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Abstract 

In this paper, we developed a personalized anticoagulant treatment recommendation model for atrial fibrillation (AF) 

patients based on reinforcement learning (RL) and evaluated the effectiveness of the model in terms of short-term and 

long-term outcomes. The data used in our work were baseline and follow-up data of 8,540 AF patients with high risk 

of stroke, enrolled in the Chinese Atrial Fibrillation Registry (CAFR) study during 2011 to 2018. We found that in 

64.98% of patient visits, the anticoagulant treatment recommended by the RL model were concordant with the actual 

prescriptions of the clinicians. Model-concordant treatments were associated with less ischemic stroke and systemic 

embolism (SSE) event compared with non-concordant ones, but no significant difference on the occurrence rate of 

major bleeding. We also found that higher proportion of model-concordant treatments were associated with lower 

risk of death. Our approach identified several high-confidence rules, which were interpreted by clinical experts. 

Introduction 

Atrial fibrillation (AF) is a common cardiac arrhythmia in adults, affecting up to approximately 10 million in China1. 

AF is a risk factor for stroke/thromboembolism and death2,3, with an estimated 5-fold higher risk4. Warfarin is effective 

in preventing ischemic stroke (IS) in AF patients. However, major bleeding is not uncommon in patients treated with 

warfarin5. The efficacy and safety of non-vitamin K antagonist oral anticoagulants (NOACs) have been reported in 

clinical trials6, but NOACs are expensive. Therefore, treating patients precisely by identifying the right patients to be 

treated and choosing the right oral anticoagulation (OAC) agent is important to achieve the largest net benefit.  

The CHA2DS2-VA (CV) score (congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, prior stroke 

or thromboembolism, vascular disease and age 65-74 years) ranging from 0 to 8 has been widely recommended to 

identify the risk level of IS for AF patients7. The larger the CV score is, the higher risk of IS the patient has. For AF 

patients with CV score of 2 or greater, OAC is recommended by several clinical guidelines8,9. However, only 6%-8% 

of AF patients died from stroke10 but warfarin results in an annual major bleeding risk of 2%-5%11. It is still skeptical 

that the CV score may not precisely capture the risk of particular AF patients, and it might be unnecessary to treat all 

those patients. Thus, it is urgent to achieve personalized medication recommendation. Liu et al. proposed an outcome-

driven approach to identify a precise group of patients with low risk of IS and described their unique characteristics12.  

In complementary to the traditional machine learning (ML) models, reinforcement learning (RL) has the distinctive 

advantage of optimizing sequences of decisions by learning the best policy. With the explosive increase of electronic 

medical records (EMR), RL approach has been successfully applied in healthcare domain, specifically in treatment 

recommendation13-16. For example, Komorowski et al.14 aimed to reduce septic patients’ mortality by recommending 

personalized optimal dosage of intravenous fluids and vasopressors. They found that patients who received doses 

similar to the model recommendation had the lowest 90-day mortality. Phuong D. Ngo et al.15 proposed a RL model 

for optimal insulin injection policy in patients with type-1 diabetes. The result showed that the proposed methodology 

significantly reduced and successfully regulated the fluctuation of the blood glucose. Besides, there is an application 

to optimize the radiation therapy for cancer patients using Q-learning algorithm16. Inspired by these successful 

applications in treatment recommendation, we developed a personalized RL-based model to recommend anticoagulant 

therapy for AF patients and evaluated the effectiveness of the model in terms of short-term and long-term outcomes. 

The RL treatment model learned the policy from real-world data collected in the Registry study. The Chinese Atrial 

Fibrillation Registry (CAFR) study was initiated at 2011, and has enrolled more than 25,000 AF patients from 32 
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hospitals in Beijing. Data of patients’ demographics, symptoms and signs, results of physical examination and 

laboratory test, medical history, details of precious and current treatments at baseline, and follow-up every 6 months 

were collected. At every follow-up visit, symptoms and signs, the clinical events such as stroke and major bleeding, 

treatment condition and results of physical examination and laboratory test if any were collected. 

In this study, we proposed a method to recommend the personalized anticoagulant treatment for AF patients. First, we 

defined ischemic stroke and systemic embolism (SSE) and major bleeding events as short-term outcomes and death 

as long-term outcome for AF patients. Then we developed the RL model by designing the reward function and loss 

function based on AF expertise. The effectiveness of the model was demonstrated by lower incidence rate of SSE in 

patient visits with model-concordant prescriptions than those non-concordant. There was no significant difference on 

the occurrence rate of major bleeding. We also found that higher proportion of model-concordant treatments were 

associated with lower risk of death. Furthermore, to better interpret the RL model and assist clinicians in making 

treatment decisions, we built a decision tree to simulate the RL model recommendations. 

Method 

Figure 1 shows the pipeline of building anticoagulant treatment model for AF patients. We first selected samples from 

CAFR data that meet the inclusion criteria. At the model training stage, we formulated the reinforcement learning (RL) 

problem for AF treatment by carefully designing state, action, reward function and loss function based on the expertise 

of AF. Then we trained a RL model, which is a deep neural network17, from the selected data. The state was represented 

by the values of demographics, lab tests, vital signs, medical history and previous drugs of AF patients. The action 

was defined to simulate the actual prescription. The reward function was defined to assess the action in a given state 

according to CHA2DS2-VA score, treatment and clinical outcomes. The novelty also lied in the design of the loss 

function for model training, in which the loss consisted of the temporal difference (TD) loss, a regularization term and 

a supervised large margin classification loss. Specifically, the supervised loss enabled the algorithm to learn to imitate 

the clinician. After that, model-concordant was defined as the consistency between clinician’s actual prescription and 

model recommendation, and we evaluated the performance of the RL model in terms of short-term outcomes, i.e., 

SSE and major bleeding events and long-term outcome, i.e., death. To evaluate the short-term outcomes at patient-

visit level, the occurrence rates of SSE and major bleeding events were compared between the model-concordant 

treatments and the model-non-concordant treatments. To evaluate the long-term outcome at patient level, the 

relationship between patient’s model-concordant rate and the occurrence rate of the death was depicted. Finally, we 

interpreted the RL model by building a decision tree to classify visits labeled model actions. The decision tree can 

simulate the RL model approximatively and derive rules according to the tree structure. The rules with enough 

coverage and high confidence could be used to interpret the RL model and assist clinicians to make clinical decision. 

 

Figure 1. Pipeline of building anticoagulant treatment model for AF patients 

Data selection and clinical outcomes 

The purpose of this study is to assist clinicians to decide whether the AF patient truly need to been treated with oral 

anticoagulation. Both short-term and long-term clinical outcomes were taken into account. Short-term outcomes were 

evaluated at patient-visit level, including the occurrence rate of ischemic stroke and systemic embolism (SSE) event 

Data selection

CAFR data

Short-term outcomes Long-term outcome

Model evaluation

Reward function Loss function

Model training

State Action

Model interpretation

Simulation using decision tree Interpreting using rules
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and major bleeding event after 6 months’ therapy. Long-term outcome was evaluated at patient level, that is the 

occurrence rate of death in up to 8 years. 

In this study, the patient-visits of interest are those which had not been treated with radiofrequency ablation (RFA) 

and CHA2DS2-VA score is 2 or greater.  This is because RFA is associated with the reduction of the risk of stroke and 

mortality in AF patients18. To build and evaluate the RL treatment model, we deleted the visits without short-term 

outcomes. Finally, from the CAFR data, we identified 8,540 AF patients and 52,172 patient-visits that meet the 

selection criteria shown in Figure 2.  

 

Figure 2. Patient-visit selection criteria for anticoagulant treatment recommendation model 

Reinforcement Learning model 

Applying RL to the oral anticoagulant treatment problem of AF patients involves several elements. The first is to 

define the input of the treatment model (i.e., state) and the treatment options (i.e., action). Next we describe how we 

quantify the effectiveness of applying an action for a given state (i.e., reward). Finally, we describe how to design our 

model architecture and loss function for training the model. 

1) State 

For each patient visit, the clinical conditions included demographics, lab values, vital signs, medical history and 

previous drugs. We applied Z-score standardization for continuous variables, performed one-hot transformation for 

categorical variables, and kept binary variables unchanged. After the standardization and transformation, all values 

were rescaled into [-1,1], and we had a state of a 31 × 1 feature vector for each patient-visit, denoted as st. Note that 

the last visit of a patient was not used for model training because it did not associated with the outcomes. 

2) Action 

We focused on two types of drugs: warfarin and non-vitamin K oral anticoagulants (NOACs). Thus, we defined three 

actions: 0 represented no drug, 1 represented warfarin and 2 represented NOAC. 

3) Reward 

The reward function was clinically oriented and defined based on the expertise of AF. We considered the CHA2DS2-

VA (CV) score, treatment, and the outcomes that indicate a patient’s health status. The CV score not only identified 

the risk of IS, but also reflected the risk of bleeding to some extent. According to expert advice and related work19, the 

CV score was stratified as shown in Table 1. For the last follow-up of a patient, if death is reported, a negative reward 

(i.e. penalty, -20) is given; Otherwise, a positive reward (i.e., 20) is given. For other available visits, Table 1 showed 

the reward values in detail. The reward function is defined based on the following principles. First, when SSE occurs, 

anticoagulant therapy is considered insufficient. Therefore, action of anticoagulation is given a positive reward, while 

no anticoagulation is given a negative reward; When major bleeding occurs, anticoagulant therapy is considered 

beyond the patient's tolerance. So, anticoagulation is given a negative reward while no anticoagulation is given a 

positive reward; when no SSE or major bleeding occurs, a positive reward is given no matter what the treatment is. 

Second, the higher the CV score is, the more necessary anticoagulant therapy is considered. For example, in Table 1, 

when the treatment is “anticoagulation” and the outcome is “SSE occurs”, the value of the reward increases with the 

CV score. Third, the occurrence of either SSE or major bleeding is the severe event for AF patients, so the absolute 

value of their reward is higher than that of no occurrence. After defining the relative relationship between reward 

values according to the principles above, we determined the values in Table 1 by experiments. Specifically, we set the 

minimum value as 1, adjusted other values, and selected the value combination that lead to good model convergence. 

CAFR data

(N=154,496 visits)

Available samples

(N=52,172 visits)

Exclusion of 69,528 after RFA treatment  

Exclusion of 12,233 without short-term outcomes

Exclusion of 20,563 with CHA2DS2-VA less than 2
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Table 1. Reward of non-last follow-up 

Treatment Outcome 
CHA2DS2-VA score 

=2 3-4 ≥5 

Anticoagulation 

SSE occurs 4 5 6 

Major bleeding occurs -6 -6 -6 

No occurs 3 4 5 

No 

anticoagulation 

SSE occurs -7 -6 -6 

Major bleeding occurs 4 3 2 

No occurs 3 2 1 

 

4) Model architecture 

To learn treatment policies, we used a reinforcement learning model which is a variant of Deep Q Networks (DQN)17, 

called Prioritized Dueling Double DQN (PDD DQN)20-22. DQN gets a state vector as input and a Q vector of action 

values as output. The Q vector is the evaluation of all 3 actions’ effects on patients’ status and is calculated by a deep 

neural network (DNN) for a given state and all actions. However, as discussed in related work20, using the same values 

both to select and evaluate an action can lead to overestimate the Q-values. To mitigate this problem, Double DQN 

(DDQN) uses the main network to determine the max Q values and the corresponding action, and then uses the target 

network to estimate the target Q-values20. When evaluating the effectiveness of a treatment, we model the influence 

from state and action on Q-values separately. So we use a Dueling Q Network where the function Q(s, a) is split into 

two streams, value and advantage21. The value represents the quality of a patient-visit’s underlying state and the 

advantage represents the quality of the action being taken at that time-step. In addition, we use Prioritized Experience 

Replay (PER) to accelerate learning and improve the final policy quality by sampling the input data according to the 

samples’ weight, which measured by their temporal-difference errors22. Our final PDD DQN network architecture has 

two hidden layers of 128 units with the batch normalization for main network and target network. The learning rate is 

0.001 and the batch size is 128. 

5) Loss function 

The loss function is given in Equation (1), which consists of three terms. The first term is the temporal difference (TD) 

loss between the output Q of the network and the desired target Q. The traditional DQN optimizes the network 

parameters to minimize this TD loss. In addition to TD loss, we added a regularization term and a supervised large 

margin classification loss. The regularization term penalizes the output Q-values that differ significantly from the 

predefine threshold (Qthre = 20), in order to learn a more appropriate Q-function. The supervised loss forces the values 

of clinician’s actual action higher than the value of the other actions by a predefined margin23. The novelty is that we 

apply the value of the clinician’s action and adjust the value of other actions. The supervised loss enables the algorithm 

to learn the model that imitates the clinician, while the TD loss ensures that the network satisfies the Bellman equation17 

(Equation (2)) and the reinforcement learning framework can be leveraged.  

𝐿(𝜃) = [(𝑄𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑄(𝑠, 𝑎; 𝜃))
2

] + [𝜆 ∙ 𝑚𝑎𝑥(|𝑄(𝑠, 𝑎; 𝜃)| − 𝑄𝑡ℎ𝑟𝑒 , 0)]

+ [max(𝑄(𝑠, 𝑎; 𝜃) + 𝑙(𝑎𝑐 , 𝑎)) − 𝑄(𝑠, 𝑎𝑐; 𝜃)] 
(1) 

𝑄𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟 + 𝛾𝑄𝑡𝑎𝑟𝑔𝑒𝑡(𝑠′, arg 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′; 𝜃); 𝜃′) (2) 

where 𝜃 are the parameters of the main network and 𝜃′ are the parameters of the target network, 𝑎𝑐 is the action the 

clinician took in state s and 𝑙(𝑎𝑐 , 𝑎) is a margin function that is 0 when 𝑎 = 𝑎𝑐 and positive value otherwise. 

Statistical analyses for model evaluation 

To evaluate the short-term outcomes, model-concordant was regarded as the exposure factor24, which is determined 

by whether the clinician’s actual prescription is concordant to the RL model recommended medication at patient-visit 

level. The occurrence rates of short-term outcomes were compared between the model-concordant treatments and the 

model-non-concordant treatments via chi-square test. To adjust the key confounder, we stratified the CHA2DS2-VA 

score into: 2, 3-4 and ≥519, since both medical history and age are considered into the score. Furthermore, we stratified 

the patient visits according to the model action to evaluate the model performance. 
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To evaluate the long-term outcome, we performed it at patient level. First, the patient’s model-concordant rate was 

calculated as the ratio between the number of model-concordant visits and the total number of visits. Then the patients 

were divided into different groups by applying the bin with size 0.2 on the patient’s model-concordant rate, and the 

occurrence rate of death was computed in each group. Finally, the relationship between patient’s model-concordant 

rate and the occurrence rate of the long-term outcome can be illustrated. A test for linear trend was conducted using 

Cochran-Armitage test. For all tests, a P value < 0.05 was considered statistically significant. 

Group characterization for model interpretation 

After obtaining the recommended treatment, our interest is to identify the characteristics of each group stratified by 

the action recommended by the RL model and understand the difference between groups. We addressed this by using 

CART to build a decision tree, which classify visits into model actions. To compare with the CHA2DS2-VA score, the 

candidate features just included the risk factors of CV score and previous anticoagulant drugs. To avoid overfitting of 

the decision tree, we used a parameter representing the minimum number of samples at a leaf node (min_samples_leaf) 

to constrain the tree construction. To interpret the RL model, we further derived the explicit rules from the decision 

tree. Finally, the coverage and confidence of the rule were assessed quantitatively, where the coverage of a rule is the 

number of samples in the corresponding leaf node and the confidence of the rule is the accuracy at that leaf node.  The 

rules with enough coverage and high confidence would assist clinicians to make informed clinical decision.  

Result 

Data Set 

We used baseline and follow-up data enrolled in CAFR study during 2011 to 2018 to build our RL model. In total, 

there were 52,172 visits with the diagnosis as AF, corresponding to 8,540 unique patients. Baseline characteristics of 

these patients were listed in Table 2. The average age of the patients was 71.57±8.89 with 46.4% female. The median 

CHA2DS2-VA score was 3 (IQR, 2-4). Specifically, patients were followed up every 6 months consecutively, and data 

of symptoms and signs, physical examination and laboratory test results, treatments and the clinical events were 

collected. The mean follow-up time was 2.72±1.84 years and the median number of follow-up visits was 5 (IQR, 2-

8), in spite of different enrolled time. Table 3 shows characteristics for all patients’ visits and three groups according 

to clinician’s prescription. It was found that the occurrence rate of SSE for NOAC group was higher than the other 

two groups, probably because the clinical status of the patients were worse in these visits. As we discovered, the 

median age of NOAC group was more than 75 years old, while the median age of warfarin group was less than 75. 

Moreover, there were more visits with CV score of  ≥ 5 in NOAC group than in warfarin group (24.69% vs 21.80%). 

Table 2. Baseline characteristics of all patients 

Characteristics 
Overall  

(N=8,540) 
Characteristics 

Overall  

(N=8,540) 

Age,years (Mean±SD) 71.57±8.89 Heart Rate, bmp (Mean±SD) 80.74±20.29 

Age≥75 3661 (42.9%) BMI (Mean±SD) 25.27±3.69 

Age 65-74 3383 (39.6%) Heart Failure 2155 (25.2%) 

Age<65 1496 (17.5%) SSE 1993 (23.3%) 

Female Gender 3961 (46.4%) Major bleeding 236 (2.8%) 

CHA2DS2-VA score   Vascular Disease 2095 (24.5%) 

(Median [IQR]) 3 [2,4] Hypertension 6742 (78.9%) 

2 2944 (34.5%) Diabetes 2746 (32.2%) 

3-4 3871 (45.3%) Beta Blocker 4737 (55.5%) 

≥5 1725 (20.2%) ACEI/ARB 153 (1.8%) 

AST>50U/L 289 (3.4%) Statin 166 (1.9%) 

ALT>40U/L 668 (7.8%) Follow-up, year (Mean±SD) 2.72±1.84 

eGFR<60 mL/min/1.73m2 1617 (18.9%) number (Median [IQR]) 5 [2,8] 

* Values for continuous variables given as mean ± standard deviation or median [interquartile range]; for categorical 

variables, as count (percentage). Abbreviations and definitions: AST, aspartate aminotransferase; ALT, alanine 

aminotransferase; eGFR, estimated glomerular filtration rate; BMI, body mass index; ACEI, angiotensin converting 

enzyme inhibitors; ARB, angiotensin receptor blocker.  
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Table 3. Characteristics for all patients’ visits and three groups according to clinician’s prescription 

Clinician’s 

prescription 

Visit 

number 

Age, years 

(Median [IQR]) 

CHA2DS2-VA 

score ≥ 5 (n(%)) 

Count of 

SSE 

Occurrence 

rate of SSE 

Count of 

major 

bleeding 

Occurrence 

rate of major 

bleeding 

No drug 32,524 75 [68,80] 7,669 (23.58%) 463 1.42% 90 0.28% 

Warfarin 17,424 74 [67,78] 3,798 (21.80%) 197 1.13% 178 1.02% 

NOAC 2,224 76 [70,80] 549 (24.69%) 45 2.02% 20 0.90% 

Overall 52,172 74 [68,79] 12,016 (23.03%) 705 1.35% 288 0.55% 

 

Medication patterns 

We found that in 64.98% of patient visits, the anticoagulant treatments recommended by the developed RL model 

were concordant with the actual prescriptions of the clinicians. As depicted in Figure 3, the medication patterns of 

clinicians’ prescriptions and model recommendations were visualized by a 2-D histogram, in which the x axis 

represents the medication patterns prescribed by clinicians and y axis represents the medication patterns recommended 

by RL model (value 0 indicates no OAC, value 1 indicates warfarin, and value 2 indicates NOAC). The color indicates 

the usage number of corresponding medication patterns. The number on the diagonal indicates the number of model-

concordant visits in which the actual prescription of the clinician was the same as model-recommended medication. 

There were 11,123 visits with warfarin and 2,565 visits with NOAC recommended by the RL model, but actually in 

these visits the patients were not treated with any OAC by clinicians. Similarly, there were 2,812 visits with warfarin 

and 658 visits with NOAC prescribed by clinicians, but our model recommended no anticoagulation. Table 4 showed 

the distribution of medication patterns between clinicians’ prescriptions and model recommendations. We found that 

in most of patient visits (62.34%) clinicians did not prescribe any OAC, while in 42.75% of visits our model did not 

recommend any OAC. The model recommendations preferred to use warfarin, and the percentage of warfarin 

recommended by our RL model was higher than that prescribed by clinicians.  

 

Figure 3. Medication pattern comparison between clinicians’ prescriptions and model recommendations.  

Table 4. The distribution of medication patterns between clinicians’ prescriptions and model recommendations. 

Action Description 
Model recommendation Clinician prescription 

Number Ratio Number Ratio 

0 No drug 22,306 42.75% 32,524 62.34% 

1 Warfarin 25,678 49.22% 17,424 33.40% 

2 NOAC 4,188 8.03% 2,224 4.26% 

Overall 52,172 100% 52,172 100.00% 

 

Since the number of using NOAC is quite small in both clinician’s prescription and model recommendation, we 

combined it with warfarin as “Drug” group. As shown in Table 5, the percentage of using anticoagulation drug were 

similar among the three groups stratified by CV score in clinicians’ prescriptions, while the percentage of using 
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anticoagulation drug increased with the CV score obviously in model recommendations. Specifically, in the groups 

of visits with CV score ≥ 5, the OAC-using rate (88.02%) in model recommendations was much higher than that 

(36.18%) in clinicians’ prescriptions. As is known that more anticoagulation treatments for the patients with CV score 

≥ 5 may lead to good clinical outcome. In other words, the higher the CV score, the more anticoagulant treatment 

recommended by model, which is consistent with clinical experience. 

Table 5. Comparison between model recommendations and clinicians’ prescriptions stratified by CHA2DS2-VA 

CHA2DS2-VA Total number 
Model recommendations Clinicians’ prescriptions 

No drug Drug No drug Drug 

2 14,761 10,248 (69.43%) 4,513(30.57%) 9,477 (64.20%) 5,284(35.80%) 

3-4 25,395 10,618(41.81%) 14,777(58.19%) 15,378(60.56%) 10,017(39.44%) 

≥5 12,016 1,440(11.98%) 10,576(88.02%) 7,669(63.82%) 4,347(36.18%) 

Overall 52,172 22,306(42.75%) 29,866(57.25%) 32,524(62.34%) 19,648(37.66%) 

 

Short-term outcomes at patient-visit level 

We evaluated the short-term outcomes at patient-visit level. First, we partitioned the patient visits into model-

concordant group and model-non-concordant group. Then the short-term clinical outcomes were compared between 

the two groups in terms of SSE event and major bleeding event, namely the percentages of patient visits with the 

events. The evaluation results of short-term outcomes were shown in Table 6. Among all the samples, 33,903 visits 

(64.98%) were model-concordant and 18,269 (35.02%) were non-concordant, and the model-concordant treatments 

were associated with less SSE event compared with non-concordant ones. We further stratified the patient visits by 

CHA2DS2-VA score, which was the confounder that was most strongly correlated to the clinical outcome. For visit 

group with CV score of 2, the model-concordant treatments were associated with improved occurrence rate of both 

SSE and major bleeding events. For visits with CV score of 3 to 4, the result was similar with all visits. For visits with 

CV score of 5 or greater, the model-concordant treatments were associated with reduced occurrence rate of SSE event 

but with increased occurrence rate of major bleeding event. However, the amplitude of reduced rate (1.04%) was 

greater than the increased rate (0.43%). 

Table 6. Short-term clinical outcomes comparison between model-concordant and model-non-concordant groups 

stratified by CHA2DS2-VA 

CHA2DS2-

VA 

Model-

concordant 
Total 

SSE event Major bleeding event 

Count of 

occurrence 

Occurrence 

rate 

Diff of 

rate 
P-value 

Count of 

occurrence 

Occurrenc

e rate 

Diff of 

rate 
P-value 

2 
Yes 11,187 60 0.54% 

-0.52% 
<0.01    

** 

42 0.38% 
-0.52% 

<0.001 

*** NO 3,574 38 1.06% 32 0.90% 

3-4 
Yes 17,436 193 1.11% 

-0.61% 
<0.001 

*** 

110 0.63% 
0.19% 0.0742 

NO 7,959 137 1.72% 35 0.44% 

≥5 
Yes 5,280 91 1.72% 

-1.04% 
<0.001 

*** 

43 0.81% 
0.42% 

<0.01    

** NO 6,736 186 2.76% 26 0.39% 

Overall 
Yes 33,903 344 1.01% 

-0.97% 
<0.001 

*** 

195 0.58% 
0.07% 0.3627 

NO 18,269 361 1.98% 93 0.51% 

 

To further evaluate the effectiveness of the RL model, we stratified the patient visits by model actions. Similarly, 

model-concordant was regarded as the exposure factor in each group. As shown in Table 7, in each group of the model 

action, the occurrence rate of SSE event for model-concordant treatments was lower than that for model-non-

concordant treatments, and the reduction in “1:warfarin” group is significant. Specifically, in “1:warfarin” group, the 

amplitude of reduced rate in SSE event is greater than the increased rate in major bleeding event. In “0:noDrug” group, 

the model-concordant treatments were associated with reduced occurrence rate of major bleeding event compared 

with the model-non-concordant ones. It was noticeable that there was no significant difference in “2:NOAC” group 

since the sample number was quite small. 
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Table 7. Short-term clinical outcomes comparison between model-concordant and model-non-concordant groups 

stratified by model action 

Model 

action 

Model-

concordant 
Total 

SSE event Major bleeding event 

Count of 

occurrence 

Occurrence 

rate 

Diff of 

rate 
P-value 

Count of 

occurrence 

Occurrence 

rate 

Diff of 

rate 
P-value 

0:   

noDrug 

Yes 18,836 169 0.90% 
-0.22% 0.2377  

52 0.28% 
-0.87% 

<0.001 

***    NO 3,470 39 1.12% 40 1.15% 

1: 

warfarin 

Yes 14,028 156 1.11% 
-1.06% 

<0.001 

***   

135 0.96% 
0.61% 

<0.001 

***    NO 11,650 253 2.17% 41 0.35% 

2:   

NOAC 

Yes 1,039 19 1.83% 
-0.36% 0.5608  

8 0.77% 
0.39% 0.1878  

NO 3,149 69 2.19% 12 0.38% 

Overall 
Yes 33,903 344 1.01% 

-0.97% 
<0.001 

***   

195 0.58% 
0.07% 0.3627  

NO 18,269 361 1.98% 93 0.51% 

Long-term outcome at patient level 

We evaluated the long-term outcome of death at patient level. For each patient, we first computed the patient’s model-

concordant rate by dividing the number of model concordant visits by the total number of visits. In order to ensure the 

rationality of the result, we selected the patients with follow-up time ≥1 year. Then, the patients were divided into 

different groups according to the patient’s model-concordant rate (e.g. every 20% as a group), and the occurrence rate 

of death in each group was computed. Figure 4 illustrated the relationship between patient’s model-concordant rate 

and the occurrence rate of death outcome. The number next to the red dot indicated the total number of patients with 

corresponding model-concordant range. It can be found that the curves were downwards trending (p for trend < 0.001). 

In other words, the higher the patient’s model-concordant rate was, the lower the occurrence rate of death was. For 

model-concordant rate between 0 and 0.2, there were 1360 patients, among which 322 patients died. In the 322 died 

patients, 262 (81.4%) were not treated with OAC by clinicians, but only 6 (1.9%) were not recommended with 

anticoagulation by the RL model in all their visits. On the contrary, for model-concordant rate between 0.8 and 1.0, 

there were 2984 patients, among which 163 patients died. In the 163 died patients, 67 patients (41.1%) were not treated 

with OAC by clinicians and 50 (30.7%) were not recommended with anticoagulation by the RL model.   

 

Figure 4. The relationship between patient’s model-concordant rate and the occurrence rate of death 

Group characterization results 

As mentioned above, the RL model preferred to recommend anticoagulation in visits with CHA2DS2-VA score of 5 

or greater, but it is relatively ambiguous for other visits. In order to suggest clinically interpretable treatment strategies 

learned by our model, we built a decision tree model to generate rules for visits with CV score of 2 to 4. The decision 

tree achieved a classification accuracy of 80%. As listed in Table 8, several rules with enough coverage and high 

confidence (all above 90%) were derived, which could be used to interpret when the RL model recommended 

anticoagulation or when not. In summary, these rules cover 13,876 visits (35%) out of a total sample size of 40,156, 

and 4,923 visits (12%) were not recommended anticoagulant treatment. Another rule with confidence of 70% was to 

be noticeable: if OAC not used, age≥75 and with HF, then anticoagulation was recommended by RL model. This 

represented that the RL model might have learned when to change the prescription. 

P<0.001
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Table 8. Rules to characterize the visits with CHA2DS2-VA score of 2 to 4 

index Conditions 
Model 

recommendation 
Coverage Confidence 

1 
OAC not used, age≥65, no HF, no prior stroke/TIA/TE, no 

hypertension, no VD 
Not on 

anticoagulation 

2,368 93% 

2 OAC not used, age<65, no HF, no prior stroke/TIA/TE 2,257 93% 

3 
OAC not used, age65-74, no HF, no prior stroke/TIA/TE, no 

hypertension, with VD, no DM 
298 92% 

4 OAC used, age≥75, no prior stroke/TIA/TE 

On anticoagulation 

5,467 92% 

5 OAC used, age≥65, with prior stroke/TIA/TE 1,740 99% 

6 OAC used, age65-74, with HF, no prior stroke/TIA/TE 844 96% 

7 
OAC used, age65-74, no HF, no prior stroke/TIA/TE, with 

hypertension, with VD, no DM 
302 92% 

8 
OAC used, age65-74, no HF, no prior stroke/TIA/TE, with VD, 

with DM 
250 97% 

9 OAC used, age<65, with HF, with prior stroke/TIA/TE 214 93% 

10 OAC used, age<65, with HF, no prior stroke/TIA/TE, with VD 136 95% 

Total 13,876 93% 

*“OAC not used” means that OAC was not in clinician’s prescription in last visit. Abbreviations: HF, heart failure; 

TIA, transient ischemic attack; TE, thromboembolism; VD, vascular disease; DM, diabetes mellitus. 

Discussion 

In this study, we proposed a reinforcement learning model to recommend the personalized anticoagulant treatment for 

AF patients. The strengths of this study are twofold. First, the CAFR data used for model training and evaluation is of 

good quality. It covers a long follow-up time span of 8 years and consists of AF patients’ demographics, symptoms 

and signs, physical examination and laboratory test, medical history, treatments and clinical events. Second, the 

novelties of method include RL model training in terms of state, action, reward function and especially loss function, 

model evaluation at patient-visit level and patient level respectively, and finally the group characterization to interpret 

the model. 

The limitation of the current work is that the number of patients received NOACs therapy and the time of follow up 

after the initiation of NOACs are limited as these agents are expensive and not covered by medical insurance until 

recently. Therefore, we combined NOACs as a category rather than individual agents. When more data are 

accumulated with longer time span, we can update the treatment model and form rules interpreting when to prescribe 

NOAC, even which type of NOAC. Another limitation is that we evaluated long-term outcome by the relationship 

between patient’s model-concordant rate and the occurrence rate of the long-term outcome without adjusting 

confounding factors. The cox model can be applied with more comprehensive evaluation. 

Our approach was tested with AF patients’ data. The method can be applied to treatment of other chronic diseases by 

designing state, action and reward function. 

Conclusion 

In this paper, we proposed a reinforcement learning model to recommend the personalized anticoagulant treatment for 

AF patients and attempted to interpret the model by group characterization. We demonstrated that the proposed RL 

model can lead to better expected short-term and long-term outcomes and identified several high-confidence rules, 

which were interpreted by clinical experts. The data used in our work were baseline and follow up data of 8,540 AF 

patients, enrolled in the CAFR study during 2011 to 2018. While much further study is required to truly mine rules, 

the proposed method represents a novel approach to take advantage of the strengths of different treatment policies. 
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