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Abstract

Physicians collect data in patient encounters that they use to diagnose patients. This process can fail if the needed
data is not collected or if physicians fail to interpret the data. Previous work in orofacial pain (OFP) has automated
diagnosis from encounter notes and pre-encounter diagnoses questionnaires, however they do not address how vari-
ables are selected and how to scale the number of diagnoses. With a domain expert we extract a dataset of 451 cases
from patient notes. We examine the performance of various machine learning (ML) approaches and compare with a
simplified model that captures the diagnostic process followed by the expert. Our experiments show that the methods
are adequate to making data-driven diagnoses predictions for 5 diagnoses and we discuss the lessons learned to scale
the number of diagnoses and cases as to allow for an actual implementation in an OFP clinic.

1 Introduction

Diagnoses are one of the decisions physicians routinely make when encountering patients. Prior to an encounter
with the physician, patients complete pre-encounter questionnaires with information on their medical history and
a review of systems. To make decisions, physicians examine the answers provided in the questionnaires and any
other available ancillary information, e.g., radiographic images or notes from a previous encounter as depicted in
Figure 1. Physicians then make hypotheses on possible diagnoses and collect additional information asking questions
or examining the patient, or prescribing tests to corroborate their hypothesis. This process requires both domain
knowledge and expertise to avoid misdiagnosis. Expert physicians are more likely to carry out the process efficiently,
e.g., without prescribing unnecessary tests, and they will converge quickly to make the correct decisions. To diagnose
correctly, expert clinicians learn and retain a relatively large list of variables that define a wide variety of diagnoses.
This is an imperfect process and failure to collect the needed data or failure to recognize the meaning of the collected
data is not uncommon. In addition, novice physicians, e.g., physicians in training and non specialists, are at greater
risk of making inefficient and/or incorrect decisions and these risks increase with uncommon diseases1. Moreover,
novice physicians either lack the necessary diagnostic and note taking skills, or generic interview practice fails to
capture the discriminative features for specific diagnoses. The notes taken by novices may not contain the information
needed for making the correct diagnoses or if the information is present it is not understood.

One practical application of the predictions is to present clinicians with a set of diagnosis that they can validate or reject
during a patient encounter. This could be achieved creating a patient facing questionnaire that will become a useful
diagnostic adjunct. This would allow faster diagnosis times with potentially fewer misdiagnoses as long as the system
performs equally or better than a typical clinician. In particular we believe that for clinicians in training automated
diagnoses would be extremely valuable and that is our primary driving motivation with this work, since the system
uses features (signs and symptoms) to narrow the number of possible conditions or diagnoses under consideration.
A secondary clinical end point of the system would be to allow triaging incoming patients which would increase
efficiency at a clinic and lower the burden on clinical resources, as long as the accuracy is sufficient compared to
the information gathering process and decision making that would be needed. Furthermore ML approaches in these
applications will allow us to select the most relevant features to use making the predictions, e.g., as a pedagogical tool
for clinicians in training or as a set of features to focus the patient encounter on.

In this paper we are interested in the feasibility of automating the diagnosis of patients attending an orofacial pain
(OFP) clinic who present with a variety of pain, headache and temporomandibular disorders. For this we want to
augment the patient information of Figure 1 with a pre-encounter diagnoses questionnaire that is scored automatically.
Most related work aimed at making OFP diagnostic prediction is on relatively small datasets and considers few diag-
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Figure 1: Clinical decision making process following patient encounters, and diagnoses automation using a patient
filled pre-encounter diagnoses questionnaire (shown in blue).

noses. These works either rely on patient notes which may fail because the discriminative variables are not recorded,
or validated questionnaires that are prototyped based on expert opinion and which may omit other important variables
and do not scale to the set of diagnoses that are needed for practical use in an OFP clinic. Therefore, our focus is on
the process of generating data-driven patient questionnaires built on existing questionnaires and interview notes and
that can be used to automate the diagnoses of orofacial pain disorders. For this we worked with an OFP expert at
an OFP specialty clinic to build a suitable dataset and identify the relevant variables from recorded case notes. Our
immediate goal is to examine the feasibility of automating and scaling the diagnosis process using supervised learning.
While building the dataset we captured the expert thought process into a simplified expert model that we formalized
and dubbed the High Frequency Value (HFV) model. We report on the performance of machine learning (ML) ap-
proaches and the simplified expert model and discuss the lessons learned on how to scale the number of diagnoses.
While this work focuses on the automated diagnoses for OFP it is also of interest to other medical applications where
pre-encounter questionnaires can be administered. The model predictions have in fact the potential to help physicians
improve clinical outcomes by minimizing misdiagnoses through more efficient patient interviews with improved note
taking.

The remainder of the paper is organized as follows: in Section 2 we discuss the related work. The dataset is presented
in Section 3, Section 4 presents the methods used to create and validate the dataset. Results are presented in Section 5.
Finally, in Section 6 we conclude the paper.

2 Related Work

Patient questionnaires are a prime source of information to physicians and this is especially so in a pain clinic. Some
medical questionnaires are statistically validated for a target population. The PROMIS R©Patient-Reported Outcomes
Measurement Information System2 and consists of a set of person-centered measures that evaluates and monitors
physical, mental, and social health in adults and children, can be used with the general population and with individuals
living with chronic conditions. While PROMIS R©scores have been used to improve performance status assessment in
cancer medicine3 and to predict postoperative outcomes4 their use to achieve an automated diagnosis remains limited.
PROMIS short forms5 is an example of statistical questionnaires approach to select a small set of questions that
are best understood and most predictive and remain a clinical standard. Statistically validated questionnaires such
as PROMIS R©quantify the severity of a given outcome and cannot be applied to making multiple decisions such as
diverging diagnoses.

With the increased use and availability of electronic health record (EHR) data, machine learning (ML) approaches have
been used extensively for making data-driven clinical predictions6, 7. EHR data may include, patient interview notes,
medical history, physical examination findings, imaging and laboratory test results. Several studies have used ML for
clinical predictions, e.g., for symptom severity in mental care8, to diagnose common headaches9 and predict fertility10.
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This work relies on traditional ML approaches (e.g., logistic regression, decision trees, support vector machine) that
are known to perform well on smaller datasets.

Specifically, in the area of orofacial pain, narrative notes where used to diagnose four types of headaches9 from a set
of 190 patients achieving accuracy levels greater than 90% concluding that if the data is sufficiently robust and the
classification targets are sufficiently distinct, ML methods can provide a level of accuracy acceptable for use in clinical
applications.

Several studies developed models to diagnose OFP from patient pre-interview questionnaires. McCartney et al. de-
veloped used a Neural Network (NN) to diagnose facial pain syndromes from patient’s self-assessment responses11.
Limonadi et al. used NN on a set of 143 patients to diagnose facial pain syndromes from a questionnaire with 18 bi-
nomial (yes/no) questions, obtaining good results on some of the 7 diagnoses that were considered12. In other clinical
applications, where large datasets are available, NN approaches have been shown to be successful, e.g., to predict op-
timal treatment strategies13. While these works realize the potential for pre-encounter diagnostic questionnaires they
do not explore the process of selecting discriminative variables and how to scale beyond a limited set of diagnoses.

In this paper we specifically focus on using traditional supervised machine learning approaches as we build an OFP
dataset for evaluation. The dataset we create is described in Section 3. Section 4 provides details on how we used a
high frequency variable (HFV) algorithm to build the dataset and Section 5 presents the evaluation setup and results.

3 Dataset

The diagram of Figure 2 shows the process our OFP expert used to generate the OFP dataset that was ultimately used
in the experiments of Section 5. To create the dataset, experts reviewed existing electronic patient notes, and for each
case, extracted a set of features considered pertinent to the diagnoses based on domain knowledge and experience with
the relevant diagnoses. Specifically, the expert, co-author Clark, initially bootstrapped the dataset process with 50
cases by identifying based on experience important variables and attempting to classify with a simple heuristic based
on the features present. In parallel, to validate these 50 cases we have applied ML algorithms by training and testing on
the same full set. This in turn has lead to identifying errors (such as missed relevant variables) and variables not present
in the dataset which is typical in cases that get misclassified. We then iterated over this process expanding the dataset
while formalizing the clinician expertise into the HFV model. A second expert, co-author Vistoso, independently
extracted the features from the narrative notes and patient questionnaires and re-conciliated the feature set values
over the entire dataset development process. Finally, we applied ML on the complete 451 cases dataset generating
performance results including confusion matrices and examined cases that were misclassified leading to finding and
correcting few more errors in the dataset, the majority of which resulted from typos in the spreadsheet that was used
to create the dataset.

Figure 2: Conceptual model used to generate and model the OFP dataset. Blue segments show how existing note
taking protocols can be extended to include features used to improve the model performance. Ultimately, we aim at
building models using information gathered through dynamic questionnaires.
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The resulting dataset is formatted in the form of a dataframe14 as a table of rows, where each row corresponds to a
case with features and labeled diagnoses. Variables were extracted from the patient interview encounter notes as filled
by the physician and from the Medical History and Review of Systems questionnaires as filled by the patient. Notes
taken by the physician include patient interview notes and selected examination variables. For our dataset this work
was carried out manually, however applying natural language processing techniques to notes, that are usually captured
as unstructured text, might allow us to automate this step. Throughout, we have tried to capture the expert thought
process and found it to include the following steps for each case: (1) identify and reconfigure relevant diagnoses that
could be achieved from patient input, (2) identify based on experience, the relevant variables that can be extracted
from the notes, (3) wherever possible, make the extracted variables dichotomous (e.g., 1 if present and 0 if absent),
(4) verify which variables are most prevalent (e.g., highest frequency) in all the cases where a given diagnosis occurs
and (5) when a sufficient number of cases is available, classify the cases based on a similarity metric relating to the
relative frequency of variables and diagnoses. To better capture this process and validate that it is sufficient for creating
a robust dataset, we have implemented a simplified algorithm that proceeds according to steps 1-5 above. We have
named the resulting algorithm the high frequency variable (HFV) algorithm and describe it in details in Section 4. The
expert incrementally and iteratively built the final dataset by working in a spreadsheet and using the HFV algorithm
for validation using the HFV computations described in Section 4. Our final dataset consisted of 451 cases: age range
from 8 to 93, mean age is 43.4 years and age standard deviation is 21.4, with 320 females (71%) and 131 males (29%).
We have considered 141 variables of which 138 are dichotomous, and 3 are continuous: age, pain severity on a discrete
scale [0, 10], and max mouth opening in millimeters. The features include 6 variables that were used to quantize the
continuous variables: age under 35, age over 59, pain severity lower or equal to 6, pain severity greater or equal to 8,
and opening less or equal to 35 mm. We have limited our experiments in Section 5 to the 5 diagnoses presented in
Table 1 for which the dataset has a sufficient number of positive samples. In the remainder of the paper we will refer
to these 5 diagnoses as d1, d3, d4, d5 and d7 as show in Table 1. Each case in the dataset can have any or all of the
diagnoses considered. Figure 2 shows the case counts for all possible combinations of the diagnoses considered, with
the other category corresponding to cases that have other diagnoses than the 5 considered.

Table 1: OFP diagnoses included in the experiment

Diagnosis description Freq. % Rel. Freq.
d1 Internal derangement (DDWR) / Internal derangement (eDDNR) 169 37.47
d3 Masticatory or Cervical Myalgia/ Myofascial Pain 282 62.53
d4 Arthromyalgia Combo / Capsulitis 198 43.90
d5 TMJ Osteoarthritis / Rheumatoid Arthritis 83 18.40
d7 Chronic Trigeminal Neuropathy / Neuritis (not BMS) 63 13.97

4 Methods

We represent the set of questionnaire answers as a data vector of features X = [X1, . . . , XN ] of size N , and formalize
the diagnostic problem as a classification task that takes as input a vector X and outputs a label y for each possible
diagnosis with y = [y1, . . . , yM ] of size M . In the formulation of the HFV algorithm we restrict vectors X and y to
contain binary values encoded as 0 and 1, i.e., Xi , yi ∈ 0, 1 where 0 and 1 correspond to a value that is absent or
present respectively. We assume K samples are available for training. In the following we describe the procedure for
scoring a set of M diagnoses y with our HFV approach.

HFV Algorithm. Let fij be the relative frequency of feature i and label (i.e., diagnosis) j. We compute fij over theK
training samples by counting the number of times the value of the feature corresponds to a positive label, i.e., feature
value and diagnosis have a value of 1, and normalize by the count of samples with a positive label:

fij =

∑K
k=1Xikyjk∑K
k=1 yjkyjk

We defined matrix of high frequency variables h of size M ×N where hij is 1 if the relative frequency fij of feature
i and label j is above a fixed threshold THF and 0 otherwise, i.e. hij = δT (fij), where the function δT = 1 if
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Figure 3: Dataset case counts by diagnoses combinations. “other” refers to diagnoses not considered in this study.

fij ≥ THF and δT = 0 otherwise. We then define the vector ri of size N as the count of HFV for feature i:

ri =

M∑
j=1

hij

, and a weight vector w = [w1, . . . , wN ] of size N with components wi = M
ri

if ri 6= 0 and wi = 0 otherwise.
With W the diagonal matrix of w, we define the weighted matrix H of size M × N as H = hW . For a given input
sample vector X = [x1, . . . , xN ] the score vector s = [s1, . . . , sM ] is given by s = HX . The ROC curve15 is used to
determine the optimal score threshold to classify. Finally, we can estimate the confidence of label j as:

cj =
sj∑N
i=1 wi

5 Experiments

For developing the dataset, we initially implemented the HFV method of Section 4 in a spreadsheet and subsequently
in python16 in order to compare with other ML approaches. We used Scikit-learn17 to implement and evaluate HFV,
Random Forest, SVM, Logit and k-NN classifiers. Due to the relatively small size we only use ML approaches.

Classification Methods. Several classification algorithms were used to categorize the diagnoses. Extracted dichoto-
mous features were labeled using a binary value (1 or 0 depending on whether the feature is present or absent) and used
for training. We evaluate using HFV, Random Forest, SVM, Logit (Logistic Regression), and k-NN classifiers using
scikit-learn17. Random Forest can be trained to classify labels one at the time or to classify all labels at once, i.e.,
multilabel classification, hence we examined both modalities. Combining classifiers was shown to improve perfor-
mance18. We therefore report performance measurements for different combinations of classifiers using two ensemble
methods: Average of Probabilities19 and Majority Voting20. The Average of Probabilities fusion method returns the
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Table 2: Classification performance for diagnoses d1, d3, d4, d5 and d7. RF: random forest, ml: multilabel, A:
accuracy, P: precision, R: recall, and F1: F1-score. Best performance is shown in bold.

A (%) P (%) R (%) F1

d1

HFV ml 95.56 94.15 93.18 0.94
RF ml 96.89 96.24 94.47 0.95
RF 96.22 95.02 93.83 0.94
Logit 96.00 95.93 92.76 0.94
SVM 96.89 97.38 93.83 0.95
k-NN 92.23 86.21 93.62 0.89

d3

HFV ml 84.03 91.17 82.24 0.85
RF ml 93.79 93.36 97.14 0.95
RF 93.57 93.80 96.32 0.95
Logit 93.34 93.83 96.04 0.95
SVM 95.34 94.95 98.21 0.96
k-NN 83.82 87.40 86.49 0.86

d4

HFV ml 82.02 77.58 86.52 0.81
RF ml 88.90 86.32 92.03 0.88
RF 87.79 85.95 90.65 0.87
Logit 88.91 86.31 91.52 0.88
SVM 89.56 85.20 96.22 0.89
k-NN 75.60 69.56 82.32 0.75

d5

HFV ml 95.78 89.32 89.42 0.89
RF ml 95.78 93.44 85.14 0.89
RF 96.22 93.57 87.43 0.90
Logit 88.91 86.31 91.52 0.88
SVM 95.34 92.46 83.32 0.87
k-NN 92.46 90.18 65.65 0.76

d7

HFV ml 86.05 52.40 81.96 0.62
RF ml 90.24 73.00 49.46 0.58
RF 90.90 75.05 52.99 0.60
Logit 90.02 67.50 54.99 0.60
SVM 90.24 73.10 46.27 0.56
k-NN 91.57 77.22 53.56 0.63

mean value of probabilities of multiple classifiers. The Majority Voting returns the class which gets the most votes
among multiple classifiers.

Parameter Tuning. Classification parameters were adjusted for best results. The HFV method used THF = 0.67,
i.e., we consider that a feature is a high value feature if it is positive for a positive diagnosis at least 2/3 of the time.
Random Forest classifiers used 100 estimators (number of trees). SVM classifier used a slack variable cost C = 1
with radial basis function kernel, and continuous variables were scaled using min-max scaling. Logit used a stochastic
average gradient SAG solver21. We used a K-fold cross validation with K = 5 and reported performance averaged
over the folds.

Results. Table 2 presents, for the five diagnoses listed in Table 1, the classification results of seven classifiers: HFV
multilabel, Random Forest multilabel, Random Forest, Logit, SVM, and k-NN. To make a fair comparison with the
HFV method that is not designed to deal with continuous variables, we have replaced the continuous variables with
corresponding quantized features as described in Section 3. Overall the accuracy ranges from 75.60% to 96.89%,
precision ranges from 52.40% to 97.38%, recall ranges from 46.27% to 98.21%, and F-1 score ranges from 0.56 to
0.96. Classification accuracy rates per diagnosis are in decreasing order: d1, d5, d3, d7 and d4. Best accuracy: d1
(RFml / SVM 96.89%), d3 (SVM 93.34%), d4 (SVM 89.56%), d5 (RF 96.22%) and d7 (k-NN 91.57%). Compared to
the best classifiers results, HFV achieves lower accuracy rates: d1 (-1.29%), d3 (-11.31%), d4 (-7.54%), d5 (-0.44%)
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Table 3: Single and combinations of classifiers performance (continuous variables included). RF: random forest,
ml: multilabel, RL: Random Forest and Logit, RS: Random Forest and SVM, Sk: SVM and k-NN, RSL: Random
Forest, SVM and Logit, ap: average of probabilities, mv: majority voting, A: accuracy, P: precision, R: recall, and F1:
F1-score. Best performance is shown in bold.

A (%) P (%) R (%) F1

d1

RF ml 96.45 97.38 92.76 0.95
Logit 95.78 95.93 92.35 0.94
SVM 97.11 98.04 93.83 0.96
RS mv 97.11 98.04 93.83 0.96
Sk mv 95.79 98.46 90.13 0.94
RSL mv 96.89 98.04 93.18 0.95

d3

RF ml 94.01 94.08 96.70 0.95
Logit 93.57 93.83 96.44 0.95
SVM 95.34 94.95 98.21 0.96
RL ap 93.57 93.83 96.44 0.95
RS mv 93.79 94.52 96.02 0.95
Sk mv 93.35 94.45 95.28 0.95

d4

RF ml 89.57 86.88 93.15 0.89
Logit 89.57 86.98 92.65 0.89
SVM 89.78 85.21 96.75 0.90
RL ap 88.68 85.88 93.15 0.88
RS mv 88.91 87.92 89.40 0.88
RSL mv 89.13 87.77 89.72 0.88

d5

RF ml 95.12 93.12 81.10 0.87
Logit 95.34 91.46 84.44 0.87
SVM 95.34 92.46 83.32 0.87
RL ap 95.56 92.63 84.44 0.88
RS mv 95.12 93.29 81.04 0.87
Sk mv 95.34 93.44 82.15 0.87

d7

RF ml 90.23 68.49 49.35 0.56
Logit 90.02 66.61 56.99 0.61
SVM 90.68 75.60 49.52 0.59
RL ap 90.90 72.17 59.10 0.64
RS mv 90.68 79.38 47.46 0.58
Sk mv 90.68 76.78 48.71 0.58

and d7 (-5.52%). Overall HFV accuracy ranges from 82.02% to 95.78%, which seems to indicate that HFV was
capable of capturing the expert decision making thought process and support the database building process. However,
as HFV was used to build and test the dataset we note that the database might be biased towards the HFV method.

We speculate that the lower HFV accuracy (82.02%) for the arthralgia diagnosis d4 was because this diagnosis had
almost the same set of features as diagnosis d3 (myalgia), making it very hard to distinguish. Additional features
are needed in the narrative note to better make this distinction or if they cannot be separated, highly overlapping
diagnoses might need to be combined. Diagnoses d7 (trigeminal neuropathic pain) was also more difficult to predict
and exhibited the lowest precision and accuracy levels. This diagnoses had the smallest relative positive diagnosis
frequency (13.97%). However, for diagnosis d7, we hypothesize that a critical defining variable (e.g., focal allodynia,
which is pain with non-painful stimulation) was not consistently captured in the narrative note but was needed for
this diagnosis. Careful examination of feature data and expertise in the domain, allows speculation regarding which
variables are missing. With this knowledge, we will need to amend the note-taking protocol and once new cases are
collected to assess our hypotheses.

Table 3 presents classification results for top single classifiers of Table 2 and the three top combinations of classifiers
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considering the continuous variables (age, pain severity and max mouth opening) and excluding the related quantized
features that were introduced to support the comparison with HFV in the results of Table 2. Classifier considered:
Random Forest (RF), Random Forest multiclass (RF ml), Logit and SVM, Classifier combinations considered: Ran-
dom Forest and SVM (RS), SVM and k-NN (Sk), Random Forest and SVM and Logit (RSL), Random Forest and
Logit (RL). We label the combinations as mv for majority vote and ap for average of probabilities.

Overall the accuracy ranges from 88.68% to 97.11%, precision ranges from 66.61% to 98.46%, recall ranges from
47.46% to 98.21%, and F-1 score ranges from 0.56 to 0.96. Similar to the results of Table 2, classification accuracy
rates per diagnosis are in decreasing order: d1, d5, d3, d7 and d4. Best accuracy: d1 (RS mv / SVM 96.89%), d3 (RF
ml 93.34%), d4 (SVM 89.56%), d5 (RL ap 95.56%) and d7 (RL ap 90.90%).

Tables 4 and 5 present an example for a combinations of factors intervening in a typical single label Random Forest
prediction ordered by Gini coefficient. For the set of diagnoses considered, the topmost feature are all different,
however some of the secondary and tertiary features appear in several diagnoses, e.g., age. Note that several features
are the result of a physical examination; in a patient facing questionnaires these features could be reported by the
patient as self examination. In general, features interpretability information can be used to assess the dataset and to
inform physicians.
Table 4: Top 3 features for Random Forest single label classifier ordered by Gini coefficient from most important (1)
to least important (3) for diagnoses d1, d3, d4, d5 and d7.

First most important Second most important Third most important
d1 exam tmj click (0.273) tmjd clicking (0.147) age (0.1)
d3 exam muscle tenderness (0.274) extraoral jaw muscle (0.059) age (0.058)
d4 exam tmj tenderness (0.24) age (0.079) exam muscle tenderness (0.062)
d5 exam tmj crunch (0.333) tmjd crunching (0.16) age (0.064)
d7 exam tooth pain problem (0.17) cc tooth (0.09) intraoral gingival (0.044)

Table 5: Descriptions for the labels of Table 4. Labels prefixed with exam were extracted from patient encounter
notes as confirmed by the clinician during the patient examination. TMJ refers to the temporomandibular joint.

Label Description
age subject age
cc tooth chief complaint is problem with teeth or tooth
exam muscle tenderness palpation tenderness in jaw or neck muscles
exam tmj click auscultation shows click sound in TMJ on movement
exam tmj crunch auscultation shows crunching in TMJ on movement
exam tmj tenderness palpation tenderness in jaw joint
exam tooth pain problem pain in the teeth confirmed by examination
extraoral jaw muscle location of symptoms in jaw muscles
intraoral gingival location of symptoms in gingival tissues
tmjd clicking patient reports TMJ clicking
tmjd crunching patient reports TMJ crunching

6 Conclusion

Automating the journey from data collection to diagnoses has the potential to improve standards of care by provid-
ing faster and reliable predictions. In addition predictions can inform physicians in training by relating important
combinations of variables to potential diagnoses. For this end we propose in upcoming work to create and validate a
pre-encounter patient questionnaire that can predict a variety of OFP diagnoses.

In this work, we examine how an OFP dataset can be created and explore the feasibility of automating OFP diagnoses
with pre-encounter questionnaires. Working with an expert we have captured the expert’s thought process to look for
the relevant variables and derived an algorithm to modeled this process, the HFV algorithm, that was implemented and
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used to iteratively and incrementally create an OFP dataset of 451 cases each containing 137 independent features.
We report results of a comparative analysis of the HFV method with other machine learning models as a validation of
the dataset creation process and best classification results obtained by using a combination of classifiers. These results
show that the process used to define variables, forming the dataset is sound and the use of ML models to automate
diagnoses is feasible. We understand that the HFV system was used in building the dataset and therefore has a bias, but
it also validates the conceptual model clinicians use in patient interviews. Furthermore, the quality of the predictions
seem to indicate that the process we use to generate the dataset (which questions are important to ask) is sound.

Any practical application of ML predictions will require addressing differential diagnoses and combination diagnoses.
With this work we have shown that it is feasible to automate specific diagnosis if the needed features are present. In
our future work we will examine how ML approaches and classifier metrics can be used to support both differential
and combinatorial diagnoses by extending the number of cases and considering a wider set of OFP diagnoses. For this
we plan to utilize natural language processing to extract the variables from the electronic patient notes. In addition we
will update our note taking protocols to ensure that the variables that are discovered as important for the performance
of the system are captured. We will seek to improve our algorithms once we scale the dataset to prove feasibility with
additional OFP diagnoses. Finally, we will examine how to best create predictive patient questionnaires, e.g., how to
formulate the questions so they can be best understood and answered easily and how to only ask the questions relevant
to the diagnoses for the case at hand.
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