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Abstract

This study aimed at identifying the factors associated with neonatal mortality. We analyzed the Demographic and
Health Survey (DHS) datasets from 10 Sub-Saharan countries. For each survey, we trained machine learning models
to identify women who had experienced a neonatal death within the 5 years prior to the survey being administered.
We then inspected the models by visualizing the features that were important for each model, and how, on average,
changing the values of the features affected the risk of neonatal mortality. We confirmed the known positive correlation
between birth frequency and neonatal mortality and identified an unexpected negative correlation between household
size and neonatal mortality. We further established that mothers living in smaller households have a higher risk of
neonatal mortality compared to mothers living in larger households; and that factors such as the age and gender of
the head of the household may influence the association between household size and neonatal mortality.

Introduction

Improving neonatal outcomes is an important Maternal, Neonatal and Child Health (MNCH) priority for global sus-
tainable development. Despite a global decline in child mortality rates, many countries are not on track to achieving the
global targets of ending preventable deaths among newborns and children under 5 years and reducing neonatal mortal-
ity to as low as 12 per 1000 live births by the year 20301. Furthermore, the progress towards MNCH-specific targets
remains uneven within and across countries1, reflected in disparities in access to healthcare services and inequitable
allocation of resources for MNCH priorities2.

Improved health outcomes rely on interactions of multiple determinants, including socioeconomic factors, health sys-
tem capacity, and quality of individual care. Coverage of health system interventions and inputs are measured in
routine health system data and regular surveys, but they are limited in interpretability for identifying barriers for indi-
vidual and population-level uptake of high-quality services. Furthermore, due to the limitations of traditional statistical
analysis approaches, we are limited to testing identified hypotheses, and it is difficult to generate novel insights from
data without the use of machine learning algorithms. However, whereas machine learning algorithms are good at pre-
diction, they are often considered black box models that are selected based on their predictive performance rather than
their interpretability and ability to generate actionable insights3. Consequently, MNCH stakeholders and policymakers
find it difficult to adopt innovative machine learning models for decision-making and intervention planning.

Overall, our research is centered on building machine learning models to characterize the factors associated with poor
MNCH health outcomes, and importantly, inspecting these “black box” models to generate actionable insights. We
posit that certain subpopulations of mothers and children have an increased risk of shocks (events that impact well-
being) in their environment, which may be biological or socio-economic, and have limited resilience to respond to these
shocks. This combination of risk and lack of resilience may predispose some populations to disproportionately worse
health outcomes such as neonatal and maternal mortality (“vulnerable populations”). In this study, we have focused
on mothers who are vulnerable to poor neonatal outcomes, namely mortality. Vulnerable populations who have not
experienced the same health gains as other groups are the focus of this work, Our overarching goal is to provide
MNCH domain experts and stakeholders with capabilities for data- and model-driven decision-making and targeted
intervention planning for vulnerable subpopulations and helping to improve equity in access and health outcomes.

In this study, we specifically aim to answer the research question, which features are associated with neonatal mortality
as captured in nationally representative cross-sectional data? To do so, we analyze the data from the two most recent
Demographic and Health Surveys (DHS) from 10 sub-Saharan countries. For each survey, we built an ensemble
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classifier4 using gradient boosting decision trees5 to classify the mothers who reported a birth in the 5 years preceding
the survey, into those who reported losing one or more children under the age of 28 days and those who did not
report losing a child. Subsequently, we inspect each model by visualizing the features in the data that were most
important for the model in reaching its conclusion, as well as how changes in the values of the identified features
would have impacted neonatal mortality. The primary contribution of this work is to demonstrate how practical
machine learning may be used to generate insights about vulnerability to poor health outcomes captured in real-world,
nationally representative MNCH survey data. We found that there is significant consistency in MNCH patterns across
time and space. We confirmed birth spacing as one of the most important determinants of neonatal mortality and
discovered a negative correlation between household size and neonatal mortality that warrants further investigation.

Related Work

To date, researchers have primarily traced association of neonatal mortality with determinates or particular causes
using observational research methods such as cohort and cross-sectional studies along with traditional statistical anal-
yses. For example, Kaguthi et al. conducted a cohort study in western Kenya and used Cox proportional Hazard
analysis to identify risk factors neonatal mortality6. Similarly, Mengesha et al. conducted a prospective cohort study
in northern Ethiopia and subsequently used Kaplan-Meier survival analyses, Log rank test, and Cox-proportional haz-
ard regressions to characterize the survival of neonates and identify the predictors of neonatal mortality in northern
Ethiopia7. Mekonnen et al. applied a simple linear regression model to examine trends in neonatal mortality rates and
a multivariate Cox proportional hazards regression model to examine the factors associated with neonatal mortality
in Ethiopian DHS data (2000, 2005, 2011)8. Ozodiegwu et al. used logistic regression to estimate the association
between maternal obesity and neonatal mortality using DHS data from 34 Sub-Saharan African countries9.

Although traditional statistical analyses are well established and effective in addressing certain questions, they are
subject to key limitations. For example, domain-specific knowledge is needed for model specification, yet this may
impede the discovery of unexpected patterns as the ability of the data to “speak for itself” is limited. Additionally,
modeling is often subject to restrictive assumptions such as constraining variables to a linear relationship with the
outcome or, in the case of a binary outcome, a linear relationship with the log odds of the outcome. Furthermore,
particularly in regression models, modelers typically have to explicitly pre-specify interactions among model variables.
Although this makes it easier to identify the relationship between the outcome and individual variables, it limits the
ability to discover new interactions between variables that reveal stronger indicators of the outcomes.

Modern machine learning methods address some of the key limitations of traditional statistical approaches and allow
for investigators to suspend mental models about how inputs shape outcomes. Interestingly, however, only a few stud-
ies have applied such techniques to analyze neonatal mortality. Nesejje and Mwambi compared the performance of
using random survival forests to the Cox proportional hazards model and found that the random survival forests can
better characterize factors associated with under-5 mortality using DHS data in Uganda10. Tesfaye et al. used decision
tree classification and rule induction to predict child mortality rates from Ethiopian DHS data11, while Kraamwinkel
et al. used Bayesian Additive Regression Trees (BART) of conditional average treatment effects to analyze the hetero-
geneous treatment effect of maternal agency (i.e. education) on severe child under-nutrition in Nigeria12.

The gradient boosting classifier applied in this study combines many weak learning models to generate an aggregate
model with better performance and improved machine learning results. It is a tried and tested example of ensemble
approaches that have shown superior flexibility and accuracy in the generation of state-of-the-art results for prediction
and classification tasks5. Ensemble methods are appropriately named for their ability to aggregate the outputs of
potentially thousands of much simpler models together4. This increases their overall accuracy in correctly identifying
which records belong to which of the two prediction classes. Furthermore, ensemble methods can model complex
nonlinear relationships and do not require the investigator to pre-specify interactions among variables. However, such
models provide little knowledge about their internal workings: they are considered to be so-called “black boxes”. To
improve explainability, we inspect the models by visualizing feature importance (ranked list of the most important
features in an ensemble model) and partial dependence plots (illustration of the relationship between a single feature
and an outcome, holding all other features constant). Furthermore, we rely on an interdisciplinary team with content
and domain expertise for sensemaking of the insights generated from inspecting our models.
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Methods

In this work, we used cross-sectional data and trained gradient-boosted decision tree models to determine the associ-
ations between multiple features and neonatal mortality. Figure 1 illustrates the pipeline used in the study. Although
many commonly used machine learning algorithms focus on the ability to predict outcomes, we do not intend to de-
ploy these models for actual prediction purposes. Rather, the training process is to leverage the algorithms’ ability to
automatically select and combine features that best demonstrate a correlation with the health outcome of interest.

Figure 1: Pipeline for generating neonatal mortality insights from nationally-representative cross-sectional data.

Datasets

We analyzed DHS data from 10 countries in sub-Saharan Africa, spanning 1998 to 2018 with a total population of
163,180 mothers. These included Burkina Faso (2010, 2003), Democratic Republic of Congo (2013, 2007), Ethiopia
(2016, 2011), Ghana (2014, 2008), Kenya (2014, 2008), Nigeria (2018, 2013), Senegal (2017, 2015), Tanzania (2015,
2010), South Africa (2016, 1998), and Zambia (2013, 2007) DHS datasets13 . DHS data are generated from a series of
household surveys conducted in over 90 countries every three to five years. These surveys are nationally representative
and are primarily provide data for monitoring and impact assessment of population, health, and nutrition indicators for
individual countries, as well as for cross-country comparative analyses13. DHS surveys use standard data definitions
and data collection procedures across countries and survey phases. In this study, we used household record (HR) files
and individual record (IR) files. The HR file contains household data about each surveyed household, while the IR file
contains questionnaire and birth history data collected from each woman who is eligible for the DHS survey.

For each survey dataset, we only considered women who reported giving birth at least once in the 5 years before the
survey. We defined this unit of analysis as the mother. In our analyses, each mother assumes the feature properties of
her household in addition to her individual features. We extracted 43 household features (e.g. household size, wealth
index, source of water, etc.) and 74 individual features (e.g. age, education level, ethnicity, etc.) giving a total of 117
features. We defined the binary outcomes of interest as neonatal mortality (loss of a newborn ≤ 28 days old) of a child
born in the five years preceding the survey. Mothers who reported the loss of a neonate were assigned to the positive
class (1), while mothers who did not report the loss of a neonate were assigned to the negative class (0).

Mortality Trends

We examined the child mortality trends across DHS surveys in each country categorized as neonatal mortality (death
of a live-born child under 28 completed days of life), infant mortality (death of a child before the first birthday),
under-2 mortality (death of a child before the second birthday), and under-5 mortality death of a child before the fifth
birthday). Note that by definition, these proportions are cumulative. For example, mortality percentages for under-2
represent any child less than 2 years including neonates and infants.
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Modeling and Model Inspection

To investigate the features associated with neonatal mortality, we formulated the problem as a binary classification
task. The goal of the modeling task was to train an ensemble gradient boosting classifier5,14, such that the aggregated
model had the strongest ability to classify individual mothers into one of the two categories of the binary neonatal
mortality outcome. For each ensemble model, we used grid search15 with stratified 5-fold cross-validation to find the
combination of hyperparameter values that maximize the area under the receiver operating characteristic (AUROC)
curve of the resulting ensemble model. The model performance results are shown in Table 1. To enable fast training
of the models, analyses were done in parallel using a server with 32 core processors and 528 gigabyte memory.

Table 1: Percent area under receiver operating characteristic (AUROC) curves of the developed ensemble models

country Burkina Faso Congo DR Ethiopia Ghana Kenya Nigeria Senegal Tanzania South Africa Zimbabwe
Year 2010 2003 2013 2007 2016 2011 2014 2008 2014 2008 2018 2013 2017 2015 2015 2010 2016 1998 2013 2007

AUROC 80.7 77.3 82.6 73.4 80.7 75.8 83.5 68.5 88.4 79.6 84.8 80.8 69.1 63.4 83.4 82.6 66.5 63.0 80.2 74.1

Subsequently, we inspected each model using feature importance and partial dependence plots; and visually compared
how these vary across time (different DHS survey phases) and space (different countries). Feature importance is an
average measure of how important a feature is relative to other features used in the ensemble model to predict the
outcome. Higher feature importance means that that feature was used to separate one outcome versus the other more
often and is a relative measure. Partial dependence plots16 illustrate how, on average, varying the value of a given
feature affects the predicted outcome while holding all other features constant. Such plots can be used to investigate
how changes in the values of a feature impact the outcome of interest at the population level.

Post-Modeling Descriptive Analyses

A majority of our models suggested that number of births in the last 5 years before the analyzed survey and number of
household members (household size) were associated with neonatal mortality (see results section). Whereas it is well-
known that birth spacing is associated with neonatal mortality, the association between household size and neonatal
mortality was a surprise finding. Accordingly, we investigated this phenomenon further using descriptive analyses.
Here, we first binarized the continuous DHS variable for household size (DHS variable hv009) using standard defini-
tions for small (≤ 5 members) vs. large (>5 members) households17. We then compared the odds of neonatal mortality
in small vs. large households. Furthermore, for each analyzed survey, we compared the odds of having a female head
of the household (DHS variable hv219) in small vs. large households. We also evaluated the difference between the
mean number of births in the last 5 years per respondent (DHS variable v208) in large vs. small households. Addition-
ally, we evaluated the difference between the mean age of the head of the household (DHS variable hv220), as well as
the difference between the mean age of the respondent (DHS variable v012) in large vs. small households.

Results
Neonatal Mortality Trends

Figure 2 shows the percentages of mothers who reported the loss of a child (neonate, infant, under-2, or under-5)
in that timeframe across multiple DHS phases in the 10 analyzed countries. As a concrete example, for the Nigeria
2018 DHS survey, a total of 41,821 eligible women were interviewed. Of these survey participants, 21,792 reported
having given birth in the 5 years before the survey. Of these mothers, 1,239 (5.7%) reported the a neonatal death;
2,019 (9.3%) reported an infant death; 2,726 (12.5%) reported the death of a child under 2 years; and 2,846 (13.0%)
reported the death of a child under 5 years. We observe that across all surveys, between 29% and 64% of under-5
deaths are due to neonatal mortality. Interestingly, between 92% and 99% of under-5 deaths occur before the age of
2 years. This is a stratification not usually used in MNCH and provides us with a novel insight into the composition
of under 5 deaths. We show that there was an overall decrease in women reporting under-5 deaths in all countries,
and the biggest declines began around 2000 in all geographies where data were available. The reduction in women
reporting a neonatal death has been much slower, and as a result, neonatal deaths account for the largest proportion of
deaths under 5 in the most recent DHS in 8 of the 10 countries. These findings align with published trends in child
mortality18, and enable MNCH stakeholders to have confidence in the analyses.
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Figure 2: Trends in the proportions women reporting neonatal (blue), infant (orange), under-2 (green) and under-5
(red) deaths in 10 countries. There is an overall decrease in under-5 deaths with smaller decreases in neonatal deaths.

Factors Associated with Neonatal Mortality

As illustrated in Figure 3, the number of births in the last 5 years and the number of household members were the
“most important” features for predicting whether a mother reported the death of a neonate. Out of the 20 models
(10 countries and 2 DHS surveys per country) trained to predict neonatal mortality, the number of births in the last 5
years ranked first in all models except Burkina Faso 2003, Tanzania 2015, and Zambia 2007, where the feature ranked
second. The number of household members ranked first in one model (Zambia 2007), and second in 10 of the 20
models. Together, the two features appeared among the top 5 features in 17 models. Only Ghana 2008, Senegal 2015,
and South Africa 2016 did not have the number of household members among the top 3 most important features.

As shown in Figure 4, the partial dependence plots suggests a positive correlation between the number of births in
the last 5 years and the probability of neonatal mortality while holding all other variables constant. This persisted
across all the DHS surveys analyzed. Figure 5 illustrates a negative nonlinear correlation between household size and
the probability of neonatal mortality, with a large drop between households of size 1 to 4, and a flat line in higher
household sizes. This trend persisted in 19 of the 20 models. The only exception was Ghana 2008 which suggests no
effect on household size on neonatal mortality for that survey. Interestingly, the feature importance rankings of the
neonatal mortality models were also consistent with those of the infant, under-2, and under-5 mortality models.

Table 2 provides the descriptive statistics of selected variables for women residing in small (≤5 members) vs large
(>5 members) households across the two most recent DHS surveys in the 10 countries analyzed. We observe that
the proportions of neonatal death were higher in small households compared to large households. This was suggested
by our machine learning models and confirmed by our descriptive statistics. Furthermore, in both small and large
households, neonatal mortality is high relative to the sustainable development targets for neonatal mortality1, and that
the magnitude of difference in neonatal mortality in each country is different by the DHS survey year.

Figure 6 illustrates the odds of association between household size and neonatal mortality. We observe that the odds
of neonatal death across countries and DHS survey timesteps were generally higher in small households compared to
large households. For example, for the Nigeria 2018 DHS survey, the odds of neonatal deaths in small households
are 1.3 (95% CI: 1.16, 1.46) the odds of neonatal death in large households. Similarly, for the Ethiopia 2016 DHS
survey, the odds of neonatal deaths in small households are 1.4 (95% CI: 1.12, 1.74) the odds of neonatal death in
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Figure 3: Top 3 features in each of the models for the 2 most recent DHS surveys in 10 countries. Number of births
in the last 5 years (v208) was present in all models. Number of household members (hv009) was present in 17 models.
Other frequent features include body mass index (v445), respondent’s current age (v012), births in past year (v209),
and age of head of household (hv220).

Figure 4: Partial Dependence of Neonatal Mortality on Number of Births in Last 5 years. All models suggested a
positive correlation between number of births of the mother and neonatal mortality

large households. Furthermore, given the most recent DHS survey in each analyzed country, only South Africa 2016
(OR = 1.3, 95% CI: 0.82, 2.07), Ghana 2014 1.1 (95% CI: 0.81, 1.5), Burkina Faso 2010 (OR = 1.2, 95% CI: 0.98,
1.47) had odds ratios that were not statistically significant.

Additionally, we can infer from Table 2 that small households have a higher proportion of female heads of households
compared to large households. Furthermore, we established that the crude odds of having a female head of the house-
hold were higher in small households compared to large households. This was true for the DHS surveys conducted in
9 out of 10 countries analyzed. Interestingly, the only notable exception is South Africa where the odds of having a
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Figure 5: Partial Dependence of Neonatal Mortality on Household Size. All models suggested this negative nonlinear
correlation (elbow plot) albeit with varying gradients. The Ghana 2008 model, with a flat line, was the only exception.

Figure 6: Crude odds ratio (and 95% Confidence Interverals (CIs)) of neonatal death in small vs. large households
across survey years in the 10 analyzed countries. Odds ratios with CIs that do not include 1 are statistically significant.

female head of the household were high among large households. It is, however, worth noting that the confounders of
the observed association between female heads of households and household size were not measured in our study.

We also found that mothers from small households reported fewer births in the past 5 years compared to those from
large households for most countries and survey years. These observations are sensible since smaller households may
imply younger families. In fact, it is reflected in the observation that small households tended to have younger heads
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Table 2: Counts (%), proportions (%), and mean and standard deviation (mean (SD)) of selected variables for mothers
living in small (≤5 members) vs large (>5 members) households

DHS Survey Count (%)
Household Size

% Neonatal
Deaths

% Female Head
of Household

Mean (SD) Births
in the last 5 Years

Mean (SD) Age
of Head of Household

Country Year Small Large Small Large Small Large Small Large Small Large
Burkina

Faso
2010 3734 (36) 6630 (64) 4.4 3.8 11.1 4.5 1.4 (0.5) 1.5 (0.6) 33.9 (10.0) 46.5 (11.7)
2003 1850 (25.1) 5517 (74.9) 6.4 4.1 10.8 3.2 1.4 (0.5) 1.5 (0.6) 34.6 (11.0) 49.0 (13.1)

DR Congo 2013 4444 (39.4) 6849 (60.6) 5.5 4.0 27.4 16.7 1.5 (0.6) 1.7 (0.7) 33.0 (10.5) 43.2 (11.4)
2007 2161 (39.4) 3322 (60.6) 7.5 5.1 19.9 14.7 1.6 (0.7) 1.7 (0.7) 33.3 (10.4) 43.5 (11.4)

Ethiopia 2016 3548 (49.3) 3645 (50.7) 5.6 4.0 26.7 17.6 1.3 (0.5) 1.6 (0.7) 33.6 (11.1) 42.7 (11.6)
2011 3699 (47.6) 4065 (52.4) 6.6 4.3 26.0 14.8 1.4 (0.6) 1.6 (0.7) 32.8 (10.5) 42.9 (12.1)

Ghana 2014 2424 (56.5) 1870 (43.5) 4.1 3.8 32.4 15.2 1.3 (0.5) 1.5 (0.6) 36.4 (11.3) 45.6 (12.2)
2008 1172 (54.6) 975 (45.4) 4.3 5.0 35.6 18.1 1.3 (0.5) 1.5 (0.6) 35.9 (11.9) 46.0 (12.6)

Kenya 2014 8167 (54.6) 6782 (45.4) 3.5 2.6 33.9 27.6 1.3 (0.5) 1.5 (0.6) 33.7 (10.4) 44.0 (12.3)
2008 2206 (54) 1876 (46) 4.7 3.8 34.9 24.4 1.4 (0.6) 1.6 (0.7) 33.8 (10.9) 43.9 (12.5)

Nigeria 2018 9620 (44.1) 12172 (55.9) 6.5 5.0 15.7 6.3 1.5 (0.6) 1.6 (0.7) 36.6 (11.1) 45.8 (11.6)
2013 8486 (42) 11706 (58) 7.2 5.2 17.0 7.6 1.5 (0.6) 1.6 (0.7) 36.0 (11.3) 45.9 (11.8)

Senegal 2017 738 (8.7) 7748 (91.3) 5.7 3.8 39.2 22.7 1.3 (0.5) 1.4 (0.6) 41.3 (12.4) 53.8 (14.6)
2015 406 (8.7) 4275 (91.3) 3.2 3.7 39.4 22.2 1.4 (0.5) 1.5 (0.6) 41.1 (12.8) 52.9 (14.6)

Tanzania 2015 2875 (40.8) 4175 (59.2) 4.3 3.2 20.2 16.3 1.3 (0.5) 1.5 (0.7) 35.1 (11.1) 47.2 (13.0)
2010 2182 (40.7) 3176 (59.3) 5.5 3.7 20.0 16.5 1.4 (0.6) 1.6 (0.7) 35.2 (10.9) 46.2 (12.9)

South
Africa

2016 1711 (56.4) 1325 (43.6) 2.8 2.2 50.1 59.8 1.1 (0.4) 1.2 (0.4) 40.2 (14.7) 54.9 (15.4)
1998 1910 (46) 2238 (54) 2.8 2.7 45.6 48.2 1.2 (0.4) 1.3 (0.5) 38.5 (13.3) 51.9 (14.5)

Zambia 2013 3756 (40.2) 5597 (59.8) 4.2 2.9 26.1 17.5 1.4 (0.5) 1.5 (0.6) 33.3 (10.6) 42.7 (10.8)
2007 1864 (44.9) 2284 (55.1) 6.5 3.8 24.5 16.0 1.5 (0.6) 1.6 (0.6) 33.3 (10.8) 42.2 (11.4)

of households. For example, for Nigeria 2018, small households were headed by persons who were 9.2 years (95%
CI: 8.9, 9.6) younger than those in large households on average. Other countries and survey timesteps show similar
findings that female respondents from smaller households were younger, with the exception of South Africa.

Discussion

Our study used machine learning to investigate nationally-representative DHS surveys from 10 sub-Saharan countries.
Our investigations suggest that in most countries, neonatal deaths accounts for the majority of the loss of children
under 5 years and that the percentages of neonatal deaths have historically remained high despite a decrease in under-5
deaths. We found that the number of births in the past 5 years was positively correlated with neonatal mortality, while
household size was negatively correlated with neonatal mortality. Furthermore, we established that mothers living in
smaller households have a higher risk of neonatal mortality compared to mothers living in larger households. Factors
such as the age and gender of the head of the household appear to influence the association between household size
and neonatal mortality. It is worth noting that these findings are not causal relationships and that additional work is
needed to fully characterize household size as a determinant of neonatal mortality.

The positive correlation between the reported number of births and neonatal mortality reflected in our results confirms
the previously known observation about birth spacing as a key determinant of neonatal mortality19. Based on evidence
from several studies, the World Health Organization recommends waiting at least 2 to 3 years between pregnancies
to reduce the likelihood of adverse maternal and neonatal outcomes20. In this study, using machine learning, we
confirmed that birth spacing is plausibly one of the single most important factors associated with neonatal mortality
while accounting for heterogeneity due to other variables. While this finding validates the use of a machine learning
approach, it is worth noting that predictors of neonatal mortality are multifactorial. For example, neonatal mortality
has been associated with several factors such as short birth intervals8, early pregnancy8, maternal obesity9, maternal
education21, maternal empowerment (e.g. through family planning choices)21, and partner controlling behavior and
violence22. Furthermore, neonatal mortality is influenced by variability in antenatal care23, as well as the location of
delivery (e.g. home vs. health facility), skilled attendance at birth, and infections during delivery21,24. Although most
of these factors were picked by our models, they appeared to be less important for predicting neonatal mortality.
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Interestingly, the inverse correlation between household size and neonatal mortality identified in this study was an
unexpected finding. There is a dearth of literature on this subject, but it is plausible that household size is a surrogate
measure of the capacity of a household to support its mothers and their newborns through, for example, receiving
advice from more educated and experienced household members25. However, such interpretations must be taken
with caution since understanding the correlation between household size and neonatal mortality requires further work
to characterize the phenomenon, such as a child’s death moving a household from large to small. Additionally, the
household size is measured at the time of the survey as opposed to the time of the death, and may not necessarily
reflect the household composition at that time.

To the best of our knowledge, our study is one of the first to apply an ensemble machine learning approach across
multiple sub-Saharan DHS surveys. Traditionally, DHS data is primarily designed for generating population-level
aggregated statistics such as maternal mortality rates, and the secondary use of DHS data for insight generation is
associated with several limitations. For example, since the surveys are self-reported, reporting and recall bias is highly
likely for retrospective data relying on the memory of past events by the participants, although less so for events
like mortality than for questions like health access. Furthermore, while DHS collects household and individual data,
they do not sufficiently collect data on healthcare access and healthcare-seeking behaviors beyond basics like facility
delivery and access to antenatal care that would affect outcomes such as neonatal mortality. Additionally, we generated
neonatal mortality data directly from the birth histories within each analyzed DHS survey, and this approach may suffer
from errors in the data due to the omission of information about the deceased neonates.

A subtle limitation of machine learning models is that they will identify and exploit any pattern made available to
them – even if that pattern would be considered ‘cheating’ or ‘obvious’ by a human. This is sometimes referred to as
label leakage. We uncovered one such example of label leakage and we acknowledge that there may be others. In the
uncovered example, label leakage involved two survey questions that the model learned to combine together. These
questions were How many births in the past 5 years? and ‘How many children do you have? If a mother stated that
she has 1 child but reported 2 births in the past 5 years, simple subtraction could conclude that one of her children
has died. Due to the flexibility of the ensemble models, this type of interaction between variables would be found and
used to create a technically more accurate model. However, these are not the type of interactions we wish to discover.
To correct for this ‘leaking’ we removed the How many children do you have? question from the analysis.

Conclusion

Despite an overall decline in under-5 deaths over time, the reduction in neonatal deaths has been much lower, and
as a result, neonatal deaths account for the largest proportion of child mortality in most countries. Importantly, there
is significant consistency in neonatal mortality patterns across time and space. We confirmed birth spacing as one
of the most important determinants of neonatal mortality and discovered the inverse relationship between household
size and the risk of neonatal mortality that warrants further investigation. As avenues for future work, we will apply
other machine learning algorithms to verify findings generated by our ensemble approach. We will use individual
conditional expectation (ICE) plots26 to visualize and investigate the dependence of neonatal mortality predictions
on specific features for individual subjects separately and in comparison to the overall partial dependence plots. Fur-
thermore, we will develop functionalities that enable stakeholders to determine accurate representations of vulnerable
subpopulations by identifying and visualizing the ICE plots of subgroups of individuals that show the highest change
in prediction (risk of outcome) as the values of a given feature increases or decreases. This will involve developing
anomalous pattern detection techniques27 for efficiently scanning the exponential number of subsets in a dataset to
generate insights about specific subpopulations that are anomalous. Our work demonstrates the practical application
of machine learning for generating insights through the inspection of black box models, and the applicability of us-
ing machine learning techniques to generate novel insights and alternative hypotheses about phenomena captured in
population-level health data.
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