecast of model, such as wind speed (m/s), 

ambient air temperature (°C), dew point (°C), rainfall (mm), and air pressure, are presented 

in Table 2. The four sampling locations for O3, NO2, PM10, PM2.5, SO2, CO, and 

meteorology are shown in Fig. 1 (Naderi, Havashenasi, Mohite Zist, Behdasht).
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Air pollution indexes

AQI is calculated using concentration data for PM, NO2, SO2, CO, and O3. Index values 

differ among global cities owing to various levels of anthropogenic activity, potential 

sources of natural emissions, as well as transport patterns of pollutants. Values are classified 

as good (0–50, green), moderate (51–100, yellow), unhealthy for susceptible groups (101–

150, orange), unhealthy (151–200, red), very unhealthy (201–300, purple), and hazardous 

(301–500, Maroon). As will be shown, AQI values exceed 500 in the study region. The 

general equation to calculate AQI is as follows:

Ip = IHi − ILo
BPHi − BPLo

Cp − BPLo + ILo (1)

where Ip=the index for pollutant p, Cp=the rounded concentration of pollutant p, BPHi=the 

breakpoint that is ≥ Cp, BPLo=the breakpoint that is ≤ Cp, IHi=the AQI value corresponding 

to BPHi, and ILo=the AQI value corresponding to BPLo.

AQHI presents the health risk of pollutants based on the following scale: low risk (1–3, 

blue), moderate risk (4–6, orange), high risk (7–10, red), and very high risk (> 10, black). 

The AQHI is calculated according to the following formula using 3-h average concentrations 

of O3, NO2, and PM2.5 (El-Latef et al. 2018).

AQHI = 1000
10.4 * e0.000537 * O3 − 1 + e0.000871 * NO2 − 1

+ e0.000487 * PM2.5 − 1
(2)

Artificial neural network

A neural network utilizes artificial neurons, which are the smallest units of data processing 

(Sadorsky 2006). The framework of a one-input system is demonstrated in Fig. 2. Equation 3 

is used to quantify the output:

p = f ∑
i = 1

m
wixi + b (3)

σ p = 1
1 + e−p (4)

where b and w represent parameters that are set based on a selected activation function and 

type of learning algorithm. A number of different activation functions such as linear, 

sigmoid, and hyperbolic tangent can be used that for this study Sigmoid function was used 

(Eq. 4) (Alimissis et al. 2018; Elfwing et al. 2018).

Figure 3 depicts the ANN structure applied in this study. Nine input factors are used, with 30 

nerve cells in the intermediate step leading to one outcome. The 30 neurons in the interior 

layer were identified through a trial-and-error process using between 6 and 60 nerve cells. It 

was necessary to determine what percentage of randomly selected data points from the 
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available sample set needed to be assigned to training, validation, and testing in order to 

obtain the best agreement between predicted and measured concentrations. Points assigned 

to training are used for computations and updating the network weights and biases to train 

candidate algorithms. For evaluation of performance, Eqs. 5 and 6 are used to obtain linear 

correlation coefficients and RMSE, respectively:

R2 =
∑1

n Y i − Y i * Y i − Y i

∑1
n Y i − Y i

2
* Y i − Y i

0.5

2

(5)

RMSE =
∑1

n (Meas − Pred)2

n
(6)

where Yi and Ȳi are the measured concentrations and average of measured concentrations 

for a pollutant, respectively. Ŷi and Y i are predicted concentrations and average of predicted 

concentrations for a pollutant, respectively, n is the number of data values, Meas is the 

measured data, and Pred is the predicted data. The ideal value for R2 and RMSE is 1 and 0, 

respectively (Ho et al. 2002).

Results and discussion

It was first necessary to determine under what conditions the best agreement could be 

attained between predicted and measured concentrations. The ANN was tested with having 

either 5% or 10% of data used for both validation and testing, with the remainder for 

training. When the total data used in the validation and testing stage decreased from 10 to 

5% for the four air quality monitoring stations in Ahvaz, the average correlation coefficient 

(R) between measured and predicted concentrations (for all pollutants and sites combined) 

increased by 8.1% while RMSE decreased by 11.8% (Table 1).

Figure 4 shows the relationship between measured and predicted concentrations at all sites 

for different pollutants based on 5% of data for validation and testing stages. Among criteria 

air pollutants, SO2 exhibited the best results at the Mohite Zist station (R = 0.99), while SO2 

yielded the worst performance at the Havashenasi station (R = 0.75). The lowest RMSE was 

for CO at the Havashenasi station (0.3), while the highest value was for PM10 at the Mohite 

Zist station (360.5). The averages among all pollutants and sites combined for R and RMSE 

were 0.87 and 59.9, respectively.

A comparison between measured and predicted pollutant concentrations of all four stations 

is presented in Table 2. When taking an average for all six pollutants, the range of variation 

for predicted levels increased by 3.4% as compared to measured values, whereas the 

standard deviation decreased by 10.2%. No difference was observed between the average of 

total predicted and measured pollutant concentrations. The widest range of values was for 

PM10, while the lowest was for CO.
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The diurnal concentration profile of measured and predicted pollutant concentrations at the 

four air quality monitoring stations in Ahvaz is presented in Fig. 5. Expectedly based on the 

results of Table 1, the diurnal profiles for the studied pollutants are similar between 

measurements and the model. O3, PM10, PM2.5, and SO2 exhibit minimum levels early in 

the morning and late night, with maximum values in between during the day. Diurnal 

variations for NO2 and CO exhibit minimum values in the early morning and afternoon, and 

maximum levels before noon and at night.

A comparison between calculated and predicted AQI is presented in Table 3 for the four 

sites in Fig. 1 and also for all four sites combined, representative of the entire city of Ahvaz. 

With regard to R2 values, the ANN method was weak in terms of predicting AQI at the 

Naderi, Mohite Zist, and Behdasht stations, but it had acceptable performance (R2 = 0.73) at 

the Havashenasi station. The cumulative percentage of days where the predicted AQI 

category did not match the measured one at Naderi, Havashenasi, Mohite Zist, and Behdasht 

stations and the bulk average of all sites as Ahvaz city was 49.6%, 38.1%, 61.3%, 48.5%, 

and 42.7%, respectively. Also, the number of days when at least one of the six pollutants 

exceeded its maximum limit at Naderi, Havashenasi, Mohite Zist, and Behdasht, and Ahvaz 

city was 28, 23, 31, 25, and 71, respectively.

The daily profile of AQI during the study period (August 2009–August 2010) is illustrated in 

Fig. 6. We assumed the upper limit of AQI was equal to 600 instead of 500. At the 

Havashenasi station, there were no significant fluctuations for AQI in November, December, 

and January. Averages of calculated AQI were 188, 178, 172, 180, and 240 at Naderi, 

Havashenasi, Mohite Zist, and Behdasht, and Ahvaz city, respectively, without considering 

(by ignoring) the assumed value of AQI for correspondent pollutants during the study 

period. As a result, the capability of ANN for predicting AQI increased when the number of 

out-of-range days related to correspondent pollutants (mostly PM10 and PM2.5 in Ahvaz) 

decreased. By considering the maximum level of AQI at all stations to describe Ahvaz’s 

AQI, the average of it in the city of Ahvaz was 1.34 times higher than mean AQI of air 

quality control stations.

A comparison between calculated and predicted AQHI is presented in Table 4. The R2 value 

from the ANN method for predicting AQHI was 0.81, 0.70, and 0.78 at Naderi, Mohite Zist, 

and Behdasht, respectively, indicative of a decent level of performance. The Havashenasi 

station was an exception with a low R2 value, which implies weak performance of the ANN 

to predict AQHI at this station. The percentage of hours with mismatches between predicted 

and measured AQHI at Naderi, Havashenasi, Mohite Zist, and Behdasht was 35.7%, 45.6%, 

40.9%, and 37.8%, respectively. Also, the number of hours for AQHI being greater than or 

equal to 20, which is close to an AQI of 500, was 553, 677, 450, and 382 (out of a total of 

8030) at Naderi, Havashenasi, Mohite Zist, and Behdasht, respectively.

The temporal profile of calculated and predicted AQHI at the four stations over a span of 1 

year (8760 h) is depicted in Fig. 7. On average, the calculated AQHI values at Naderi, 

Havashenasi, Mohite Zist, and Behdasht were 10, 10, 8, and 9, respectively. If there are 

many hours with AQHI ≥ 20, the capability of ANN to accurately predict AQHI decreases. 
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Of note is that there was no significant fluctuation in Ahvaz during December and January 

for AQHI.

Conclusions

The overall correlation coefficient (R) for measured versus predicted pollutant 

concentrations for several sites in Ahvaz was shown to be 0.87 over the span of 1 year. The 

diurnal concentration profiles for both measured and predicted O3, PM10, PM2.5, and SO2 

were similarly unimodal, while the variations for NO2 and CO were bimodal. The critical 

aspect for the accuracy of ANN model is the number of high-polluted hours and days, 

respectively, for AQHI and AQI.

We conclude that authorities of urban air quality, practitioners, and decision makers can 

apply ANN to forecast the spatial–temporal profile of pollutant concentrations and air 

quality indices during power outage and wrong and negative records of pollutants. The study 

proposes that the ANN models could be used as an effective alternative in air pollution 

spatial interpolation and the representativeness of the air monitoring networks by providing 

data at currently unmonitored locations and thus eliminating the requirement of a relatively 

high number of monitoring stations for describing the air pollution spatial variability 

(Alimissis et al. 2018). Further research is recommended to compare the efficiency and 

potency of ANN with numerical, computational, and statistical models to enable managers 

to select an appropriate toolkit for better decision making in field of urban air quality.
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Fig. 1. 
Map showing the location of four sites from which data were collected for criteria air 

pollutants in Ahvaz, Iran. Names of sites (from top to bottom) are Havashenasi 

(Meteorology), Naderi, Behdasht, and Mohit Zist (Maleki et al. 2016)
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Fig. 2. 
A one-input neuron system, where f is the activation function, and a, p, w, and b are the 

entrance data, outcome, weight, and neuron bias, respectively
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Fig. 3. 
Structural diagram of ANN with nine inputs, one hidden layer (30 neurons), and one output. 

“3 h ago Con.” and ‘6 h ago Con.” refer to concentrations of a particular pollutant 3 and 5 h 

in advance of the time of the predicted concentration, respectively
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Fig. 4. 
Scatterplots showing measured versus predicted concentrations for various pollutants in four 

stations based on 5% of data used for validation and testing. Data shown for panels in each 

column refer to the station shown at the top of that column
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Fig. 5. 
Measured and predicted diurnal average concentration of O3 (a), NO2 (b), SO2 (c), PM10 

(d), PM2.5 (e), and CO (f) for the four air quality monitoring stations
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Fig. 6. 
Time series of predicted and measured AQI for four air quality monitoring stations in Ahvaz, 

including all of them averaged, which is representative of the entire city of Ahvaz. Results 

are shown for the period between August 2009 and August 2010. Values are classified as 

good (0–50, green), moderate (51–100, yellow), unhealthy for susceptible groups (101–150, 

orange), unhealthy (151–200, red), very unhealthy (201–300, purple), and hazardous (> 301, 

Maroon)

Maleki et al. Page 15

Clean Technol Environ Policy. Author manuscript; available in PMC 2021 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Predicted and measured AQHI variations for four air quality monitoring stations from 

August 2009 through August 2010 in Ahvaz
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Table 2

Range, mean, and standard deviation of input meteorological parameters and measured and predicted criteria 

air pollutant concentrations (WS wind speed, T temperature, Td dew point, P air pressure, R rainfall)

Variable Unit Range Mean SD

Measured

WS m s−1 [0.0–6.7] 1.1 1.0

T °C [3.0–50.2] 27.1 10.1

Td °C [−9.9 to 29.6] 9.8 5.4

P hPa [990.7–1025.2] 1009.3 8.1

R mm [0.0–34.0] 245.3
a 1.6

O3 ppb [0.2–567.8] 25.1 17.4

NO2 ppb [0.1–692.7] 23.5 36.3

SO2 ppb [0.0–488.3] 32.1 54.2

PM10 μg m−3 [8.0–6900.0] 284.3 421.3

PM2.5 μg m−3 [3.2–2760.0] 113.7 165.5

CO ppm [0.0–25.5] 1.6 2.2

Predicted

O3 ppb [−8.3 to 547.0] 25.0 15.1

NO2 ppb [−156.0 to 681.4] 23.2 31.1

SO2 ppb [−11.3 to 480.2] 32.2 53.7

PM10 μg m−3 [−492.8 to 6889.6] 287.4 372.3

PM2.5 μg m−3 [−242.3 to 2422.4] 113.6 142.2

CO ppm [−1.3 to 23.6] 1.6 2.1

a
This shows the accumulative volume of rainfall
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