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Abstract 

A longstanding issue with knowledge bases that discuss drug-drug interactions (DDIs) is that they are inconsistent 
with one another. Computerized support might help experts be more objective in assessing DDI evidence. A 
requirement for such systems is accurate automatic classification of evidence types. In this pilot study, we developed 
a hierarchical classifier to classify clinical DDI studies into formally defined evidence types. The area under the ROC 
curve for sub-classifiers in the ensemble ranged from 0.78 to 0.87. The entire system achieved an F1 of 0.83 and 0.63 
on two held-out datasets, the latter consisting focused on completely novel drugs from what the system was trained 
on. The results suggest that it is feasible to accurately automate the classification of a sub-set of DDI evidence types 
and that the hierarchical approach shows promise. Future work will test more advanced feature engineering 
techniques while expanding the system to classify a more complex set of evidence types. 
Introduction 

Identifying drug combinations that could result in a clinically meaningful alteration to patient safety or therapeutic 
efficacy is an important patient care activity, especially given that clinicians are known to have incomplete knowledge 
about drug-drug interactions (DDIs)1,2. Computerized alerting systems can help clinicians by providing relevant 
reference information and suggestions, intelligently filtered and presented at appropriate times3. Unfortunately, the 
knowledge bases underlying these systems have long been known to be incomplete and inconsistent with one another. 
For example, a recent study by Fung et al. found that only 5% of 8.6 million unique interacting drug pairs were present 
in all 3 of the knowledge bases they included in the study4. 

We refer to individuals who maintain knowledge bases used by clinicians for DDI clinical decision support as 
compendium editors. In our prior work, we established that the workflow of compendium editors generally involves 
topic identification, evidence search, evidence synthesis, and generating recommendations5. Focusing on the evidence 
synthesis step, compendium editors tend to evaluate evidence informally, with no dedicated support from information 
tools such as reference management software or databases. Although there exist systematic approaches to evaluate a 
collection of evidence relevant to establishing DDIs6,7, compendium editors generally reported using heuristic and 
subjective approaches to determine when sufficient evidence had been gathered to make a recommendation. Variation 
in evidence assessment suggests a potentially important factor underlying the lack of agreement that exists among 
different DDI knowledge base.  

Evaluating study design is a critical component of evidence synthesis that can present challenges because the nuances 
of flawed studies are not always obvious. We previously reported on an experiment that found inter-rater agreement 
on evidence sufficiency among compendia editors to be poor8. Among the possible explanations for the finding is that 
experts tend to be subjective when assessing an evidence item’s type and study design. The degree of subjectivity 
might be related to an expert’s experience and knowledge of specific in vitro and in vivo pharmacology research 
methods.  

We think that a particularly promising future research direction would be computerized support to help experts be 
more efficient and objective in assessing DDI evidence from biomedical literature. In this pilot study, we tested the 
feasibility of using machine learning to classify clinical DDI studies into the formally defined evidence types present 
in the DIDEO- the potential Drug-drug Interaction and potential Drug-drug Interaction Evidence Ontology9. The goal 
was to determine the feasibility of accurate automatic classification of study evidence types that could form the basis 
of a more efficient and objective approach to DDI evidence synthesis. 
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Methods 

The DIDEO ontology is a foundational domain representation that contains 44 evidence types used in in vitro and in 
vivo pharmacokinetic DDI research10. DIDEO specifies the necessary and sufficient conditions for each evidence type 
using terms either defined in DIDEO or imported from other formal ontologies11.  We set out to test machine learning 
classifiers that predict seven of the 44 specific types of DDI evidence being reported in a DDI paper (blue boxes in 
Figure 1). These seven evidence types were chosen because they are commonly used in in vivo study designs that we 
thought would be useful for showing proof-of-concept and identifying requirements for a larger scale study. During 
the development of the training corpus for this study, we found a need to create additional evidence types. For example, 
for those papers that were annotated as Pharmacokinetic (PK) Trial at the second level but were neither Genotype PK 
trial nor Phenotype PK trial at the third level, we labeled them as “non-polymorphic enzyme/transport PK Trial” which 
provides a novel alternative evidence type at the second level. Figure 1 also shows the novel evidence types that we 
added (in orange) and the number of papers in each category in our training set. 

 
Figure 1. Evidence types hierarchy that was used in the classification system. The blue boxes represent the portion 
of DIDEO’s evidence type hierarchy that we used in this study. The orange boxes were added to cover the full range 
of evidence types identified in the training corpus. Numbers of papers in the training set for each category are shown 
below each box. 

The machine learning approach tested in this pilot study was an ensemble of hierarchical classifiers. This was chosen 
based on the observation that there exist multiple logical distinctions between the evidence types. For example, 
participant randomization is the major distinction between a Randomized DDI Clinical Trial and the two Non-
Randomized DDI Clinical Trial types. Similarly, genetic genotyping distinguishes the two polymorphic 
enzyme/transport PK trial types. The hierarchical approach is a combination of five sub-classifiers—each of which 
was designed as a binary classifier that distinguished a specific pair of evidence types using models that operates at 
each level of the hierarchy. Our intuition was that each model in the hierarchical ensemble would pick up on the 
primary distinguishing features better than a single model that forms the non-hierarchical approach.  

The implementation of the classification system consisted of four main steps which are shown in Figure 2 and 
described further below. 

 
Figure 2. Implementation steps used in this study to build a hierarchical evidence type classification system.  
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Prepare data 

The training dataset for this study contained 214 unique papers about DDIs that were systematically collected by DDI 
experts during  previous knowledge representation research involving 65 drugs12–14. The papers were manually 
annotated to assign evidence type labels from the DIDEO ontology using an annotation guideline15. One investigator 
(RB) was the primary annotator with a second (BS) independently annotating one-third of the dataset for quality 
assurance. The developer of the classification system (LH) also observed the annotation process in order to identify 
relevant text that could be used for training the classifier. The annotation process was repeated to add two additional 
data sets that were used for “hold out” testing of the classifiers.  One data set contained 32 DDI studies involving the 
same 65 drugs as for the training set. The other data set contained 94 papers identified using the same search strategy 
used for the other two datasets but focusing on drugs other than the 65 that were the focus of prior research. More 
details about the search and screening strategies used to construct all three datasets can be found in a written protocol 
available on the project’s github15. 

In the preprocessing step, we automatically collected the papers’ metadata, including titles, abstracts and PubMed 
publication types through the PubMed API16. We also manually collected full-text PDFs of these papers and converted 
them to plain text using the PDFMiner Python library17. For PDFs that were scanned images, we manually copied text 
from the PDFs and saved as plain text. We then standardized the plain text files by converting the text into lowercase 
and removing English stop words from the Natural Language Toolkit (NLTK) library version 3.4.518 run on Python 
version 3.7.  

The features extracted from the papers included stemmed unigrams taken from the titles, abstracts, and the Methods 
sections of the papers. The Methods sections were included based on our observation during the annotation process 
that the section often contained information needed to determine the DDI evidence type that was not present in the 
title or abstract. Stemming was applied based on our observation that many words that experts use to distinguish 
evidence types have the same roots (e.g. genotyped, genotyping and genotype) and should not be treated by the 
classification system as different features. In order to avoid overfitting, we used MetaMap19 to remove all of the drug 
and enzyme names from the text as well as regular expression to eliminate numeric strings, including numbers tied 
with measurement units. After the final feature engineering process, our feature space contained 11325 features for 
the 214 instances, corresponding to the 214 papers in our training set. 

Develop the classification system 

In the hierarchical classification system, a DDI clinical paper (one input instance) would be passed through a series 
of sub-classifiers until the paper reaches the lowest level of the evidence type hierarchy and is predicted with a specific 
evidence type. Corresponding to the hierarchy of evidence types shown in Figure 1, our final hierarchical classification 
system was a combination of five sub-classifiers, each designed as a binary classifier that distinguished a specific pair 
of evidence types, hierarchically divided into three levels (Figure 3). Each sub-classifier was trained using the support 
vector machine (SVM) algorithm (linear kernel, class weight balance applied).   

In order to prevent over-estimation of the classification system’s accuracy, we used cross-validation (5 folds) to 
randomly split the train and test sets to develop the sub-classifiers. More specifically, in each cross-validation iteration, 
data was randomly split into a training set and a testing set. All papers in the training dataset were used to train and 
test the top-level sub-classifier. A subset of the training set from the top-level classifier was passed down to and used 
to train the next lower level sub-classifiers following a particular path in the hierarchy. Similarly, a subset of the testing 
set from the top classifier was used to test the next level sub-classifiers. This process was repeated until the sub-
classifiers at the lowest level were trained and tested. 

Evaluation of the classification system 

Precision, recall, balanced F measure (F1), and the area under the receiver operating characteristic curve (AUC ROC) 
were used to evaluate the classification performance during training. These metrics were calculated based on the 
predictions of each sub-classifier at each level against the actual labels of the papers at the same level. The four metrics 
were calculated for each sub-classifier for each cross-validation iteration. We then calculated the average of each 
metric, by dividing their sum by the number of cross-validation iterations (five). To take into account the hierarchical 
classifier structure, we supplemented these metrics with hierarchical precision, hierarchical recall, and F1 metrics for 
hierarchical classification systems20. We describe this in more detail in the next paragraph. The weighted average of 
the hierarchical classifier was calculated by dividing the sum of the hierarchical metrics by the number of cross 
validation (5 of them). After training the hierarchical classifier, we evaluated its performance on the two held-out 
datasets mentioned above.  
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The hierarchical metrics aggregate the predictions of all sub-classifiers for every single data point into their formula20. 
For example, suppose that an instance is classified into the label “Non RCT non parallel DDI Clinical trial” while it 
really belongs to label “Non RCT parallel DDI Clinical trial” (Figure 1). To calculate our hierarchical measure, we 
extend the set of real labels: {Actual	Label}	=	{“Non	RCT	parallel	DDI	Clinical	Trial”} with all its ancestors: {Actual	
Labels}’ = {“Non	RCT	parallel	DDI	Clinical	Trial”,	“Non	RCT	DDI	Clinical	Trial,	“DDI	Clinical	Trial”}. We also 
extend the set of predicted labels: {Predicted	Label}	=	{“Non	RCT	non	parallel	DDI	Clinical	Trial”} with all its 
ancestors: {Predicted	Label}’	=	{“Non	RCT	non	parallel	DDI	Clinical	Trial”,	“Non	RCT	DDI	Clinical	Trial,	“DDI	
Clinical	Trial”}. Then, the hierarchical precision (hP), recall (hR) and F1 (hF) score were calculated based on the 
extended label sets as following: 

hP = {@ABCDE	FDGHEI}
J∩	{LMHNOABHN	FDGHEI}P

{LMHNOABHN	FDGHEI}P
   hR = {@ABCDE	FDGHEI}

J∩	{LMHNOABHN	FDGHEI}P
{@ABCDE	FDGHEI}P

 

 

hF = QR
S	TUV.XL	.XY
(RS	.XLTXY)

	 (𝛽 = 1	𝑔𝑖𝑣𝑖𝑛𝑔	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑎𝑛𝑑	𝑟𝑒𝑐𝑎𝑙𝑙	𝑒𝑞𝑢𝑎𝑙	𝑤𝑒𝑖𝑔ℎ𝑡𝑠) 

According to these formulas, the number of correctly assigned labels for this instance from the extended set would be 
the union of the actual labels and the predicted labels, which is 2, instead of 0. This approach reduces the penalty for 
misclassification when the predicted label is “near” the actual label in the hierarchy. 

  
Figure 3. Design of the hierarchical classifier. 

Error Analysis 

We obtained insight into the classification system’s behavior by examining the most informative features (unigrams) 
that were associated with each evidence type as ranked by a Pearson’s Chi-squared statistical test. We also looked at 
the papers that were given wrong predictions by the hierarchical classification system on the held-out datasets and 
analyzed the papers’ titles, abstracts and Method sections in order to identify the possible reasons for the wrong 
predictions.   
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Results 

Classification Performance 

Table 1 reports the sub-classifiers’ prediction performance on the training dataset. Table 2 shows the performance of 
the hierarchical classifier with the two held-out testing datasets.  

Table 1. Hierarchical classification system performance on the training dataset. Shown is the performance of each 
individual classifier at each level in the evidence hierarchy from Figure 1. 

Level Sub-classifier 

Average 
AUC ROC 

(over 5 
folds) 

Average 
Precision 

(over 5 
folds) 

Average 
Recall  
(over 5 
folds) 

Average 
F1 (over 5 

folds) 

1 DDI Clinical Trial vs. Pharmacokinetic 
Trial 0.79 0.87 0.87 0.86 

2 Randomized DDI Clinical Trial vs. Non-
randomized DDI Clinical Trial 0.87 0.89 0.88 0.87 

2 
Polymorphic enzyme/transport PK Trial vs. 

Non-polymorphic enzyme/transport PK 
Trial 

0.78 0.79 0.77 0.77 

3 
Non-randomized parallel DDI Clinical Trial 

vs. Non-randomized non-parallel DDI 
Clinical Trial 

0.78 0.87 0.85 0.85 

3 Genotyped PK Trial vs.  
Phenotype PK Trial 0.78 0.92 0.88 0.87 

 

Table 2. Classification performance of the hierarchical classifier on the two held-out datasets. 

Dataset 
Hierarchical classifier 

Hierarchical 
Precision 

Hierarchical 
Recall 

Hierarchical 
F1-score 

Performance on the held-out 32 papers about the same 
drugs as in the training set 0.8 0.86 0.83 

Performance on the held-out 94 papers about entirely 
different drugs than in the training set 0.81 0.51 0.63 

 

Error Analysis  

We printed out the most informative features (unigrams) associated with each evidence type, ranked by Chi-square 
scores. We found that evidence types that have terms strongly associated with them are easier to predict. For example, 
“Randomized DDI clinical trial” has terms related to this study design, including “random”, “double”, “blind”, while 
“Genotyped PK Trial” has terms related to drug metabolism and excretion, including “genotype” and 
“polymorphism”.  

Another observation is that certain unigrams are highly correlated with some of the evidence types but not others, 
based on their Chi-square score ranking. For example, the “random” unigram and its variants (e.g. randomis, 
nonrandom) were given higher Chi-square scores and thus is more highly relevance ranked for RCT DDI Clinical 
Trial than any other types. In contrast, while the “genotyp” unigram was ranked as the most important unigram for 
Genotyped PK Trial evidence, it was ranked as less important for the others. Similarly, the “phenotyp” unigram is one 
of the top relevant unigrams for Phenotype PK Trial but not for Genotyped PK Trial. Table 3 shows the list of study 
design-associated features and their corresponding ranks in each evidence type.  
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Table 3. Examples of the common unigrams between different evidence types and their rankings. 

 

Table 4. Examples of incorrect predictions of the hierarchical classifier on the held-out 32 papers. 

Example 
Actual 

evidence 
type 

Predicted 
evidence type Sample  text from the paper 

1 
Non RCT 
parallel DDI 
Trial 

Non RCT non 
parallel DDI 
Trial 

Title: “Almorexant effects on CYP3A4 activity studied by its 
simultaneous and time-separated administration with 
simvastatin and atorvastatin.” 

Abstract: “…To characterise further the previously observed 
cytochrome P450 3A4 (CYP3A4) interaction of the dual orexin 
receptor antagonist almorexant. Pharmacokinetic interactions 
were investigated (n_=_14 healthy male subjects in two 
treatment groups) between almorexant at steady-state when 
administered either concomitantly…” 

2 

Non 
polymorphic 
enzyme 
transport PK 
Trial 

RCT DDI Trial 

Title: “Population pharmacokinetics and pharmacodynamics of 
rivaroxaban--an oral, direct factor Xa inhibitor--in patients 
undergoing major orthopaedic surgery.” 

Abstract: “…This analysis was performed to characterize the 
population pharmacokinetics and pharmacodynamics of 
rivaroxaban in patients participating in two phase II, double-
blind, randomized, active-comparator-controlled studies of 
twice-daily rivaroxaban for the prevention of venous 
thromboembolism after total hip- or knee-replacement 
surgery…” 

 

We also conducted an error analysis of incorrect predictions on the held-out 32 papers. Two examples are shown in 
Table 4. We found that the unigram features are not sufficient to assist the hierarchical classifier in making correct 
predictions in some cases where the study designs should be determined based on the whole context rather than single 

Ancestor 
evidence type Evidence type Examples of features and their ranks 

(unigrams in stemmed format) 

 

 

DDI Clinical 
Trial 

Randomized DDI 

Clinical Trial 
placebo (rank 7),  crossov (rank 24), random (rank 26), doubl 
(rank 61),  blind (rank 64), pharmacokinet (rank 1149) 

Non-randomized (non-
parallel) DDI Clinical Trial 

placebo (rank 26), random (rank 84), blind (153), doubl (rank 
317), crossov (rank 807), pharmacokinet (rank 3807) 

Non-randomized 

parallel DDI Clinical Trial 
crossov (rank 166), placebo (rank 579), blind (847), doubl 
(rank 1670), random (rank 3898), pharmacokinet (rank 7518) 

PK Trial 

Non-polymorphic 

enzyme/Transport PK 

Trial 

genotype (rank 84), phenotyp (rank 389), pharmacokinet (rank 
580) 

Genotyped PK Trial genotype (rank 1), pharmacokinet (rank 398),  phenotyp (rank 
1218) 

Phenotype PK Trial phenotyp (rank 49), pharmacokinet (rank 93), genotype (rank 
1394) 
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words. For example, in the first example of Table 4, the actual label is “Non RCT parallel group DDI trial”, however, 
there are no mentions of “parallel” in the text. Instead, the authors described the parallel design differently by using 
phrases such as “simultaneous and time-separated administration” and “in two treatment groups”. In the second 
example in Table 4, the classifier’s incorrect prediction of “RCT DDI Trial” was likely caused by the “doubl”, “blind” 
and “random” unigrams which are among the most informative features for the RCT DDI Trial evidence type. 
However, in this case, they occur in the context of describing a population pharmacokinetics study rather than a DDI 
study.  

Discussion 

The results suggest that it is feasible to accurately automate the classification of a sub-set of DDI evidence types. They 
also suggest that the hierarchical ensemble approach we tested based on the DIDEO evidence is a promising approach 
to build upon in future work. To our knowledge, this is the first study to test a hierarchical approach for classifying 
DDI clinical studies into highly specific evidence types. A 2020 study on extracting evidence of drug repurposing 
classified studies into more basic evidence types such as “Pre-clinical” (F1 = 0.96), “Clinical observational study” (F1 
= 0.84), and “Clinical trial” (F1 = 0.80)21. Compared to that study, we target a more detailed set of evidence types. 
While further work will be necessary to improve the NLP performance and expand the classifiers to in vitro evidence 
types, this study is an important step towards more sophisticated computer support for DDI evidence synthesis.  

Using existing knowledge about DDI evidence provided by the ontology was beneficial in several ways. First, the 
annotation process allowed us to identify evidence types that do not exist in the current ontology, resulting in novel 
evidence types that we plan to contribute to the ontology. Second, the ontology suggests an efficient design for the 
hierarchical classification system. Machine learning classifiers depend extensively on training data. Using the 
hierarchical structure of the evidence types suggested by the ontology helps to reduce the quantity of papers needed 
to train the classifiers successfully (especially in our case where the dataset is quite small to start with). This two-way 
feedback contributes to both the machine learning classifier development and can inform further development of the 
ontology. In future work, we plan to rigorously compare the performance of our hierarchical approach with alternative 
approaches to multi-class labeling. 

The performance of the hierarchical classifier on two different held-out datasets did raise some possible concerns. 
While the precision scores are comparable between the two held-out datasets, recall and F1 on the second held-out set 
(different drugs) decrease significantly compared with the first held-out set (the same drugs as used in the training 
data). This result could be interpreted as: with “unseen” data (new drugs, different language and contexts), the 
hierarchical classifier did a good job picking up true positives but also produced a high number of false negatives. 
This could be an indication that the current features generated from the training set might favor some evidence type 
labels over others. In future work we plan to test if this is an issue with the classifier, feature engineering techniques, 
or both.  

The error analysis results suggest improvements for the classification system in the future. We think that more 
sophisticated representation of key entities such as drugs and enzymes might be useful as features to enhance the 
prediction performance. In this pilot study, we implemented a preprocessing approach using Metamap and regular 
expressions to remove all of the drug entities and numeric strings from the text, which helped us to avoid potential 
overfitting problems. However, one of the strong textual indications to distinguish genotyped papers from phenotype 
papers is mention of genes or enzymes (like CYP2B6 or CYP2C19) along with certain symbolic/numeric strings. 
However, when we tested keeping these drug-related features as unigrams, we observed significant overfitting. More 
advanced methods such as term embedding (e.g., word2vec22) might overcome these issues by de-emphasizing term 
syntax and increasing the emphasis on term context. Also, we think that relationships between the drug entities should 
also be taken into account, such as information about which drugs play object vs. precipitant roles in the interactions. 
We learned from this study that evidence type associated words/phrases are important but that contextual features 
would be helpful to more accurately classify complex edge cases. 

Our study has several potential limitations. The training and held out datasets were relatively small. To overcome this 
problem, we need to obtain and have experts annotate more data. Alternately, a computational approach to increasing 
the annotated data would be to semi-automatically collect and label the data using techniques such as rule-based distant 
supervision23. Another limitation is that our implementation used all features (unigrams) to train all of the sub-
classifiers regardless of which labels they were predicting. In the future, developing different feature selection 
strategies tailored to different sub-classifiers could be helpful, because in the error analysis, we found that some 
specific words and phrases (especially the ones indicating study design) are more important for some labels than 
others. 
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Conclusion  

We combined machine learning and knowledge representation in a pilot experiment classifying evidence types of 
from the DDI literature. Drawing on an existing ontology of evidence types, DIDEO, we built a hierarchical classifier, 
which combined a series of sub-classifiers to categorize a DDI study’s evidence type. In the future, such an automatic 
classification system could be a key component of a computerized system to help experts be more efficient and 
objective in DDI evidence assessment, ultimately assisting drug experts as they assess evidence items. Other 
promising applications of the technology would be to support automatic identification of new clinical DDI papers, 
and to help extend the DIDEO ontology to new evidence sub-types.  
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