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Abstract

Analyzing disease progression patterns can provide useful insights into the disease processes of many chronic con-
ditions. These analyses may help inform recruitment for prevention trials or the development and personalization of
treatments for those affected. We learn disease progression patterns using Hidden Markov Models (HMM) and distill
them into distinct trajectories using visualization methods. We apply it to the domain of Type 1 Diabetes (T1D) using
large longitudinal observational data from the T1DI study group. Our method discovers distinct disease progres-
sion trajectories that corroborate with recently published findings. In this paper, we describe the iterative process of
developing the model. These methods may also be applied to other chronic conditions that evolve over time.

Introduction

Analyzing disease progression can provide great insights into the underlying pathophysiology of disease processes.
Examining how a disease progresses over time can help us to understand when a patient will progress into a stage
requiring treatment and provide tailored care for the patient. Numerous natural-history studies have been conducted
for specific diseases, such as for type 1 diabetes (T1D), Huntington’s disease, and chronic obstructive pulmonary
disease (COPD) in the past. These studies provide great opportunities for clinical researchers to investigate disease
progression patterns using longitudinal data.

However, despite the availability of well-curated data from these past observational studies and the best of many
research motives, many challenges remain to conduct such investigations. For example, to understand how subjects
progress from no disease into disease states, one has to take into account multiple socio-demographic as well as
clinical measures and their evolution over time that may be associated with the onset of the disease. Second, there are
challenges inherent to collection of longitudinal data, i.e. even if the data are collected for all co-variate(s) of interest,
observations may be recorded at discrete times and varying intervals in many similar studies. This introduces sampling
bias. Third, the observational records may also contain missing data, i.e. not each co-variate may be recorded at each
time point in the data collection process. Fourth, depending on the chronic condition, disease progression rates and
patterns may vary indicating heterogeneity of progression across populations which may be attributed to underlying
environmental and/or genetic risks. For these reasons, it is not only difficult to find distinct progression patterns
from large observational studies of the past but to also summarize these patterns in an appropriate way for downstream
consumption1. For example, researchers and clinicians may want to infer distinct trajectories from progression patterns
for further investigations, and needless to say this largely remains an active area of biomedical research2–7. In this
paper, we address the question of learning disease progression patterns from noisy observational data using data-
driven probabilistic methods and interactive visualization approaches. As a proof of concept, we apply these methods
to the multi-site data from the “T1DI” (Type 1 Diabetes Intelligence) study group. Our team is involved in this effort
with an aim to study computational modeling of T1D.

T1D is a chronic auto-immune condition that affects both children and adults and has lasting consequences of insulin
dependence throughout an individual’s life. By recent estimates, the disease incidence is doubling every five years,
particularly in children below the age of 5 years, and yet there is no cure for it8. It is now known, that a presymp-
tomatic phase which involves development of islet autoantibodies (biomarkers) followed by a period of dysglycemia,
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precedes the onset of clinical symptoms when an individual is generally diagnosed. A recent scientific statement by
the leading research organizations have proposed three clinical stages of the disease9. In the first stage, individuals
show presence of multiple islet autoantibodies but with normal glycemic control; in the second stage, in the presence
of islet autoimmunity, they start exhibiting dysglycemia; and in the third stage the overt clinical symptoms set in when
a clinical diagnosis is generally made. While these clinical stages provide a big picture of disease progression, they do
not address its heterogeneity , i.e. when an individual is likely to progress, and what may be the next stage and under
what circumstances. However, heterogeneity has been well described in past and ongoing research studies10 as well
as in clinical practice.

To address these questions, we model disease progression using Hidden Markov Models (HMMs), a class of state-
space models, that can discover underlying latent (disease) states from observational data in a probabilistic way1, 7, 11–13.
We apply this method iteratively to learn an optimal number of disease states based on available (biomarker) data. We
supplement our modeling efforts with an interactive visualization method14 to facilitate discovery of overall patterns
(aka disease trajectories) and their salient characteristics.

Because of growing body of evidence supporting role of biomarkers in progression to onset 15 , the T1D research
community is keenly interested in investigating these. These may include the type or number of islet autoantibodies
detected in blood serum or their combinations. It is believed that a more detailed map of these patterns may help in
further refining disease staging which in turn may support newer prevention trials and personalized therapies.

Methods

We first breifly describe the study data followed by modeling and visualization methods. This study was conducted by
approval from the IRB of individual study cohorts as well as by the T1DI Study group.

Data: Longitudinal Observational Studies from Five Different Sites

We use longitudinal data collected from the T1DI Study Group, which combines observational data from five natural
history studies, some of which are still ongoing. These studies are BABYDIAB16, DAISY17, DEW-IT18, DiPiS19,
and DIPP20. In these studies, each site recruited children at genetic or familial risk at birth or close to birth and
followed them in periodic visits until their diagnosis or for a period of 15 years whichever came first. This combined
and harmonized cohort of five studies has over 24,000 subjects, with an average of 12 (sd: 9) visits per subject, and
an average interval of 0.8 (sd: 0.94) years between visits. Of these, 2524 (10%) subjects developed one or more
autoantibodies in the follow up period and 697 (3%) were diagnosed with T1D (at the time of these analyses).

Of those diagnosed, we analyze 688 T1D cases partitioned into two sets. We use visits of 559 T1D cases from 3
studies (DAISY, DIPP, DiPiS) having at least 3 visits in the follow up period as our modeling set (i.e. for learning
a disease progression model). We use 129 T1D cases from 2 studies (BABYDIAB and DEWIT) as an independent
evaluation set and label their visits at each time point with the model latent states. These are described in detail below.

Modeling: Training Hidden Markov Models

An HMM can represent progression (of a subject) through disease stages as transitions between ‘hidden (or latent)
states.’ The hidden states when learned from data characterize a set of probability distributions of multiple observed
measures. In these models, state transitions (among latent states) are represented using a transition matrix. The
transition matrix defines the probability of transitioning between hidden states and if needed can be constrained based
on domain knowledge or pragmatic assumptions. For example, one can make an assumption that the disease progresses
in one direction, i.e. forward only and a subject does not revert back to prior states as time goes by. There are
several advantages to using a probabilistic disease progression modeling framework. First, it provides a flexible
framework to accommodate different possible progression pathways. Second, the trained HMM can infer the best
state representations from data, which may include missing data. Third, it allows multi-dimensional representations
of disease states, i.e. evolution of multiple covariates. Fourth, it infers the best possible progression trajectory of an
individual subject and collectively can look at trajectories of an individual or a population. Finally, this method does
not require labeled data or ground truth since the primary goal of modeling is to probabilistically discover underlying
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patterns by way of latent states , their characteristics and transitions.

In many applications, HMMs are trained using periodic time-stamped data in an unsupervised manner. These appli-
cations generally use the discrete-time HMM (DT-HMM) which do not allow for irregular time intervals of measure-
ments in the observed data. However, this irregular sampling is often the case in clinical datasets such as the one at
hand. Another variation of HMMs, a continuous-time HMM (CT-HMM) can accommodate varying time intervals
though with added computational complexity.

In our prior work on Huntington’s Disease (HD)1, we have successfully used CT-HMMs to learn the underlying
disease states of HD, a pure genetic condition, purely based on observed clinical assessments. In this paper, we
leverage the previous work and apply it to the domain of T1D to understand progression from presymptomatic phases
to the onset of disease. However, we seek some specific changes for our use case. First, we extended the observed
variable space from continuous measures (of clinical assessments) to include categorical measures of biomarkers.
This was important in this application because the presence or absence of a biomarker (islet autoantibody) detected in
blood-serum are indicative of progression and in fact has been proposed as stage 1 of the condition in a recent joint
scientific statement9. Additionally, it is now believed that the type of autoantibody detected in blood serum first may
also define the progression pattern to onset of the disease21. Therefore, it made sense to use categorical measures
of these biomarkers (i.e. positive or negative) in our models. This allowed us to leverage the standardized cutoffs of
autoantibody titers without having to first harmonize these lab values across these past studies of many years. Secondly,
we apply a principled approach to model selection, i.e. for determining the number of latent states that may optimally
define progression. It takes into account both the information criterion and log-likelihood (LL) scores. In generative
models, like HMM, LL is often used to measure the goodness of fit for model selection, i.e. the probability of the
observed data given the model. However, LL does not penalize for model complexity, i.e. the number of parameters
to learn or the number of observations required. In this work, besides using LL to guide the model selection, we also
evaluate the Bayesian Information Criteria (BIC) score. BIC penalizes for the number of model parameters and the
number of observations22.

In summary, for training HMMs in the context of disease progression, clinical researchers have an ardent task: i) to
choose a set of observed variables, ii) to determine the number of latent states (K) for the model, iii) to set constraints
on transition probabilities (between latent states) in a pragmatic way, iv) to select a model based on criteria scores and
v) to qualitatively evaluate the model so that it may meaningfully define progression for clinical consumption. We
attempt to address these challenges in this work by taking a unique approach of combining modeling and visualization
in an iterative way which we describe next.

Model Setup: Observations, Number of States, Transition Constraints, and Model Outputs

First, we needed to choose a set of observed variables to discover the hidden states from. In our use case, we use pre-
viously recognized islet autoantibody biomarkers: glutamic acid decarboxylase autoantibodies (GADA), insulinoma-
2-associated autoantibodies (IA-2A), insulin autoantibodies (IAA) that are known for their association to T1D disease
status.

Second, we needed to choose the number of hidden states (K) for the HMM model. This model selection process is
done by building models with different K, quantifying the model characteristics, comparing the models, and selecting
an appropriate K. Bootstrap resampling was used to assess the model fit as measured by LL. To supplement the
model selection process, a variety of other methods were applied including BIC, visualization and model constraints.
For example, for each model, the latent states are characterized by probabilities (distribution) of observed variables
and these were explored in the context of model explainability using visualization methods14. In general, as the
number of latent states increase, more transition pathways are possible between them. While these pathways may
expose heterogeneity in disease progression, they can also increase model complexity and limit model interpretability.
Typically, models with high K can have lower error rates (e.g., higher log-likelihood scores, lower BIC scores) but are
more complex and harder to interpret.

Another way to increase model interpretability is by imposing state transition constraints. However, this can depend on
the nature of the disease. Figure 1 illustrates various kinds of constraints that can be set on the transition probabilities.
No constraints can be used to allow transitions between all states. On the other hand, forward only constraints can be
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No Constraints Forward Only Forward ChainForward Only 2nd Order

Figure 1: The types of constraints that can be set on transition probabilities of Hidden Markov Models (HMMs). Each
constraint is represented as a K×K matrix, where K is the number of states. The four examples illustrate constraints
as green (possible route between states) and red (restricted route between states).

set so that transitions in the reverse order are not allowed. This is especially helpful to capture chronic diseases that
exhibit worsening symptoms as time goes by. In addition to directionality, constraints can also be set on the transition
steps. For instance, to represent the step-by-step progression nature, we can set the model to be a forward-chain model,
which means a patient can only either stay at state i or jump to state i+ 1.

Once we have a trained model, several model outputs can be assessed to interrogate the model and draw useful in-
sights. First, as a result of the training process, a (latent) state is assigned to every visit encounter in the modeling
set. Essentially this assignment results in “labeling” of longitudinal visits as temporal sequences of HMM states. In
addition to state sequences, we also derive posterior probabilities (of state assignment) from the model (just consider-
ing forward pass) for every visit. The Viterbi method (that relies on forward-backward pass) employed in our models,
picks the state sequence with the highest probability23. In case of discrepancies between the two methods, the output
shows uncertainties of the assignment process. Potentially these can be visualized to derive useful insights into both
the modeling and the resulting progression. Other useful insights can be drawn from the finite number of states (of the
model). These can potentially be used to group subjects with similar state sequences. We can then compare the het-
erogeneity with respect to progression rates using interactive visualizations. Other useful outputs from these models
are a state transition matrix that defines the rate of transition from state i to state j. This rate can be used to compute
average dwell times (sojourn times) in each state and the probability of staying in or transitioning out from a state
given a time value of interest (e.g. in 2 years).

Model Evaluation: Assessing Hidden Markov Models

To find the optimal model, we needed to run experiments with different combinations of parameters for HMMs (num-
ber of states, transition constraints) and impose visualization. For the first, we randomly split data into training and
validation sets using the 7:3 ratio. We created V such experimental sets. Using each experimental setup, in our exper-
iments, we varied the number of latent states from K = 2 to K = 20 states, i.e. we learned a model for each latent
state by random initializations. We did not consider any numbers beyond 20 (for latent states) because of complexity
in terms of the possible number of transitions and interpretability. We chose the forward chain model, where subjects
can either stay at the current state (i) or proceed to the next state (i+1) while prohibiting them from jumping forward
or backward into other states. However each subject could start or end their progression in any state. Thus, each
experimental setup was randomly initialized 10 times and in each initialization a new HMM was trained using the
iterative expectation–maximization (EM) algorithm7. At each iteration, a training (set) LL was computed to assess
model convergence. A LL score on the validation set was similarly computed at the end of convergence and is used
as a performance metric (of predictive LL) for model evaluation and selection as described below. We plot both the
training LL and the predictive LL as a function of the latent states used in these experiments. The total number of
experiments (N) in the above setup amounts to the product of the number of data splits (V), the number of candidate
latent states (K), the number of experiments (M), and the types of constraints (C). In total, we ran the experiments
for training 1900 model instances (V:10, K:2 to 20 states, i.e. total of 19 states, M:10, and C:1) which are plotted in
Figure 2.
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Figure 2: Model performance (vertical axis) as a function of the number of latent states K (horizontal axis). The left
view shows the model performance in terms of predictive likelihood score (LL) on the validation set; the right view
shows the model performance in terms of Bayesian Information Criterion (BIC) on validation set.

Visualization Method: Summarize States and Transition Patterns

To summarize the trained model, we apply DPVis14, an interactive visualization tool developed for users to explore
disease progression patterns. DPVis is a visual analytics system that consists of multiple, coordinated views, where
each view provides summary and details of the HMM states and the state transition patterns. The visualization has
three main goals. First, it helps users examine the summary of states by inspecting the probabilities of output variables
per state. In this process, users can also evaluate the probabilities of other variables (per state), which though were
unused in the modeling process. Second, it allows users to summarize the discovered longitudinal clusters with
respect to state transitions, i.e., trajectories. Users can find the volume of individuals and compare heterogeneity
in terms of progression rates by viewing these trajectories. Third, it allows users to further group individuals based
on state transition patterns. Users can form and test hypotheses by interactively forming subgroups and examining
their characteristics. DPVis has many additional functionalities and views designed to help facilitate investigation of
disease progression patterns, but a comprehensive and detailed description of them is out of scope here and described
elsewhere14. In this paper, we apply DPVis to a specific use case to help generate summaries of HMM states and state
transition patterns over time, as shown in Figures 4 and 5.

Results

Model performance as a function of the number of latent states is shown in Figure 2. The left plot shows the LL of
the training dataset (at the last EM iteration) (blue) and validation set (red) (after model convergence) over different
numbers of latent states K (horizontal axis). For each K, a box plot shows the summary of 100 experiments (10
random training/validation splits used with 10 random model initializations). We have connected the median results
with a line to show the trend. Figure 2 shows that the LL score in general increases as the number of states increase,
which is expected. However, the magnitude of increase in LL starts decreasing around 9–11 states, which indicates
that the models with more number of states than 9–11 states may not add value for the cost (complexity). To validate
our observations, we computed BIC on the validation set, which is shown in the right plot of Figure 2. The BIC score
decreases as the number of states increases and is consistent with the trend observed with LL. We observe that the
BIC measure starts flattening out as the number of states increase beyond 11–13 states. By combining the evaluation
results from two independent measurements, LL and BIC, we chose the 11 state model, which has a good trade-off
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Figure 3: The trained model provides various outputs. The left plot shows the average dwell time per state. The right
plot shows the transition probabilities among states in 2 years.

between good model fit and low model complexity.

Once a model instance has been trained, its outputs (e.g. dwell time, transition matrix) can be interpreted both quan-
titatively and qualitatively. Figure 3 shows two different outputs of a trained model: dwell time (left) and transition
probabilities (right). Average dwell time indicates the average time subjects stay at each state. The bar chart shows
some patterns with state sub-sequences. We observe that average dwell time increases as the state index increases until
some point, then decrease to small numbers, and then increases back until some other points. In total, we observe
three different segments: i) 0–2, ii) 3–7, iii) 8–10. Within each segment, we observe that average dwell time increases
as the state index increases. We also note that state 10 is the “sink” state by the construction of the model (i.e., it is the
last state). The transition probabilities show patterns for how subjects transition from one state to another in a given
time frame. Figure 3 (right) shows the state transition probabilities (after 24 months) as a matrix. As expected, after
24 months, most subjects stay at their current state and rarely move to next states as shown by the large numbers in
the diagonal cells.

There are several outputs from the HMM that can be visualized to draw insights. One of them is the state sequence
of the trained model applied to visit observations from individual subjects in the training, validation or independent
datasets. We apply DPVis for exploring these outputs14 to gain an understanding of progression patterns captured by

Figure 4: The Summary of HMM Output Variables. Each state (column) shows probabilities of onsets of three output
variables (rows): GADA, IA-2A, and IAA, which were used for modeling. In addition, it shows probabilities of
other variables that are unused for the modeling. Acquire GAA shows the probability of acquiring GADA in the
corresponding state, HighestRiskSoFar is the mean value of the derived measure which shows the maximum risk
score each subject has before arriving in the corresponding state, and Age years shows the mean ages of subjects in
the corresponding state.
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Figure 5: State transition patterns are shown as temporal summary. Each row represents a subject’s timeline (hori-
zontal axis, in months), where each color band indicates the subject’s dwell time in the corresponding state (state 0:
green; state 1: yellow, state 2: red).

the trained model. Figure 4 shows a summary of the selected 11-state model when applied to the training, validation
and independent datasets. Consistent with what we observed looking only at the average dwell times, we found three
segments for state transition probabilities. In terms of observed variables used in the model (IAA, GADA, and IA2A)
and their distributions, we can confirm that each segment, which we are calling a “trajectory,” follows different state
transition patterns. The first trajectory includes three states: 0, 1, and 2. State 0 has low probabilities of all three islet
autoantibodies (state 0), which are followed by high probabilities of all three (state 1), and then high probability of
IA-2A (state 2). The second trajectory includes five states: 3, 4, 5, 6, and 7. State 3 has low probabilities of all three
islet autoantibodies, followed by states which add islet autoantibodies IAA, IA-2A, and GADA one by one (states
4,5,6 respectively), and then lose IAA at the end (state 7). Finally, the third trajectory starts with low probabilities of
all three islet autoantibodies (state 8), followed by high probability of GADA (state 9) and high probabilities of GADA
and IA-2A (state 10).

We can further visualize the heterogeneity of the three trajectories using DPVis. Figure 5 shows an overview of state
transition patterns as a function of the age of subjects (horizontal axis). Each row represents a subject’s timeline and
each color band represents the subject’s dwell time in the corresponding state. We filtered the view to focus on the
first trajectory pattern (state 0 (green), 1 (yellow), and 2 (red)). Although all subjects follow the same state transition
pattern (0–1–2), the plot reveals that each subject makes state transitions at different ages. For example, dwell times for
state 0 (green) are very different between subjects. The first subject includes a very short state 0 dwell time (less than
a year) and there are subjects who dwell in state 0 for more than 10 years. The subsequent states, 2 and 3, also show
heterogeneity in terms of entering ages and dwell times. We can draw similar insights from the other two trajectories.

Discussion & Conclusion

We present an analytic approach that combines the power of modeling with HMMs and interactive visualization tech-
niques for application in longitudinal observational datasets. We show that this approach can draw meaningful insights
for understanding disease progression even when data had been collected at irregular intervals and is categorical by
nature. Furthermore, we describe various aspects of modeling that one may need to consider with HMMs and how
interactive visualization can supplement in this effort. In particular, we applied the above methods to the domain of
T1D datasets using islet autoantibodies as biomarkers of disease progression.

As a result of training multiple models with different parameters, and using a principled approach for model selection,
we found that an 11-state model showed good model fit, low error rates, and low model complexity, at least for these
datasets. In addition, the model captured patterns (of islet autoantibody progression) that are similar to some recent
reports2, 3, 15. This is important as it speaks to the usefulness of our approach, especially when these reports are from
large multi-site NIH funded ongoing studies (of T1D) that are collecting data at more frequent and regular intervals,
also to understand the heterogeneity of disease among many other aims. Needless to say that our approach may be
highly desirable for other similar chronic conditions that have been studied in past natural history studies.

Additionally, we have shown the value of interactive visualization to summarize disease progression patterns. In
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the following qualitative evaluation using interactive visualizations, we have shown that the HMM model is able to
provide a population-level summary of state transition patterns. These are the three trajectories and details in terms
of dwell times and transition ages as discussed above. These insights may have practical applications that are yet to
be understood. Therefore, as next steps, we are evaluating many of the model outputs (state characteristics) in more
detail. At the same time, we are also working on advanced modeling (using a combination of categorical and numerical
variables) as well as constraining the model in other useful ways and on enhancing the visualization approach with
many features to better support a clinically focused set of users. We plan to disseminate this work in future.
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