

Exploring JSON-LD as an Executable Definition of FHIR RDF to Enable

Semantics of FHIR Data

Harold R. Solbrig1, Dazhi Jiao1, Eric Prud’hommeaux2,3, David Booth4, Cory M. Endle5,

Daniel J. Stone5, Guoqian Jiang5

1Johns Hopkins University, Baltimore, MD; 2Janeiro Digital, Boston, MA; 3W3C/MIT,

Cambridge, MA; 4Yosemite Project, Somerville, MA; 5Mayo Clinic, Rochester, MN

Abstract

This study developed and evaluated a JSON-LD 1.1 approach to automate the Resource Description Framework

(RDF) serialization and deserialization of Fast Healthcare Interoperability Resources (FHIR) data, in preparation

for updating the FHIR RDF standard. We first demonstrated that this JSON-LD 1.1 approach can produce the same

output as the current FHIR RDF standard. We then used it to test, document and validate several proposed changes

to the FHIR RDF specification, to address usability issues that were uncovered during trial use. This JSON-LD 1.1

approach was found to be effective and more declarative than the existing custom-code-based approach, in converting

FHIR data from JSON to RDF and vice versa. This approach should enable future FHIR RDF servers to be

implemented and maintained more easily.

Introduction

HL7 Fast Healthcare Interoperability Resources (FHIR)1 is an emerging open standard for the exchange of

electronic healthcare information. The Semantic Web Resource Description Framework (RDF)2, a W3C standard,

has been adopted by the HL7 FHIR as its third interchange format in addition to XML and JavaScript Object

Notation (JSON). RDF represents information as collections of subject-predicate-object triples, where the subject

and predicates are typically Universal Resource Identifiers (URI’s) and the object can either be a URI or a literal.

As an example, the RDF triples

 https://orcid.org/0000-0002-5928-307 http://xmlns.com/foaf/0.1/name “Harold Solbrig”

 https://orcid.org/0000-0002-5928-307 http://purl.org/spar/scoro/collaborator https://orcid.org/0000-0003-2940-0019

asserts that the referent of the Orcid id 000-0002-5928-307 (the author)’s name is “Harold Solbrig”, and that he has

a collaborator referenced by the Orcid Id 0000-0003-2490-0019. RDF allows information to be assembled and

integrated as a set of atomic facts, allowing data to be assembled (linked) from a wide variety of sources.

To date, the FHIR RDF implementation had been used experimentally in several projects, including fhir.schema.org3,

FHIR in I2B24, the FHIR to RDF converter5, the FHIR/SNOMED integration project6 and SOLID7. This experience

has uncovered two difficulties, which this study sought to address:

• Although the FHIR RDF specification8 is included in the FHIR standard, and has been implemented in a test

server, it has yet to be deployed in any of the major FHIR servers such as HAPI9, Vonk10, etc. This gap is a

significant barrier to wider adoption of FHIR RDF in clinical research informatics communities.

• Several usability issues were discovered in the current FHIR RDF specification, resulting in requests for

changes to the FHIR RDF specification.

To address these problems, this study explored the use of JSON for Linked Data, version 1.1 (JSON-LD 1.1)11 as a

means of both documenting and automating conversion of FHIR data to and from RDF.

JSON-LD is a profile of standard JSON that allows JSON-LD data to be interpreted either as plain JSON (a format

that is widely used in the software development world) or as a serialization of RDF (linkable but arcane). In its role

as an RDF format, JSON-LD joins the ranks of Turtle12 and other standard W3C RDF formats that are used to represent

collections of RDF triples – as a format that bridges the worlds of JSON and RDF. Although the FHIR RDF working

group12 previously investigated and rejected the use of JSON-LD 1.0 for FHIR RDF, the 1.0 version lacked critical

features that the 1.1 version now includes. In particular, 1.0 did not allow the same FHIR JSON tag, appearing in

1140

https://orcid.org/0000-0002-5928-307
http://xmlns.com/foaf/0.1/name
https://orcid.org/0000-0002-5928-307
http://purl.org/spar/scoro/collaborator

different FHIR resources, to be mapped to different Internationalized Resource Identifiers (IRIs)13 in RDF. Since IRIs

are used as global identifiers in RDF, this is necessary to allow these properties to be recognized as being semantically

distinct. For example, the JSON tag “name” currently appears 98 times across 51 different resources in FHIR. JSON-

LD 1.1 now enables them the be mapped to distinct IRIs in RDF.

While the existing implementation of FHIR RDF relies on custom code to convert FHIR data to and from RDF, JSON-

LD 1.1 enables this conversion to be defined in a more declarative style, through the use of the "@context". This

promises to enable easier implementation of future FHIR RDF servers by reducing the amount of custom code that

must be written and maintained. It also allows proposed changes to the FHIR RDF specification to be more readily

tested and evaluated. To facilitate rapid experimentation and testing, a web-based FHIR JSON-LD Playground14, 15

was implemented, based on the existing "JSON-LD Playground"16, which proved to be enormously helpful. A

command-line tool was also created and used to perform batch conversion of FHIR JSON to FHIR RDF. These

converters were then used to rapidly test and evaluate proposed changes to FHIR RDF.

Background

RDF is the foundational data representation for “Semantic Web”, "Linked Data", or the "Web of Data", originally

envisioned by Tim Berners-Lee and articulated in a feature article of Semantic American in 200117. It allows the

semantics of data to be made explicit, based on formal logic, allowing data to be understood both by humans and

computers. RDF represents information as a set of assertion, or "triples", which together form a graph (or set of

graphs). Wikidata18 is just one example of a resource in which RDF is used to express a large collection of interrelated

knowledge that can be traversed and consumed by both humans and computers.

RDF is particularly well suited both to problems that require automated inference, and to problems that involve

integration of data that is expressed in diverse data models and vocabularies. Both of these strengths are important in

clinical research informatics, and historically the clinical research informatics and life sciences research communities

have been leading adopters of RDF. Biomedical, environmental, pharmaceutical communities have developed

sophisticated, RDF frameworks that are being used to understand causal pathways and develop novel clinical

treatments19.

Interestingly, when FHIR RDF was first standardized, the working group assumed that FHIR RDF would mainly be

used by the FHIR community. However, it has turned out that most of the interest in FHIR RDF has come from

outside the FHIR community -- typically from clinical research informaticians who do not know much about FHIR,

but want to integrate FHIR data with other data using RDF. In some cases, they also want to produce FHIR data from

other data that did not originate in FHIR. This realization has now influenced the FHIR RDF working group to place

greater emphasis on making FHIR RDF easier for informaticians who are not FHIR-savvy.

As one example, consider the task of integrating FHIR data with data represented as Phenopackets20 , an open standard

for sharing disease and phenotype information. Phenopackets defines a patient/sample schema for "the phenotypic

description of a patient/sample in the context of rare disease, common/complex disease, or cancer.” FHIR has also

defined a Patient resource schema, but its attributes are focused on "the demographic information necessary to support

the administrative, financial and logistic procedures” related to that patient. These data models were designed

independently by different communities for different target use cases, resulting in a mismatch of data models and

vocabularies. If, however, the native JSON representation of a Phenopackets record can be “decomposed” into a

collection of RDF triples, a subset of those triples can then be re-assembled into a different JSON representing a FHIR

Patient or Observation resource.

Materials and Methods

Materials

FHIR RDF

In our previous project21, we created a draft standard for the representation of FHIR in RDF. That draft was accepted

by the FHIR RDF working group, and evolved to become the current FHIR RDF standard. The current study uses

FHIR RDF standard, with two new goals:

• to investigate the use JSON-LD 1.1 as an improved mechanism for converting FHIR to and from RDF; and

1141

• to use this JSON-LD 1.1 mechanism to test and refine proposed changes to the FHIR RDF standard, to

improve its usability for RDF applications.

JSON-LD 1.1

JSON-LD 1.111 is used to supply a declarative specification -- using the "@context" mechanism -- for interpreting

JSON-LD data as RDF.

JSON-LD Playground

The existing "JSON-LD Playground" open source code was used as a basis for developing a "FHIR JSON-LD

Playground" described below.

Methods

Phase 1: : Re-implement the existing FHIR RDF specification (R4) using JSON-LD 1.1

Our first step in this project was to re-implement the existing FHIR RDF specification ("R4"), using JSON-LD 1.1

mapping rules, by creating two FHIR JSON-to-RDF conversion applications:

• an interactive web-based application called the FHIR JSON-LD Playground14, 15, written in JavaScript, that

was developed by forking and extending the existing JSON-LD Playground16; and

• a command-line tool22, written in Python, for batch conversion.

This re-implementation of FHIR RDF (R4) provided a baseline, both to perform regression testing for the JSON-LD

1.1 approach, and to facilitate comparison when proposing changes to FHIR RDF, for the next version ("R5").

The FHIR RDF (R4) specification defines how properties in FHIR JSON must be mapped to RDF triples. This

mapping involves two kinds of RDF triples:

• 1:1 triples: These are RDF triples that correspond directly with JSON properties, in a 1:1 mapping, i.e., each

JSON property maps to one RDF triple. These triples could be generated directly from FHIR JSON using

the JSON-LD 1.1 @context mechanism.

• Addtional triples: These are RDF triples that are not obtainable directly from a 1:1 mapping, but are needed

in FHIR RDF either to avoid information loss or to facilitate RDF processing. These triples cannot be

generated from FHIR JSON using the @context mechanism alone, because JSON-LD 1.1 still only supports

a 1:1 mapping of JSON properties to RDF triples. It does not allow a JSON property to generate more than

one RDF triple. For this reason, custom mapping code is still required to generate these additional triples.

For example, the FHIR RDF specification states that a triple supplying a concept IRI should be added to the FHIR

Codingi element if one can be generated. As another example, the specification also states that JSON list ordering

should made explicit by the addition of fhir:index triples in RDF. These examples are illustrated in Figure 1, drawn

from a FHIR Observation sampleii, which shows the JSON representation of a coded concept and the RDF equivalent

in Turtle12.

i http://hl7.org/fhir/datatypes.html#Coding
ii http://hl7.org/fhir/observation-example-f206-staphylococcus.json.html

1142

Figure 1. The JSON representation of a FHIR CodeableConcept property and the RDF equivalent, in Turtle. The

subject of this CodeableConcept property is not shown in these snippets.

Although three of the RDF triples in Figure 1 correspond 1:1 with JSON properties on the left, two additional triples

have been inserted to the RDF on the right hand side: one for 'fhir:index 0' and one for 'a sct:3092008'. These triples

carry the relative order of this coding (among possibly multiple codings, though this example has only one) and the

SNOMED CT IRI for “Staphylococcus aureus” http://snomed.info/id/3092008 (abbreviated as sct:3092008),

respectively.

Since JSON-LD 1.1 @context files can specify most of JSON-to-RDF mapping that we need, both of the FHIR JSON-

to-RDF converters that we developed leverage this capability by dividing the conversion into two steps:

1. Custom JavaScript or Python pre-processor code takes FHIR JSON data as input, inserts additional JSON

properties corresponding to the additional RDF triples that are required (as described above), and produces

intermediate JSON-LD 1.1 data.

2. A standard JSON-LD 1.1 processor takes this intermediate JSON-LD 1.1 data as input and, in conjunction

with a set of @context files (discussed below), to convert the intermediate data to FHIR RDF.

While the JSON properties in the FHIR JSON input do not correspond 1:1 with triples in the FHIR RDF output

(because of the additional RDF triples explained above), the JSON properties in the intermediate JSON-LD 1.1 data

do correspond 1:1 with triples in the FHIR RDF output.

This two-step approach has two major benefits. First, by using an off-the-shelf JSON-LD 1.1 library to do most of

the work in converting JSON to RDF, the amount of custom code required to implement a FHIR JSON-to-RDF

converter is reduced. Second, it allows different @context files to be plugged in, to experiment with different

conversions.

To produce the @context files required for R4 conversion, we forked the master FHIR build23 that generates the FHIR

specification and added a build step to generate the @context files needed for R4. The FHIR build process is used by

the FHIR team to ensure that all FHIR specification artifacts stay in sync as the FHIR specification evolves. Our

added step was guided by the existing FHIR Shape Expressions (ShEx) generator that is already included in the FHIR

build process, and will eventually be merged back into the official FHIR build process.

Converting FHIR RDF to FHIR JSON

The approach described above leverages @context files to convert FHIR JSON to FHIR RDF, but what about the

other direction? Interestingly, these same @context files could also be augmented to perform the reverse conversion

-- from FHIR RDF to FHIR JSON – using JSON-LD's "framing" language24. We manually tested this Framing

approach, and concluded that it would be sufficient to perform this reverse conversion. However, as of this writing

we have not yet expanded the build process to emit the necessary framing directives in the generated @context files.

This is a topic that we expect to explore further later.

Phase 2: Use the FHIR JSON-to-RDF converters to evaluate proposed revisions to the FHIR RDF specification.

Several usability issues of FHIR RDF R4 were uncovered by early adopters of FHIR RDF. Our goal in Phase 2 was

to use the @context-driven converters developed in Phase 1 to demonstrate, test and evaluate proposed solutions to

these issues. The issues included:

1. Literal values are nested under Blank Nodes ("BNodes").

1143

http://snomed.info/id/3092008

2. FHIR References are nested under BNodes.

3. Ordered lists use an extra BNode to include an explicit fhir:index.

4. FHIR extensions are awkward for RDF users.

For example, consider a literal property "status", in a FHIR Observation, as serialized in JSON:

 "status": "final"

Assuming that the subject of this property is <obs123>, one who is not very familiar with the design of FHIR might

(wrongly) assume that this property would be equivalently represented in FHIR RDF as the following triple:

 <obs123> fhir:Observation.status “final”. # Not FHIR RDF R4!

However, in FHIR RDF R4, it is instead represented as two triples, using a BNode to connect them

:<subj> fhir:Observation.status _:b1 .

_:b1 fhir:value “final” .

The intervening BNode requires every RDF query for the Observation status to make one extra step. In SPARQL25,

a standardized language for querying triple stores, the required query pattern would be like this, using a property path:

 <obs123> fhir:Observation.status / fhir:value ?STATUS .

instead of the simpler:

 <obs123> fhir:Observation.status ?STATUS .

The reason for this complication is that FHIR allows nearly everything to be extended -- including literal properties.

The benefit of the intervening BNode is that it allows a FHIR extension, such as a status finalization date, to be

attached without impacting existing queries. But this flexibility comes at the cost of more complex queries for

everyone. In essence, the cost of the extension mechanism is paid by all implementers, whether or not they use or

care about extensions on this property.

This added complication may seem small in SPARQL, but when an RDF graph is instead manipulated in a typical

programming language, using an RDF library, the extra BNode adds more burden -- sometimes multiple lines of

additional code. Furthermore, FHIR RDF users are not just consumers of FHIR data but, as mentioned above with

the Phenopackets birthdate example, they are also producers of FHIR data. The extra BNode also adds a burden on

those producers, whether or not they use a FHIR extension. For these reasons, the FHIR RDF working group is re-

considering the above and other design choices, to evaluate the trade-offs of proposed alternatives.

Some of these trade-offs were already recognized when the R4 version of FHIR RDF was designed, but an interesting

philosophical shift occurred since R4 was designed. The assumption at the time was that FHIR RDF users would

already be familiar with the FHIR modeling language and resource models, and would be aware of the intricacies of

underlying things like the FHIR CodeableConcept and the FHIR extension mechanisms. However, it has since

become apparent that most of the interest in FHIR RDF comes from outside the FHIR community, especially from

informaticians and researchers who want to use FHIR data in conjunction with other (non-FHIR) health or biological

data. For this reason, the FHIR RDF working group26 is now placing greater emphasis on the usability of FHIR RDF

by RDF users who are not immersed in FHIR. This shift is likely to affect design choices in R5. Anyone interested

in FHIR RDF is encouraged to participate in the working group's efforts.

In phase 2, we first validated the correctness of the FHIR JSON-to-RDF converters developed in phase 1, and then

we used the converters to rapidly test and evaluate proposed changes to R4, to address these and other issues.

Evaluation design

Before using our two FHIR JSON-to-RDF converters to experiment with potential changes to FHIR RDF R4, we first

verified the correctness of the JSON-LD 1.1 @context files that were emitted by our augmented FHIR build process.

We verified our R4 @context files in two ways:

• An example-based review was performed, using the FHIR JSON-LD Playground and R4 @context files.

Five FHIR JSON examples were taken from the FHIR specification, converted from FHIR JSON to FHIR

RDF using the FHIR JSON-LD Playground. The resulting RDF was manually compared with the R4 RDF

1144

Turtle files already included in the FHIR specification, and found to be the same. These examples included

one for each of the following FHIR resources: Patient, Observation, CodeSystem, Medication, and

AllergyIntolerance.

• A batch process-based comparison was performed, using our FHIR JSON-to-RDF command-line converter.

Since the FHIR build process already generates FHIR examples in both JSON and RDF Turtle (as well as

XML), we were able to use these files as a baseline for comparison against the results produced by our

command-line converter, using a python script to automate the comparison. A total of 759 FHIR JSON

example files, emitted by the R4 FHIR build process, were found to have corresponding RDF Turtle files

also emitted by the R4 FHIR build process. Of these, the majority of them were immediately identical to

what our command-line tool produced, but some differences were discovered. After investigation, most of

the differences were found to reflect minor gaps in our pre-processor, which inserts additional properties into

the intermediate JSON-LD data prior to its conversion to RDF. Interestingly, we also found some differences

that uncovered flaws in the FHIR RDF R4 baseline files, as further described below.

After verifying the correctness of the @context files as described, our FHIR JSON-to-RDF converters were evaluated

by using them to demonstrate, test and evaluate R5 design alternatives being considered by the FHIR RDF working

group. As of this writing, these converters have been actively used for several weeks by members of the FHIR RDF

working group, and continue to be used by the group to demonstrate and compare FHIR RDF R5 design alternatives.

Results

FHIR JSON-LD Playground

Our first FHIR JSON-to-RDF converter, the FHIR JSON-LD Playground14, 15 is an interactive web-based application,

written in JavaScript, for converting FHIR JSON to FHIR RDF. It was developed in Phase 1 by forking and extending

the existing open source JSON-LD Playground16, and is shown in Figure 2. Readers can try the FHIR JSON-LD

Playground themselves, either by visiting the fhircat.org website or by running the Playground locally, based on the

source files.

1145

Figure 2. A screenshot of the FHIR JSON-LD Playground with an example for a Patient resource instance.

The following steps demonstrate its use on a sample FHIR Patient record:

1) Click on the Patient tab. This loads a sample FHIR JSON Patient resource into the top text box, as input.

2) Click on JSON-LD R4 in the lower part of the window. This generates intermediate JSON-LD 1.1 data

having the structural transformations and additional properties that will be needed in the resulting RDF, and

displays that intermediate JSON-LD 1.1 data in the lower text box.

3) Click the Copy button near the center of the upper window. This copies the intermediate JSON-LD 1.1 data

from the lower text box back to the upper text box, overwriting what was previously in the upper text box,

and converts that intermediate JSON-LD 1.1 data to RDF (or other formats) for display in the lower text box.

4) The various tabs in the lower text box (N-Quads, Table, Visualized) show different representations of the

resulting RDF.

FHIR JSON-to-RDF command-line tool

Our second FHIR JSON-to-RDF converter, the command-line tool, was also developed in Phase 1. It is written as a

Python script that invokes the same JSON-LD 1.1 library (written in JavaScript) as is used in the FHIR JSON-LD

Playground. It takes FHIR JSON files as input and, driven by a given set of @context files, produces FHIR RDF files.

Evaluation results

The initial validation that we performed on our R4 @context files – by converting 759 FHIR JSON files to FHIR RDF

-- turned out to be quite useful in exposing some previously undetected issues in the existing FHIR RDF R4 examples.

1146

For example, we discovered that when a FHIR JSON example recursively contained a FHIR "item" nested within

another FHIR "item", the corresponding FHIR RDF example (generated by the R4 FHIR build process) used an

incorrect IRI: <http://hl7.org/fhir/Questionnaire.item.item> instead of <http://hl7.org/fhir/Questionnaire.item>.

This validation also helped us identify several small gaps in our pre-processor. For example, FHIR date and dataTime

data types must be converted by the pre-processor to the standard XML data types of date, dateTime, gYear or

gYearMonth that are used in RDF. These conversions depend on the actual data values being translated from FHIR

JSON to FHIR RDF.) Although this complicates the pre-processor, it has little or no impact on the @context files.

Another example involves the FHIR Canonical datatype, which includes an embedded URL, such as this one for the

"instantiates" property.

"instantiates": [

 "http://ihe.org/fhir/CapabilityStatement/pixm-client"

],

In FHIR RDF R4, the URL is duplicated to provide two triples – one as a string and one as an RDF node (again, the

subject is not shown):

fhir:CapabilityStatement.instantiates [

 fhir:value "http://ihe.org/fhir/CapabilityStatement/pixm-client";

 fhir:link <http://ihe.org/fhir/CapabilityStatement/pixm-client>

] .

The pre-processor can easily insert an additional fhir:value property as shown, with little or no impact on the @context

files. But in this case the pre-processor must already know the datatype of the "CapabilityStatement.instantiates"

property, because the datatype is not explicitly indicated anywhere in the data itself. Again, although this adds work

for the pre-processor, it has little or no impact on the @context files. Since the fhir:value and fhir:link properties

always contain exact same URLs, we might decide to simplify this transformation in the R5 proposal. The validation

that we performed was quite helpful in identifying cases like this.

Overall, the most important part of evaluating our FHIR JSON-to-RDF converters involved their daily use in allowing

us to easily demonstrate and test proposed changes to the FHIR RDF specification. The FHIR JSON-LD Playground

conveniently allows conversions to be tested and viewed interactively, and the command-line converter allows us to

quickly generate larger amounts of FHIR RDF data for experimenting with SPARQL queries and other tests. These

converters have been – and continue to be -- quite helpful to the FHIR RDF working group.

Discussion and Conclusion

FHIR RDF has the potential to serve as a bidirectional bridge between the FHIR community and external communities

that wish to consume or produce FHIR. In order to realize this potential, however, we need to overcome (at least) two

significant hurdles, which this work addressed:

1) The cost of RDF implementation and maintenance needs to be reduced, making it easier for FHIR Server

implementations to support RDF read and update services “out of the box”.

2) The existing RDF representation needs to be revised to better serve the needs of those outside of the core

FHIR community.

The approach described in this paper can help address both of these hurdles:

• Once JSON-LD 1.1 implementations become widely available -- anticipated by September 2020 -- this

approach could substantially reduce the effort required to implement and maintain a FHIR RDF server. FHIR

server developers will be able to call vetted, open-source JSON-LD 1.1 libraries to do most of the work in

converting FHIR JSON to FHIR RDF, using standard @context files that will be emitted by the FHIR build

process. Implementations that use this approach should also be able to incorporate most changes to the FHIR

RDF specification simply by pointing to the latest @context library.

1147

http://ihe.org/fhir/CapabilityStatement/pixm-client

• This approach has also proven to be an effective in reducing the effort required to experiment with alternative

FHIR RDF representations, because different @context files can be plugged in to achieve different

conversions.

• This allows us to rapidly test and evaluate proposed changes to the FHIR RDF specification. It also raises

the possibility that we could eventually publish updates and bug-fixes to the FHIR RDF specification that

would be immediately realized on any FHIR server, by simply changing the base URL for the JSON-LD

@context library.

In summary, JSON-LD 1.1 is an effective aid in helping to automate the RDF serialization and deserialization of FHIR

data, and could substantially reduce the cost of future FHIR RDF implementations. In the process, we also discovered

that JSON-LD 1.1 also has some interesting potential for mapping between FHIR and other information models.

Acknowledgements

This work is supported by funding from NIH BD2K (U01 HG009450) and FHIRCat (R56 EB028101).

References

1. HL7 Fast Healthcare Interoperability Resources (FHIR). 2020 [January 15, 2020]. Available from:

http://hl7.org/fhir/index.html.

2. W3C Resource Description Framework (RDF). 2020 [January 15, 2020]. Available from:

http://www.w3.org/RDF/.

3. FHIR Schema.org Extension. 2020 [March 7, 2020]. Available from:

https://github.com/lushacao/fhir_to_sdo.

4. Solbrig HR, Hong N, Murphy SN, Jiang G. Automated Population of an i2b2 Clinical Data Warehouse using

FHIR. AMIA Annual Symposium proceedings / AMIA Symposium AMIA Symposium. 2018;2018:979-88. PubMed

PMID: 30815141; PMCID: PMC6371332.

5. FHIR to RDF Converter. 2020 [March 7, 2020]. Available from: https://github.com/BD2KOnFHIR/fhirtordf.

6. Solbrig HR, Prud'Hommeaux E, Jiang G, editors. Blending FHIR RDF and OWL. SWAT4LS - CEUR

Workshop Proceedings; 2017.

7. SOLID Project. 2020 [March 7, 2020]. Available from: https://solid.inrupt.com.

8. FHIR RDF. 2020 [January 15, 2020]. Available from: https://www.hl7.org/fhir/rdf.html.

9. HAPI FHIR Java API. 2020 [March 7, 2020]. Available from: http://hapi.fhir.org/.

10. Vonk FHIR Server. 2020 [March 7, 2020]. Available from: https://fire.ly/products/vonk/.

11. JSON-LD 1.1 Specification. 2020 [March 7, 2020]. Available from: https://w3c.github.io/json-ld-syntax/.

12. RDF 1.1 Turtle. 2016 [March 16, 2020]. Available from: https://www.w3.org/TR/2014/REC-turtle-

20140225/.

13. Internationalized Resource Identifier. 2020 [March 16, 2020]. Available from:

https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier.

14. FHIR JSON-LD Playground Github Site. 2020 [March 7, 2020]. Available from:

https://github.com/fhircat/json-ld.org.

15. FHIR JSON-LD Playground Demo Site. 2020 [March 7, 2020]. Available from:

https://fhircat.org/jsonld/playground/.

16. JSON-LD Playground. 2020 [March 16, 2020]. Available from: https://json-ld.org/playground/.

17. Berners-Lee T, Hendler J, Lassila O. The Semantic Web - A new form of Web content that is meaningful to

computers will unleash a revolution of new possibilities. Sci Am. 2001;284(5):34-+. PubMed PMID:

WOS:000168217200023.

18. Wikidata. 2020 [March 7, 2020]. Available from: https://www.wikidata.org/wiki/Wikidata:Main_Page.

19. NCATS Biomedical Data Translator Progrom. 2018 [June 17, 2018]. Available from:

https://ncats.nih.gov/translator.

20. Phenopackets Schema. 2020 [March 7, 2020]. Available from: https://phenopackets-

schema.readthedocs.io/en/latest/.

21. Solbrig HR, Prud'hommeaux E, Grieve G, McKenzie L, Mandel JC, Sharma DK, Jiang G. Modeling and

validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx). J Biomed Inform. 2017;67:90-100. doi:

10.1016/j.jbi.2017.02.009. PubMed PMID: 28213144; PMCID: PMC5502481.

22. JSON-LD 1.1 Processor. 2020 [March 7, 2020]. Available from:

https://github.com/fhircat/FHIRJsonLDAmiaPaper.

1148

http://hl7.org/fhir/index.html
http://www.w3.org/RDF/
https://github.com/lushacao/fhir_to_sdo
https://github.com/BD2KOnFHIR/fhirtordf
https://solid.inrupt.com/
https://www.hl7.org/fhir/rdf.html
http://hapi.fhir.org/
https://fire.ly/products/vonk/
https://w3c.github.io/json-ld-syntax/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier
https://github.com/fhircat/json-ld.org
https://fhircat.org/jsonld/playground/
https://json-ld.org/playground/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://ncats.nih.gov/translator
https://phenopackets-schema.readthedocs.io/en/latest/
https://phenopackets-schema.readthedocs.io/en/latest/
https://github.com/fhircat/FHIRJsonLDAmiaPaper

23. A fork of master FHIR build. 2020 [March 7, 2020]. Available from:

https://github.com/fhircat/org.hl7.fhir.core.

24. JSON-LD 1.1 Framing. 2020 [March 16, 2020]. Available from: https://www.w3.org/TR/json-ld11-framing/.

25. SPARQL Query Language for RDF. 2020 [January 15, 2020]. Available from: https://www.w3.org/TR/rdf-

sparql-query/.

26. HL7 ITS/W3C HCLS RDF Workgroup. 2020 [January 15, 2020]. Available from:

http://wiki.hl7.org/index.php?title=RDF_for_Semantic_Interoperability.

1149

https://github.com/fhircat/org.hl7.fhir.core
https://www.w3.org/TR/json-ld11-framing/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
http://wiki.hl7.org/index.php?title=RDF_for_Semantic_Interoperability

	Abstract
	Introduction
	Phase 1: : Re-implement the existing FHIR RDF specification (R4) using JSON-LD 1.1
	Phase 2: Use the FHIR JSON-to-RDF converters to evaluate proposed revisions to the FHIR RDF specification.

