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Abstract 

   Alzheimer's Disease (AD) is a common type of dementia, affecting human memory, language ability and behavior. 
Hippocampus is an important biomarker for AD diagnosis. Previous hippocampus-based biomarker analyses mainly 
focused on volume, texture and shape of the bilateral hippocampus. 3D convolutional neural networks (CNNs) can 
understand and extract complex morphology features from Magnetic resonance imaging (MRI) and have recently 
been developed for hippocampus-based AD classification. However, existing CNN models often have highly complex 
structures and require large amounts of training data. Here we propose an accurate and lightweight Densely 
Connected 3D convolutional neural network (DenseCNN) for AD classification based on hippocampus segments. 
DenseCNN was trained on 746 and tested on 187 pairs of hippocampus from Alzheimer's Disease Neuroimaging 
Initiative (ADNI) databases. DenseCNN has an average accuracy of 0.898, sensitivity of 0.985, specificity of 0.852, 
and area under curve (AUC) of 0.979, which are better than or comparable to state-of-art approaches. 

Introduction 

  Alzheimer's Disease (AD) is a common type of dementia among elderly individuals. It causes the death of brain cells 
and brain atrophy and its symptoms include memory loss, language disability, mood swings, among others. Recorded 
number of deaths from AD in the United States was 83,493 in 2010, making it one of the leading causes of death in 
the elderly, and the number of people with Alzheimer’s disease is expected to be 13.8 million by 20501.  

 AD is highly complex and heterogeneous, therefore accurate and less invasive biomarkers and tools for early 
diagnosis are needed.  Many diagnostic methods for AD have been developed, including definitive diagnosis at post-
mortem; positron emission tomography (PET)2 with b-amyloid or Tau specific radioligands; immunoassays in 
cerebrospinal fluid (CSF)3;  Magnetic resonance imaging (MRI) to detect structural defects due to neurodegeneration, 
like localized thinning of cortical gray matter or loss of hippocampal volume; Structural MRI and 18-F 
Fluorodeoxyglucose (FDG) PET to recognize patterns of tissue loss and cerebral glucose Hypometabolism. While 
CSF sampling requires lumbar puncture and PET scans involve exposure to radioactivity, MRI is less invasive.  

  The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal multicenter study designed to develop 
clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of AD4. Researchers have 
been using ADNI databases to build diagnosis tools of genetic, genomic, biochemical, and image features. N. Schuff 
et al. demonstrated that ApoE is highly related to AD and it has become a major genetic biomarker5. Features extracted 
from brain MRI, such as volume, cortical thickness and hippocampus shape have been used to diagnose AD6. Oskar 
Hansson et al. used CSF and PET from ADNI to predict clinical progression of mild cognitive impairment (MCI)7. 

  Deep learning or deep neural networks (DNN) has been increasingly applied in the field of biomedical image-based 
diagnosis. U-net, which is a neural network comprised of down sampling layers and up sampling layers, is widely 
used for biomedical image segmentation8. Deep Mind has used deep convolutional neural networks (CNN) for lung 
cancer screening based on low-dose chest computed tomography 9. Unsupervised DNN has been used as an 
Autoencoder so that high dimensional features of brain MRI can be compressed to low dimensional features, so that 
supervised DNN model can be built on low dimensional features to classify AD and normal controls (CN)10.   CNN 
has shown its advantages in computer vision tasks since AlexNet in 201211. However Deep CNN suffers from 
degradation since adding more layers often lowers accuracy. Kaiming He et al. in 2015 introduced Residual blocks 
(ResBlock) into CNN model12. The key to ResBlock is that a shortcut connects the input of the first convolutional 
layer and the output of the second convolutional layer, which can pass low level features to later layers in order to 
overcome the degradation problem in Deep CNN models. Gao Huang et al. proposed Densely Connected 
Convolutional Networks (DenseNet)13 of multiple Dense Blocks in order to significantly reduce parameters. 
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  Hippocampus is a major component of the human brain that plays significant roles in both short- and long-term 
memory. Hippocampal atrophy is an important biomarker for AD diagnosis. A number of machine learning models 
have been developed to classify AD based on hippocampus imaging data. Olfa et al. extracted image features from 
Hippocampus, and  built models  based on Support Vector Machines(SVM) and Bayesian classifier14 . Ruoxuan Cui 
et al developed 3-Dimensional convolutional neural networks(3D-CNN) to classify AD and CN15. Hongming Li et al 
used 3D residual CNN to extract deep features of the hippocampus, then built a time-to-event model to predict mild 
cognitive impairment (MCI) progressing to AD16.  Manhua Liu et al. proposed a multi-model CNN AD classifier, 
which used ResBlock residual block and Dense block in one single model17.  Previous CNN models often have 
sophisticated structures, for example residual CNN and multi-model CNN heavily relied on feature engineering and 
required large amounts of training data, the latter is often the bottleneck in biomedical field. Overfitting can happen 
in Deep and complex CNN models, when the model structures are complex and training data are  limited.   

In this study, we propose a light-weight, densely connected 3D-CNN model (DenseCNN) for classifying AD from 
control normal (CN) based on hippocampus segmentations from ADNI. DenseCNN is densely connected with features 
from all levels, therefore no particular feature engineering is needed. DenseCNN is lightweight with fewer 
convolutional kernels, relatively simple structure and fewer total parameters. It does not heavily rely on data 
augmentation and is fast in training and predicting. For preparing the training and testing data, we leveraged the latest 
deep learning hippocampus segmentation tool (Hippmapper) 18 and the segmentation results were further manually 
quality controlled. Compared to previous studies of MRI-based AD classification CNN models, DenseCNN is robust 
with simpler structure and fewer parameters and was trained on more high-quality training data. When tested on a 
testing dataset of 2 to 7 times larger than previous studies, our model  reached a high accuracy of 0.89, sensitivity of 
0.985, specificity of 0.852 and area under curve (AUC) of 0.979, which are better than or are comparable to several 
state-of-art CNN models by Olfa14, Ruoxuan15, Hongming16, Manhau17 et al].  

2.Method 

2.1 Data selection 

  We obtained data from the ADNI (http://adni.loni.usc.edu). The MRI data is T1-weighted structural from initial 
screening or baseline, including ADNI 1,2/GO and 3. Screening visit screening visit consists of  a list of 
assessments(including imaging) to evaluate whether a participant should be included in ADNI. After passing 
screening, baseline assessment collects more biomarkers from participants. Most participants have the same diagnosis 
in screening and baseline. If a participant has both screening and baseline scans, we will choose the baseline one, as 
baseline diagnosis is considered to be more accurate. After hippocampus segmentation, we have 326 AD subjects, 607 
control normal (CN) subjects and 544 Mild Cognitive Impairment (MCI) subjects, totaling 1477 hippocampus 
segmentations. In this study, we focused on classifying AD from CN, therefore AD and CN subjects were used to 
train our residual 3D-CNN model. Most MCI and AD cases have brain atrophy and share similar imaging features. 
Classifying AD and MCI via MRI is often more difficult with moderate accuracy of 70%-80% and may require 
features other than imaging features. While classifying AD and MCI via MRI is not the focus of this study, we are 
developing models based on MRI and other data to classify subjects into AD, MCI and CN. 

2.2 Hippocampus segmentation 

  Hippmapper,  a deep learning based hippocampal segmentation tool18, can segment hippocampus from T1-weighted 
raw MRI. It is the 3D version of U-net and  has two stages: firstly, the tool finds the location of the hippocampus and 
generates bounding boxes; secondly, the hippocampus is extracted from the bounding boxes. It has been shown to 
have better segmentation results than traditional machining learning tools, such as FreeSurfer, in all metrics18. 

  Accurate hippocampus segmentation data is the key to brain MRI-based classification models for AD, therefore we 
further manually checked all segmentation results from Hippmapper. Segmentations with following conditions were 
removed: segmentations from wrong sections of the brain; segmentations with noticeable missing voxels; the raw 
MRI data is not clear or has other defects. Examples of removed subjects are shown in Figure1. Around 5% of the 
initial segments were excluded from our dataset. During our experiments, we found that without this step of manual 
curation, the accuracy of our model was significantly lower as compared to models built on manually curated data. 
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 Figure 1. normal segment; wrong sections of brain; segmentations have noticeable missing voxels 

2.3. Data preprocess and augmentation 

  After segmentation, we had a list of masks for the location of the hippocampus in raw MRI, which have the same 
dimensions as the raw image. The right and left masks were separated in order to remove voxels with 0 value between 
the left and right hippocampus. The left and right hippocampus were extracted by multiplying right and left masks, 
metrics only consisting of 1 and 0 voxels, with the raw image metrics. We then removed slices containing only 0 value 
voxels, reducing the size of a hippocampus to the dimension of (48, 60, 46).  All voxels were normalized to the scale 
of 0 - 1, which is a common step for training a CNN model19.  This normalization step reduces gradients in model 
training, decreases the chance of overflow, and improves training speed. 

  A series of augmentations were then applied to the preprocessed data. The input size (48*60* 46) to our model  is 
comparable to that of  2D computer vision models (256*256, 512*512), which could have over 100 layers. In 2D 
computer vision tasks, models are often trained on large datasets(ImageNet 14 million,CIFAR-10 60,000)20. Deep 
CNN models could contain millions of trainable parameters. Large numbers of parameters training on limited data 
often leads to overfitting. For our task of training 3D CNN models, augmentation to enlarge training data is crucial.  
Each hippocampus segment for training was moved along the x, y and z axis, 6 directions in total, based on the method 
from previous studies 21. The training dataset is 6 times larger than original data after translational change, totaling 
5222 subjects. We did not apply rotation, zoom-in or zoom-out to the original dataset, since hippocampus volume and 
orientations are important features and play an important role in AD diagnosis. 

2.4 DenseCNN 

  DenseCNN (Figure 2) has 3 dense layers, with each layer consisting of 2 convolutional layers, combined with Batch 
normalization (BN)22 layers and Relu activation layers.  Transition Layers end with a Max Pooling layer to decrease 
the size of input data. The general dense connectivity was shown in eq. (1), where x0, x1, … xl are the feature map 
for layers 0 to l and H() could be any non-linear transformation in the CNN. 

𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1,… , 𝑥𝑙 − 1]) (1) 

  In our case, the first convolutional layer used 1×1×1 size convolutional kernels(filter), while the second filter used 
filters with a size of 3×3×3 and had a stride of 1×1×1. In the Dense Block, the output of the first dense layer was 
concatenated with output of the second and third dense layers; the output of the second dense layer was concatenated 
with the third dense layer. Dropout layers23 were used in our model to reduce overfitting.  

  DenseCNN model has two streams for left and right hippocampus segments correspondingly (Figure 3). Each stream 
has an initial 3D convolutional layer followed by a BN layer and a Relu activation layer, extracting low level image 
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features. Then a Max pooling was used to ignore 0 voxels on the edges of the input data and reduce the data size. Two 
Dense Blocks and a Transition Layer were stocked in each stream, using 8 and 16 filters correspondingly. At the end 
of each stream is a global average pooling (GAP) layer, which compresses high dimensional image features to 1-
Dimensional features. After the GAP layer, two streams were merged followed by a dropout layer. Finally, a fully 
connected layer and a SoftMax layer were used for generating prediction. 

 
Figure 2. Structure of Dense Layer, Transition Layer and Dense Block of Dense CNN. 

 
Figure 3. The architecture of DenseCNN. 
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2.5 Validation 

   A total of 326 AD subjects and 607 CN subjects were used in this study. 5-fold cross validation was used in our 
study. Each time, 4 folds (746 subjects) were used for training and 1-fold (65 AD, 122 CN) for validation. Average 
classification accuracy, sensitivity, and precision of the 5 folds, receiver operating characteristic (ROC) curve, and 
area under ROC curve (AUC) were used as evaluation metrics.  

2.6 Comparison 

 We compared DenseCNN with previous hippocampus-based CNN AD classification models, including Feature Based 
model, Plain 3D-CNN, Residual 3D CNN and Multi-model 3D CNN, described in the introduction. Classification 
accuracy, sensitivity, precision, and AUC were compared. 

  We examined the performance of DenseCNN with various depth and complexity and experimented with building 
models with different numbers of Dense Blocks and filters. A Transition Layer was also added into the model when 
an extra Dense Block was necessary. We tried Dense Blocks ranging from 1-4 and filters ranging from 4-64. Among 
those trails, we chose 4 models for comparison: 1. model with 3 Dense Blocks and has (8,16,32) filters in each Dense 
Block; 2. model with 3 blocks and has (6,12,12) filters; 3 model with 2 blocks and has (6,12)filters; 4. model with 2 
blocks and has (12,24) filters. These comparison models have trainable parameters ranging from 140,682 to 1,021,074, 
which provided a wide-range coverage of model complexity. 

3. Experiment platform and parameters 

   The segmentation process and model training were conducted on a NVIDIA GeForce GTX 1080 ti GPU with 11 
GB memory. The model was implemented by Keras with the TensorFlow backend. RMSprop was chosen as the 
optimizer in the early stage of training.  Once the model reached 80% accuracy, the optimizer was switched to Gradient 
Descent with Momentum for final fine turning. L2 regularization was used to reduce overfitting.  We experimented 
with a wide range of hyperparameter values and different structures of models.                                                                                    

4. Result 

4.1.  Performance Comparison of DenseCNN, Feature Based method, Plain 3D-CNN and Multi-model CNN 

  We computed the average performance from 5-fold cross validating. The model has achieved of an average accuracy 
of 0.891, sensitivity of 0.985, specificity of 0.852 and AUC of 0.979.  We compared DenseCNN with  previous 
methods (Table 1). In summary, our model achieved an overall best performance among all the previous models based 
on AUC and sensitivity measures. ResNet had an accuracy of 90.0% and is 0.2% higher than DenseCNN, however 
our model was evaluated on a test dataset of two times larger than ResNet (187 vs 63 subjects). The performances of 
previous studies were measured on test datasets consisting of 27 to 89 subjects. On the other hand, DenseCNN was 
evaluated on a test dataset of 187 subjects (Table 1), indicating that  our performance measures are more robust. 

Table1. Performance Comparison of DenseCNN, Feature Based method, Plain 3D-CNN and Multi-model CNN 

Method ACC SEN SPE AUC Number of test subjects 

Olfa et al. 2014 
Feature Based 

85.0 76.0 81.0 - 27(15AD 12CN) 

Ruoxuan et al. 2018 
Plain 3D-CNN 

87.0 79.38 93.22
  

86.41 
 

46(20AD 26CN) 

Hongming et al. 2019 
 ResNet 

90.0 - - 95.6 63(26AD 37NC) 

Manhua et al. 2020 
Multi-model CNN 

88.9 86.6 90.8 92.5 89(45AD  44NC) 

DenseCNN  89.8 98.5 85.2 97.9 187(65AD 122NC) 
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4.2.  Performance comparison of DenseCNNs with different architectures 

  We built DenseCNN with different architectures and compared their performances (Table 2). The Filters column in 
Table 2 shows the corresponding numbers of filters in each Dense Block. For example, a model with 3 Dense Blocks 
has 8 filters in the first block, 16 in second block, 32 in the third, and 1,021,074 trainable parameters in total. The 
lightest model has only 140,682 trainable parameters and has the lowest accuracy, demonstrating that an overly 
simplified models may be highly biased. The model with the most parameters (1,021,074) has the lowest AUC of 
0.846, demonstrating that complex CNN models may be highly variable. The best performance was achieved for 
DenseCNN with 243,090 parameters.  

  Although shortcuts in Dense Block can pass low level feature to later layers in the same block, low level features 
may not be able to flow to all Dense Blocks. Models with 3 Dense Blocks were ended up with 21 convolutional layers, 
which may be too deep for any small size hippocampus (48,60,46).  The model with one Dense Block had worse 
performance than plain CNN models.  During our experimentation, we found that models with 2 Blocks worked the 
best. The number of Filter is also a significant performance factor.  We followed the guideline from the original 
Densenet13 and Resnet12 and doubled the filter number when max pooling was applied. Therefore, filters in later layers 
are decided by the filter number in the first Dense block. The choice of an appropriate number of filters in the first 
Dense Block is important and affects the parameter number in all layers. The filters in the 1st Dense Block are needed 
to represent low level patterns. However, too many filters in the beginning will increase the total parameter number 
exponentially and the overall performance deteriorates.   As expected, DenseCNN achieved the best performance at 
the near the balance point between acquiring low level features and total parameter number (last row of Table 2). 

Table2. Comparison of DenseCNNs with different number of Dense Blocks and filters 

Total parameters number of dense blocks Filters ACC SEN SPE AUC 

1,021,074 3 8,16,32 83.4 67.7 91.8 84.6 

270,546 3 6,12,12 86.6 93.8 82.8 96.7 

140,682 2 6,12 81.8 73.8 86.1 88.7 

532,434 2 12,24 82.4 75.4 86.1 89.3 

243,090 2 8, 16 89.8 98.5 85.2 97.9 

 

We compared the ROC curves of different Densely Connected CNNs (Figure 4). We observed that the curve with 
second highest AUC has 270,546 parameters, which is  similar to that of the best performing DenseCNN model with 
243,090 parameters. This further demonstrated that  the proposed model is robust and has a suitable structure based 
on current data. The most complex model has over one million parameters, resulting the lowest AUC and sensitivity 
(67.7%), but it has higher accuracy than model with 532,434 parameters. Therefore, overly complex models may 
perform poorly in different aspects. Our experiments revealed that a lighter model with advanced structure can 
outweigh complicated models. Models with more layers and parameters is not necessary. 
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Figure 4. ROC curves of Densely Connected CNNs with different number of Dense Blocks and filters 

   

4.3.  Features  visualization of DenseCNN 

  Deep learning methods are often criticized as Black Box, which is a major drawback for clinical applications. We 
illustrated the features related to AD prediction and provided visual information in an AD relevance 3D heatmap of 3 
AD hippocampus and 3 CN hippocampus (Figure 5). We first computed the gradients from the output of the last 
Dense Block for a given hippocampus. We then averaged the gradients of all filters.  The heatmaps are the overlays 
of the gradients and the input hippocampus.  We can see that most parts in CN subjects has no relevance to AD. For 
example, the right hippocampus of the 5th subject has no relevance to those of AD subjects. Most parts in AD subject 
shows medium to high relevance. The high relevance areas are usually located in the lower head part of the 
hippocampus. The heatmap validated our results by visualizing the deep features of our model. Some CN hippocampus 
still has one or two small local areas highly related to AD, which may be  explained as following: because of the 
shortcut connections in dense Block, the heatmap considers multiple convolutional layers at the same time. 
Consequently, both low- and high-level feature relevance are shown in the heatmap. Another possibility is that CN 
and AD subjects  do share certain patterns, such as local textures and shapes, which may lead to some small but highly 
related areas in CN heatmaps. Our analysis of the relevance heatmap  also showed the limitations of traditional shape 
and textured based methods duo to shared patterns between AD and CN subjects, which may provide insights for 
future improvements. 
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Figure 5. AD relevance heatmap: AD subjects (1-3) and CN subjects (4-6). 

  

 4.4.  Error analysis 

  Three examples of misclassified subjects are shown in Figure 6. Example 1 and 2 are false positive (CN being 
misclassified as AD) and example 3 is false negative (AD being misclassified as CN). The false positives may be 
caused by missing voxels  as shown in the first example and by a hole as shown in the second example (Figure 2). 
Only one side of the hippocampus is shown, because the other side has no observable missing voxels. Though we 
conducted quality control as mentioned in section 2.2 by manually viewing slices of segments., it is difficult to detect 
all missing parts in 3D plots as they can be observed only from a certain perspective. Minor differences between 
ground truth hippocampus and segmentation results do affect the performance of the model, as we can see  that the 
voxel missing areas have high relevance to AD due to the fact that AD hippocampus may have concaves due to 
atrophy, which look similar to the pattens of  the missing parts and holes. Unlike regular AD subjects who have 
relevance on both sides of hippocampus , the false negative (example 3 in Figure 6) has only left hippocampus 
showing some relevance to AD and the right showed no relevance at all.  Consequently, the model misclassified 
example 3 as CN subject. These misclassified examples further demonstrated that AD is highly heterogeneous and the 
brain images varies among different AD patients.  
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Figure 6. 3 misclassified examples. Arrows indicating missing voxels in the hippocampus. 

5.Discussion 

  In this study, we proposed a densely connected 3D-CNN model (DenseCNN)  to classify AD and CN based on 
hippocampus imaging data from the ADNI database. DenseCNN achieved an overall best performance as compared 
to several state-of-art CNN methods. The following four reasons that may contributed to the high performance of 
DenseCNN: 1) advanced densely connected CNN architectures; 2) better hippocampus segmentation tools combined 
with manual curation; 3) more training data than previous method; 4) appropriate numbers of Dense Blocks and filters. 
Given the problem of limited data in biomedical domains, we focused on developing light models with fewer 
parameters. Compared to previous CNN models (e.g., Resnet16 and multi-model CNN17) with over 1 million 
parameters, Dense CNN has 243,090 trainable parameters. During our experiment, we found light models often 
outperformed more complex models.  

 Our study has a few limitations. First the quality of hippocampus segmentation is not perfect, which affected the 
overall performance as shown in our error analysis. Better segmentation tools, in the future, can further increase the 
performance of hippocamps based analysis method. Second, though our dataset consists of 326 AD subjects and 607 
control normal (CN) subjects from the ADNI database, it still may not be large enough to train a CNN model with 
good generality.  Third, we trained and tested DenseCNN using data from ADNI database. It will be important to test 
the model using data from other independent resources.  Fourth,  our current DenseCNN was trained based on 
hippocampus. Image features from other parts of the brains, for example total brain MRI, may further improve the 
oval performance. Fifth, incorporating non-imaging features such as patient genetics, genomics and demographics 
may further improve the performance. Finally, this study focused on classifying AD from CN, which is an easier 
problem than classifying subjects into AD, MCI and CN. Most MCI and AD cases have brain atrophy and share 
similar imaging features. Classifying AD and MCI via MRI is often more challenging and will require features other 
than imaging features.  

6.Conclusion 

  In this paper, we developed a densely connected 3D-CNN model  DenseCNN and compared it with several state-of-
art 3D CNN methods. We demonstrated that DenseCNN has better or comparable performance while it is light, has 
significantly fewer number of parameters and is efficient to train. In summary, DenseCNN has potential as a robust, 
high performance and efficient diagnostic tools for AD classification. 
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