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Abstract 
 
The efficacy of early fluid treatment in patients with sepsis is unclear and may contribute to serious adverse events 
due to fluid non-responsiveness. The current method of deciding if patients are responsive to fluid administration is 
often subjective and requires manual intervention. This study utilizes MIMIC III and associated matched waveform 
datasets across the entire ICU stay duration of each patient to develop prediction models for assessing fluid 
responsiveness in sepsis patients. We developed a pipeline to extract high frequency continuous waveform data and 
included waveform features in the prediction models. Comparing across five machine learning models, random forest 
performed the best when no waveform information is added (AUC = 0.84), with mean arterial blood pressure and age 
identified as key factors. After incorporation of features from physiologic waveforms, logistic regression with L1 
penalty provided consistent performance and high interpretability, achieving an accuracy of 0.89 and F1 score of 
0.90. 
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Introduction 
 
Sepsis is defined as “life-threatening organ dysfunction caused by a dysregulated host response to infection", and it is 
the leading cause of hospital mortality in the United States.1 Sepsis-related mortality risk factors vary significantly 
due to non-uniformity of disease development. Different rules have been proposed over time to define sepsis by 
combining different physiological and laboratory observations. While sepsis-1 and sepsis-2 defined sepsis as a 
combination of systemic inflammatory response syndrome (SIRS) response and infection, they have poor specificities 
and hence overlap with symptoms of ‘sepsis-mimics’.2 In this study, we have adopted the latest sepsis-3 definition as 
a more reliable and effective diagnostic criterion to identify sepsis patients.2,3  
 
Patients in septic shock sometimes respond poorly to intravenous fluid administration.4 While fluid administration is 
a first-line strategy to combat sepsis onset, it is unclear if the patient will respond to the treatment positively. 
Aggressive fluid administration on unresponsive patients can lead to serious adverse events such as organ dysfunction, 
tissue edema, and tissue hypoxia.2-4 Many sepsis patients have prior heart problems, such as diastolic dysfunction or 
systolic dysfunction, and improper fluid administration for these patients will worsen the condition.5 Hence, the 
decision to administer fluids or not is critical for better patient outcomes.6  
 
This study builds prediction models to determine which sepsis patients are likely to respond to bolus fluid treatment 
(e.g. significant change in systolic blood pressure after fluid being administered) up to 3 hours prior to the 
intervention.7 We utilized both MIMIC III dataset and its high frequency continuous waveform data8,9 and validated 
the results across multiple time windows. We developed a pipeline to extract and convert high-resolution waveform 
data to readable numeric values from MIMIC-III Waveform Database Matched Subset and linked it to MIMIC-III 
structured data. The study also identified lead indicators (including vital signs and demographic information) to 
consider when administering fluids for sepsis patients.  
 
To the best of our knowledge, this is the first study to incorporate high-resolution waveform matched dataset with 
MIMIC-III data for volume responsiveness prediction.  
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Related Work 
 
The analysis of continuous data streams to predict sepsis has been of great interest to the research community.10-14 
Studies have also used continuous data from bedside monitoring for improving sepsis prediction in models which 
primarily have used clinical data.15,16  While these studies have focused on improving early prediction of sepsis, others 
have proposed models that aid in the management of sepsis care.17 The focus on care management is unique since a 
multitude of alternative treatment plans exist to manage complex sepsis patients, the efficacies of which may be 
uncertain in time-critical decision making.18 
 
To aid clinical decision support regarding appropriate interventions, a number of studies have demonstrated that 
volume responsiveness can be characterized earlier using various forms of clinical data, including echocardiography,19 
using non-invasive stroke volume coupled with passive leg raising (PLR)20 and using end-tidal CO2 with PLR21. These 
findings support the notion that non-invasive measures, such as those derived from Arterial Blood Pressure (ABP) 
may predict intervention effectiveness.   
 
In evaluating intervention effectiveness, there is limited evidence suggesting that machine learning methods can 
predict volume responsiveness and early initiation of vasopressors using EMR data.22-24 Table 1 highlights recent work 
that focus on modeling specific intervention efficacies for critically ill patients using public and private datasets. These 
findings reinforce the premise that salient characteristics can be captured earlier to characterize hypotensive patients 
who respond to treatment. However, these approaches use only the static clinical data in the MIMIC-III dataset and 
have not explored prediction performance within a septic cohort. Finally, to the best of our knowledge, no existing 
study has incorporated ‘physiomarkers’ derived from continuous physiologic waveform, along with clinical data from 
the EMR, to predict fluid responsiveness among septic patients. 

Table 1. Prior research on models to predict intervention efficacy among critically ill patients 

Title 
Reference 

Year Method 
The artificial intelligence clinician learns optimal 
treatment strategies for sepsis in intensive care 

Komorowski et al.17 
2018 Reinforcement Learning 

Predicting Blood Pressure Response to Fluid Bolus 
Therapy Using Neural Networks with Clinical 
Interpretability 

Girkar et al.23 

2019 RNN (with attention) 

Understanding vasopressor intervention and weaning: 
Risk prediction in a public heterogeneous clinical time 
series database 

Wu et al.22 
2017 Switching-state 

Autoregressive Model 

Improving Sepsis Treatment Strategies by Combining 
Deep and Kernel-Based Reinforcement Learning 

Peng et al.24 2018 Deep/Kernel Reinforcement 
Learning 

Methods 

Data Pre-processing: MIMIC-III Data 
The study uses 61,532 unique ICU stay records extracted from publicly available Medical Information Mart for 
Intensive Care (MIMIC-III) dataset. It includes demographics, vital signs, laboratory results, medication information, 
and bolus/fluid events of ICU patients. We applied the sepsis-3 definition to all eligible patients by calculating time 
of sepsis (tSepsis) sequentially from admission until discharge. We calculated the sequential organ failure assessment 
(SOFA) scores as follows: tsuspicion is calculated as earlier timestamp of antibiotics and blood cultures within a specified 
duration (given in ICUStay table). tSOFA is identified as a 2-point deterioration in SOFA score within a 24-hour period. 
SOFA scores for every hour can be obtained from the SOFA table. Once we have tsuspicion and tSOFA, we obtain tsepsis = 
min (tsuspicion, tSOFA ) (Figure 1). 
 

 
 

(1) 
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Similarly, building on Girkar et al.,22 we defined volume responsiveness as follows: First, we checked whether the 
bolus administered was greater than 500 ml/hr and record time of administration as tbolus. At tbolus, the change in mean 
blood pressure for the next three hours is noted. If any blood pressure value shows a change > 10%, the patient was 
labeled responsive (eqn 1) 
 

We developed a master 
dataset of such patients with 
their demographic 
information, vital signs, and 
laboratory examination 
results.  
 
While the MIMIC-III schema 
is rich with a variety of 
clinical concepts and 
relationships, extracting such 
information posed two major 
challenges: (1) understanding 
the relations among the 
entities in the complex 
schema, represented with 
multiple joins across a wide 
range of entities, to extract 
required relationships, and (2) 
generating SOFA scores for 
each patient for each hour of 

stay. Sepsis-3 event identification across an entire ICU stay of a patient requires tracking SOFA sequentially at an 
hourly level.  
 
We addressed the first challenge by identifying a list of most relevant entities and untethered this entity subset from 
the complex schema for our master dataset creation, as well as key-value pair tables, such as  D_Items and D_Labitems, 
that contained lookup maps required to map the above entities to the units, description and definition of a particular 
key used with other entities. We addressed the second challenge by creating our own custom subschema that builds 
on Johnson et al.25 to derive entities from querying the MIMIC-III database, and we roll out the tables at an hourly 
level. The simplified database contains five entities as follows: 
 

1. ICUStay:  Contains the basic demographic information of the patient. It also contains certain important flags 
such as metastatic cancer and diabetes. Attribute tsuspicion, the time of clinical suspicion as defined in26 present in 
this table, is essential for developing an accurate tSepsis timestamp.  

2. VitalsInfo: Contains information about all the vital signs monitored and recorded for the patient. This table 
contains the change in blood pressure and certain important features like Glucose, systolic and diastolic blood 
pressure. 

3. BolusInfo: Contains fluid bolus administered to the patient at a given chart time in milligram per hour.  From 
the 53,432 adult patients considered, only 30,000 patients had bolus information. 

4. Lab Values: Has Lab values for features that can improve the volume responsiveness prediction.  
5. SOFA: Consists of hourly SOFA values for a patient admitted to the ICU, with the start-time and end-time 

associated with each interval.  
 
Sepsis evaluation has routinely been performed on data using the first 24 hours of ICU stay, therefore potentially 
missing patients who go on to develop sepsis later during ICU stay.25 Attributes such as tsuspicion and tantibiotic, when the 
antibiotic is first administered, have an average value of more than one day across all the patients, presenting potential 
conflicting timestamps. Furthermore, a change of SOFA greater than 2 (the key criterion for sepsis-3 definition) is 
detected after the initial 24 hours in almost 25% of the cases. 
 
Starting from 61,532 ICU IDs in the MIMIC-III database, 29,560 (49%) were identified to be sepsis-3 related using 
the rules over the entire length of ICU stay. Fluids and vital signs information were available for 23,540 ICU IDs. 

 
Figure 1. Clinical criteria to identify time of sepsis onset 

621



Linking on both criteria resulted in a master dataset of 15,062 ICU IDs, of which 10,539 (~40%) were volume 
responsive. Demographic (age, gender, race), comorbidity (diabetes, metastatic cancer), and vitals (systolic, diastolic, 
and mean arterial blood pressure, respiration rate, and oxygen saturation) information were added to the master dataset, 
resulting in 49 variables. On volume responsiveness outcome (i.e., when given a bolus of 500ml or more, a 10% rise 
in blood pressure was observed), 70% were responsive. 

Data Pre-processing: MIMIC-III Waveform Data 
Independent of the MIMIC-III data collection, the MIMIC-III Waveform Database includes recorded physiological 
waveforms obtained from patient bedside monitors. The MIMIC-III Waveform Matched Subset is the intersection of 
MIMIC-III database and the waveform records, consisting of 22,317 physiologic signals (“waveforms”) and 22,247 
vital signs time series. We identified 5,960 patients who developed sepsis-3 during their ICU stays and had high 
frequency waveforms, including electrocardiogram (EKG), arterial blood pressure (ABP) and plethysmography (PPG) 
within the matched database.  
 
Once we aggregate the waveform data for each patient, we performed signal processing methods to identify signal 
quality and baseline drifts. We applied a signal quality index to derive 5-second segments of EKG with data quality > 
80%. We derived peak detection using the Christov real-time QRS algorithm.30 Statistical features were derived from 
the R-R interval between neighboring QRS complex from each EKG. For the pulsatile signals, e.g. ABP and PPG, we 
applied peak detection algorithms by Lazaro et al.31 and Zong et al.32 Features were then derived from the peak-to-
peak interval of these waveforms from time-frequency and signal entropy domains. 

Linking All Relevant Tables 
All relevant files are linked to create a master reference dictionary. This includes data from MIMIC-III database, a 
complete list of waveform record file and fluid events. There are two reasons for joining relevant tables to create a 

 
Figure 2. MIMIC-III Data Processing, Waveform Feature Extraction, and Prediction Steps 
 

388 Unique Fluid Events 
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master reference dictionary. Fluid events are organized at the ICU stay level, while waveform records are recorded 
with patient identifiers. Thus, we need to map patient identifier to ICU stays. Secondly, boosting execution speed is 
critical. Iterating through waveform records to perform read-in and extractions, performing linear search for each 
incoming identifier for its corresponding ICU stay and then for waveforms is extremely inefficient. The time 
complexity is O(n*m*l), where n, m, and l denote the size of each file. Joining all relevant tables free up disk space as 
well as effectively shorten the time complexity to O(1) for search.  

Timestamp Check & Read in Waveform Records 
This step iterates through the list of waveform records, performs timestamp check and passes on those qualified 
waveform records for extraction. There are two check mechanisms involved in the step, one before read-in, and 
another before passing for extraction. The waveform read and feature extraction are both very expensive tasks that 
consume considerable disk space and program run time. In our test run, we observed that on average, reading in a 
waveform record with 11 hours of signals will take up approximately 5 to 10 minutes, and extracting features from 
the waveform can take anywhere from 3 to 90 minutes, depending on the size of its signal vector. Hence, we 
incorporated several heuristics into the pipeline to help improve performance.  
 
When the pipeline iterates through the waveform record list, and before it reads in the record file, we compare the 
timestamp embedded in the filename with those of fluid events under the patient identifier. If the file timestamp is 
larger than all of the recorded fluid administration, we conclude that the waveform records physiologic signals after 
fluid is given. Since our primary focus is to predict volume responsiveness prior to fluid administration, those files 
will be discarded because they will not contain important information about the patient before fluid time. Similarly, 
we compare waveform start time and end time with fluid time. We are interested in the waveform information from 
eight hours prior to fluid time to two hours prior, or [t-8, t-2], where t denotes time of fluid administration, t-fluid. If 
there is no intersection between waveform record time and the six-hour window, [t-8, t-2], we excluded the waveform 
record. 

Feature Extraction 
Receiving the waveforms from previous steps, the third step is to perform statistical transformation. We identified 
more than 150 features that are highly relevant to our study. However, this comprehensive extraction takes, on average, 
90 minutes on a 11-hour-long waveform record. Thus, we trimmed feature space down to 73 so that the entire pipeline 
is more efficient. The complete list of features extracted is available on our GitHub repository. The extraction pipeline 
takes about 60 GB disk space, 150+ storage space, and more than 90 hours of run time despite all the intelligent 
construction aforementioned. Nevertheless, we estimate that we obtained a 3X speed up with the check mechanism 
and join in place. 
 
Waveform Data Imputation 
Finally, we performed MICE (Multivariate Imputation by Chained Equations)27 to fill the missing values. It has many 
advantages over single imputation methods, such as replacing missing values by mean or median. The MICE algorithm 
works by running multiple regression models and each missing value is modeled conditionally, depending on the 
remaining variables in the dataset. We applied the IterativeImputer function from the sklearn python library to impute 
waveform related data points to handle missingness.     
 
Integration with MIMIC-III 
From the MIMIC-III sub-schema, we extracted data about sepsis-3 patients who received fluid treatment at infusion 
rate greater than 500 ml/hour and whose vitals were recorded. In this focused dataset, there were 15,062 unique fluid 
events and 10,539 events where patients were responsive to fluid volume. After matching waveform extraction results 
with MIMIC-III database, we obtain 388 unique fluid event observations with vital signs and waveform records 
present. The integrated dataset has 274 features, including 219 waveform extracted characteristics, 48 vital signs, and 
7 patient demographics. Figure 2 summarizes all the steps in the data processing, extraction and integration schema. 
 
Models and Evaluation 
We evaluated multiple machine learning models to predict volume responsiveness in sepsis-3 patients and identify 
key indicators. Due to the limited sample size and interpretability concerns, we excluded recurrent neural networks 
and other deep learning models. Accuracy, AUC, and F1 score were used as evaluation criteria, and performance 
robustness and clinical interpretability were considered in the discussions with clinicians. 
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MIMIC-III data: We applied logistic regression, random forest and support vector machines (SVM).28 
15,062 patient data were split into 80% for training using 10-fold cross validation, and 20% for testing. The best 
versions of each were evaluated on the 20% holdout data. We eliminated SVM models based on poor AUC and further 
compared the logistic regression (LR) and random forest (RF) models systematically on reduced test datasets as 
follows. First, we removed one hour of data from all the patients in the test set, then predicted the outcome with the 
two models, LR and RF. Next, we removed another hour and compared the predictions. The aim was to assess the 
robustness of the two models with minimum data for early prediction and action. 

Adding waveform data: We compared random forest (RF), XGBoost, standard Logistic Regression (LR), 
Logistic Regression with L1 penalty and sparsity (LR with L1), and Support Vector Machines (SVM) with all features 
normalized using standard scaler available in scikit learn and 70-30 train-hold out split, and conducted 10-fold cross 
validation on an extensive hyperparameter space.  

Results 
Table 2 summarizes the demographic, comorbidities and vital signs data on 15,062 ICU patients that were included 
in our final analysis. 

                         Table 2. Descriptive summary  
Category Variable Mean (SD) Occurrence 

Demographics Sex = Male  58% 
Age 66 (16)  

Race = White  73% 
Comorbidities Metastatic cancer  51% 

Diabetes  29% 
Vitals Heart rate 90 (19)  

Systolic BP 106 (19)  

Diastolic BP 55 (12)  

Mean BP 70 (13)  

Respiration rate 19 (6)  

SPO2 97 (4)  

 
MIMIC-III data: The most robust model for volume responsiveness prediction with MIMIC-III structured data was 
the Random Forest model, with an AUC of 0.84 and accuracy of 78% (Table 3). Among the demographic variables, 
Age is the most significant factor. The logistic regression coefficient for this was significant and negative, suggesting 
that older patients are less responsive to fluid administration. Gender, race and comorbidities were not significant in 
both models. However, the master dataset patients are predominantly white and have no comorbidities. Hence, we 
cannot reject the importance of race and comorbidity in volume responsiveness prediction. The most significant 
variable in Random Forest was mean blood pressure and the logistic regression coefficient for this was significant and 
negative, suggesting that a patient with low mean blood pressure is less likely to not respond to volume compared to 
one with a higher mean blood pressure. 
 
Table 3. Prediction Results with MIMIC-III and Waveform data 

 Waveform EMR 
Model Accuracy (%) AUC Accuracy (%) AUC 

Random Forest 83 0.91 78 0.84 
XGBoost 86 0.85 69 0.64 

Logistic Regression 89 0.86 79 0.86 

Linear SVM 81 0.57 79 0.72 
SVM Ploynomial 3 80 0.57 77 0.65 
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Integration of waveform data: Inclusion 
of features extracted from the waveform 
resulted in a better overall accuracy. 
With Logistic Regression using L1 
sparsity feature selector, achieving an 
accuracy of 89% and an AUC of 0.86 
(Table 3). This model included 25 
features; 6 were vital signs related and 19 
were extracted from waveform. On the 
given metrics, accuracy, AUC, and F1, 
there is no strictly dominant model that 
has a clear advantage on all three 
performance measures. We performed 
simple robustness check with different 
random data sets and train-test splits. 
RandomForest, XGBoost and LR with 
L1 displayed steady performance on the 
test data, showing strong performance 
metrics across all test scenarios. Using 
interpretability as the determining factor, 

LR with L1 has clear advantages as it provides widely used, understandable interpretation for clinicians. Figure 3 
shows the ROC curve for the models. 
 
Lesion studies: To gain insight into what contributes to our model performance by lesioning components of it, we 
evaluated models with all but EKG lead II, plethysmography (PPG), or EKG lead V, respectively. The ROC curves 
in Figure 4 (a) show how performance is affected when different feature types are removed from the model. It is clear 
that without lead II information, the model performance deteriorates. Furthermore, among all three categories of 
waveform lead records, only lead II records have an impact on model performance. Removing lead PPG or lead V 
records provided incremental value for our scenario.  
 
Learning Curve: From the learning curve of the model in Figure 4 (b), we observe a reasonable improvement as 
training sample size increases. The model construction is able to quickly improve performance from the additional 
variation it observes from a marginally increased sample size. With only ⅓ of the original training set size, the model 
is able to generate reasonably good scores; and with half of the training set size, it achieves similar scores compared 
to utilizing the entire training data. 
 

 

 

  

Figure 4. (a) Lesion studies; (b) Learning curves with MIMIC-III+ Waveform Data  
 

 
Figure 3. ROC curve for competing models of Volume Responsiveness 
Prediction with MIMIC-III+ Waveform Data 
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Discussion and Conclusion 
 
Patients who develop sepsis-3 are in a vulnerable condition that requires extreme care and clinicians often consider 
fluid infusion as the first-line treatment. Studies have indicated that inappropriate fluid strategy can lead to severe 
adverse events, and it is imperative to develop a reliable prediction mechanism to identify patients who are responsive 
to fluid administration from those who are unresponsive. Our study utilized the MIMIC-III dataset which was 
integrated high-resolution matched waveform data, and applied multiple machine learning models using patient 
demographics, comorbidity data, vital signs, and waveform information as predictors.  
 
The top performing models in our study were those that included features from the waveform and are logistic 
regression and random forest, achieving AUC of 0.86 and 0.84, respectively. To determine a robust model, we 
considered potential clinical use cases, where clinicians may prefer a model with early prediction capability, easy 
interpretability and requiring less data points. For analysis with waveform data, a constrained logistic regression that 
uses L1 sparsity feature selector provides a robust, interpretable model with strong performance on accuracy and AUC. 
In terms of clinical interpretability, this model also provides clear indicators that waveform extracted features are 
beneficial in improving the prediction model, as there are 19 significant waveform features among the 25 features 
selected. These results demonstrate the benefits of integrating waveform records in assisting clinicians in 
determination of fluid management strategies for sepsis patients.  
 
Significant information was found within the EKG lead II waveform, pertaining to energy of the signal, standard 
deviation and autocorrelation of R-R intervals. The PPG signal did not significantly contribute to the predictive power 
of the algorithm, this could be due to a number of reasons. First, we considered only the peak-to-peak interval, and 
therefore exclude more dynamic and rich information that may be derived from amplitude or phase shifts. Secondly, 
we perform basic statistical feature extraction of the time-frequency and information theory domains, hence there may 
be an opportunity to improve the performance through feeding the raw signal into deep neural networks. 
 
This work has some limitations, hence additional studies are needed to better understand volume responsiveness, and 
better inform clinical practitioners. An important limitation is the inability to analyze the impact of race, comorbidity 
and laboratory results on sepsis-3 related volume responsiveness due to unavailability of the data in the data source. 
The MIMIC III sepsis-3 patients are disproportionately white with no reported comorbidities. Laboratory data was 
sparse and could not be included in the analysis. With access to a richer dataset, future research could build on this 
work and also explore interaction effects on volume responsiveness. All the relevant features for modeling different 
types of blood pressure, vital signs, demographic features, flags for metastatic cancer and diabetes within the schema 
that we developed are not restricted to the analysis of volume responsiveness prediction. It can also be applied to 
investigate and predict how body temperature and respiration rate changes within sepsis-3 prone patients admitted to 
ICU, tracking SOFA scores for patients suspected of sepsis-3 development, and analyzing the impact of laboratory 
values over the duration of ICU stay. 
 
In conclusion, this study applied the sepsis-3 definition to identify target patients, whereas most of the existing research 
has focused on dated sepsis-1 or sepsis-2 definitions. A complete schema was developed to identify sepsis-3 patients 
in MIMIC III database that can be leveraged by future researchers. We expanded the analysis to include patients’ 
complete ICU stay while prior research has been limited to only the first 24 hours of ICU stay. We constructed a 
pipeline to extract and transform features from waveform information into readable, organized form, developed 
models to predict fluid responsiveness in the subset of sepsis-3 patients, and validated the results across multiple time 
windows. The study also identified lead indicators (including vitals and demographic information) to consider when 
clinicians administer fluid for sepsis-3 patients, and integrated key waveform features with vitals and demographic 
information to develop a high performance prediction model. 
 
Assessing for volume status in a septic patient is both challenging and inexact at the point of initiation of a sepsis 
protocol and the current dose of 30cc/kg as a bolus requires further examination and validation as we acquire and try 
to merge mismatched and novel data streams. Developing a predictive capability to early identify poor responders 
would help clinicians confidently move from IV fluid boluses to the initiation of vasopressors to chemically assist 
blood vessels to provide oxygen to tissues. Future studies would also benefit from pre-hospital and emergency room 
administration of fluid boluses that are generally initiated prior to transfer to the ICU which would give a more 
complete picture for assessment. The integration of additional data points, including physiological10-17 and 
biomarkers29 may further improve the performance of the model.   
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