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Abstract Computed Tomography (CT) plays an important role in lung malignancy diagnostics, therapy assessment,
and facilitating precision medicine delivery. However, the use of personalized imaging protocols poses a challenge
in large-scale cross-center CT image radiomic studies. We present an end-to-end solution called STAN-CT for CT
image standardization and normalization, which effectively reduces discrepancies in image features caused by using
different imaging protocols or using different CT scanners with the same imaging protocol. STAN-CT consists of two
components: 1) a Generative Adversarial Networks (GAN) model where a latent-feature-based loss function is adopted
to learn the data distribution of standard images within a few rounds of generator training, and 2) an automatic
DICOM reconstruction pipeline with systematic image quality control that ensures the generation of high-quality
standard DICOM images. Experimental results indicate that the training efficiency and model performance of STAN-
CT have been significantly improved compared to the state-of-the-art CT image standardization and normalization
algorithms.

1 Introduction

Computed Tomography (CT), one of the widely used modalities for cancer diagnostics1,2, provides a flexible image
acquisition and reconstruction protocol that allows adjusting kernel function, amount of radiation, slice thickness, etc.
to meet clinical requirements3. The non-standard protocol setup broadens the scope of CT uses effectively, but at
the same time, it creates a data discrepancy problem among the acquired images4. For example, the same clinical
observation with two different CT acquisition protocols may result in images with significantly different radiomic
features, esp. intensity and texture5,6. As a result, this hinders the effectiveness of inter-clinic data sharing and the
performance of large-scale radiomics studies5.

The CT data discrepancy problem could be potentially addressed by defining and using a standard image acquisition
protocol. However, it is impractical to use the same image acquisition protocol in all the clinical practices, not only
because there are already multiple CT scanner manufactures in the market7, but also the limitations of using a fixed
protocol for all patients under all situations in diagnosis, staging, therapy selection, and therapy assessment of tumor
malignancies8. We propose to develop an image standardization and normalization tool to “translate” any CT images
acquired using non-standard protocols into the standard one while preserving most of the anatomic details4. Math-
ematically, let target image x be an image acquired using a standard protocol, given any non-standard source image
x′, the image standardization and normalization tool aims to compose a synthetic image x̂ from x′ such that x̂ is
significantly more similar to x than to x′ regarding radiomic features.

In recent years, deep-learning-based algorithms have been developed for image or data synthesis9,10. U-Net is a special
kind of fully connected U-shaped neural network for image synthesis11. Built upon U-Net or a similar neural network
structure, Generative Adversarial Network (GAN) is a class of deep learning models, in which two neural networks
contest with each other9. Being one of the mostly-used deep learning architectures for image synthesis, GAN has been
utilized on CT image standardization10. In GANai, a customized GAN model is trained using an alternative training
strategy to effectively learn the data distribution, thus achieving significantly better performance than the classic GAN
model and the traditional image processing algorithm called Histogram matching10,12,13. However, GANai focuses on
the relatively easier image patch synthesis rather than the whole DICOM image synthesis problem10.
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Figure 1: GAN architecture of STAN-CT. The generator G is a U-Net with a new latent loss for synthesizing image patches. The
discriminator D is an Fully Convolutional Network classifier for determining whether a synthesized image patch is fake or real.

To address the CT image standardization and normalization problem, tools are needed to reconstruct synthesized data
that have the common feature space as the target data10. This poses two fundamental computational challenges: 1) to
effectively map between target images and synthesized images with great pixel-level details, and 2) to maintain the tex-
ture consistency among the synthesized images. In this paper, we present an end-to-end solution called STAN-CT. In
STAN-CT, we introduce two new constrains in GAN loss shown in Fig. 1. Specifically, we adopt a latent-space-based
loss for the generator to establish a one-to-one mapping from target images to synthesized images. Also, a feature-
based loss is adopted for the discriminator to critic the texture features of the standard and the synthesized images.
Furthermore, to synthesize CT images in the Digital Imaging and Communications in Medicine (DICOM) format14,
STAN-CT introduces a DICOM reconstruction framework that can integrate all the synthesized image patches to
generate a DICOM file for clinical use. The framework ensures the quality of the synthesized DICOM by systemat-
ically identifying and pruning low-quality image patches. In our experiment, by comparing the synthesized images
with the ground truth, we demonstrate that STAN-CT significantly outperforms the current state-of-the-art models. In
summary, STAN-CT has the following advantages:

1. STAN-CT provides an end-to-end solution for CT image standardization and normalization. The outcome of
STAN-CT is DICOM image files that are ready to be loaded into clinical systems directly.

2. STAN-CT adopts a novel one-to-one mapping loss function on the latent space. It enforces the generator to
draw samples from the same distribution where the standard image belongs to.

3. STAN-CT uses a novel feature-based loss to improve the performance of the discriminator.

4. STAN-CT is effective in model training. It can quickly converge within a few rounds of training processes.

2 Background

CT images are one of the key modalities in tumor malignancy studies15. The CT image discrepancy problem due to
the common use of non-standard imaging protocols poses a gap between CT imaging and radiomics studies. To fill
the gap, clinical image synthesis tools need to be developed to translate images acquired using non-standard protocols
into standard ones.

Image or data synthesis

Image or data synthesis is an active research area in computer vision, computer graphics, and natural language pro-
cessing9. By definition, image synthesis is a process of generating synthetic images using limited information16. The
given information includes text description, random noise, or any other types of information. With the recent break-
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through in deep learning, image synthesis algorithms have been applied in the areas of text-to-image generation17,
detecting lost frame in a video18, image-to-image transformation19, and medical imaging20 successfully.

U-net

U-Net is a special fully connected neural network originally proposed for medical image segmentation11. Precise lo-
calization and relatively small training data requirements are the major advantages of using U-Net11. A U-Net usually
has three parts, down-sampling, bottleneck, and up-sampling, where the up-sampling and down-sampling are symmet-
ric. There are also connections from down-sampling layers to the corresponding up-sampling layers to recover lost
information during down-sampling. However, while U-net is effective on generating structural information, it suffers
from learning and keeping texture details21. This issue can be overcome by adopting U-net in a more sophisticated
generative model called Generative Adversarial Networks (GANs)9.

Generative Adversarial Network

Generative Adversarial Networks (GAN), which are often used for data and image synthesis9, normally consist of
a generator G and a discriminator D. The generator that could be a U-Net is responsible for generating fake data
from noise, and the discriminator tries to identify whether its input is drawn from the real or fake data. Among all
the GAN models, cGAN is capable of synthesizing new images based on a prior distribution22. However, since the
image features of the synthesized data and that of the target data may not fall into the same distribution, cGAN may
not be directly applicable for the CT image standardization problem. GANai is a customized cGAN model, in which
the generator and the discriminator are trained alternatively to learn the data distribution, thus achieving significantly
better performance than the vanilla cGAN model. However, GANai focuses on the relatively easier image patch
synthesis problem rather than the whole DICOM image synthesis problem.

Disentanglement

In a generative model, the latent space often plays a vital role in target domain mapping. Appropriate latent space
learning is crucial for generating high quality data. Disentanglement is an effective metric that provides a deep un-
derstanding of a particular layer in a neural network23. Network disentanglement can assist to uncover the important
factors that contribute to the data generation process24.

Alternative Training Strategy

Model training is one of the most crucial parts of GAN because of the special network architecture (i.e. the generator
needs to fool the discriminator while the discriminator tries to detect true data distribution from the false one). In
the alternative training mechanism, when one component is in training, the other one remains unchanged. Also, each
component has a fixed number of training iterations. A variant of alternative training was proposed in Liang et al.10

named fully-optimized alternative training, where the model training is divided into two phases called G-phase and D-
phase. In the G-phase, D is fixed, andG needs to achieve a certain accuracy θG before reaching the maximum training
step tmax. In the D-phase, G is fixed, and D needs to achieve a pre-defined performance θD or it stops when reaching
a maximum training step tmax. When one training phase is completed, the other phase will begin. The GANai training
will continue until an optimal result is achieved or the maximum number of epochs is reached. Furthermore, instead
of performance competing between a single copy of D and G, multiple copies of Gs and Ds compete with each other.
For example, a G needs to fool multiple Ds before its phase is over. Also, a rollback mechanism is implemented in
GANai so that if a component is not able to fool its counterpart within limited steps, it rolls back to the beginning status
of the current phase and starts again. This alternative training mechanism has been successfully applied to address the
CT image standardization problem.

3 Method

With STAN-CT, we attempt to address the long-standing CT image standardization problem. STAN-CT consists of a
novel GAN model and a dedicated DICOM synthesis framework to meet the clinical requirements.

1102



Standardizing CT image patches

Similar to the conventional GAN models, the STAN-CT GAN model has two components, the generator G and the
discriminator D. G is a U-shaped network11 consisting of an encoder and a decoder. Both the encoder and the
decoder consist of seven hidden layers. There is a skip connection from each layer of the encoder to the corresponding
layer of the decoder to address the information loss problem during the down-sampling. D consists of five fully
connected convolutional layers. Fig. 1 illustrates the GAN architecture of STAN-CT. The detailed architecture and
the hyperparameters of STAN-CT used in our experiments are specified in section 4 sub-section titled STAN-CT
architecture and hyperparameters. Mathematically, let x be a standard image and x′ be its corresponding non-standard
image. The aim of the generator is to create a new image x̂ that has the same data distribution as x. Meanwhile, the
discriminator determines whether x and x̂ are from the standard image distribution.

Discriminator Loss. In a GAN model, the performance of D and G increases accordingly. We propose to adopt two
losses for the discriminator training, i.e. the WGAN25 adversarial loss function to critic the standard and non-standard
images and the fetcher-based loss. WGAN is a stable GAN training mechanism that provides a learning balance
between G and D 26. STAN-CT adopts the WGAN-based adversarial loss of the discriminator defined as:

Ladv(D) = Ow
1

m

m∑
i=1

[f(x(i))− f(G(x′(i)))] (1)

where w is the hyper-parameters of D, m is the batch size, x′(i) is the input (non-standard image), and x(i) is the
corresponding standard image. In addition to the WGAN-based adversarial loss, STAN-CT introduces a new feature-
based loss function Lfeat. To improve generator diversity, a similar feature-based loss function has been used in Yang
et al.27. Here, we use the feature space ofD instead of a secondary pre-trained network to maintain a balanced network
(i.e. D and G are not too strong or too weak compared with other). The feature-based loss is described in Eq 2:

Lfeat = E(x)[
1

V
‖φ(D(G(x′)))− φ(D(x))‖] (2)

where φ is the feature extractor and V is the volume of the feature space, and G(x′) is an image generated by G and x
is the target image. Finally, let λ1 be a wight factor (λ1 ∈ [0, 1]), the total loss of D that combines the WGAN-based
loss Ladv(D) and the feature-based loss Lfeat is defined as:

L(D) = Ladv(D) + λ1LDfeat
(3)

Generator Loss. The generator loss consists of three components, i.e. the WGAN-based loss, the latent loss, and the
L1 regularization. The WGAN-based loss, which is used to improve network convergence, is defined as:

Ladv(G) = Oθ
1

m

m∑
i=1

f(G(x′
(i)
)) (4)

where θ represents all the hyper-parameters of G, x′(i) is a source image, and f is 1-Lipschitz function, which returns
the Earth-Mover (EM) distance from one metric space to another.

It is the latent space that connects the distribution of an input domain and an output domain in the same generative
model, which allows a smooth domain translation28. Inspired by Mao et al.28, we propose a new latent-feature-based
loss function to enforce one-to-one mapping between the synthesized image and the standard image. Specifically,
the latent loss Llat aims to minimize the distance between the latent distribution of the synthesized images and their
corresponding standard images.

Llat =
∥∥zx − zG(x′)

∥∥ (5)

where z stands for the latent vector,G(x′), and x is its corresponding standard image. Finally, the total loss ofG L(G)
is defined as:

L(G) = Ladv(G) + λ2LGlat
+ λ3

1

m

m∑
i=1

|x−G(x′)| (6)

where λ2 ∈ [0, 1] and λ3 ∈ [0, 1] are wight factors. 1
m

∑m
i=1 |x−G(x′)| is the L1 regularization function.
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Figure 2: STAN-CT DICOM-to-DICOM image standardization framework. (a) Soft tissue image patches are generated from
the input DICOM files, ready for image standardization and normalization. (b) For all the soft tissue image patches, new image
patches are synthesized using STAN-CT generator. The quality of the new image patches is checked using STAN-CT discriminator.
(c) All the synthesized soft-tissue image patches are integrated and are filtered by a soft tissue image mask generated using the input
DICOM image. DICOM image quality is checked by examining box artifacts and empty pixels. (d) The synthesized and the original
non-standard DICOM image files will be viewed side-by-side by radiologists using a PACS reading workstation. The radiologists’
reports will be used to further evaluate the quality of the standardized CT images. Meanwhile, image texture features will be
extracted for automatic performance evaluation.

DICOM Reconstruction Framework

STAN-CT presents a DICOM-to-DICOM reconstruction framework for systematic DICOM reconstruction. The
DICOM-to-DICOM reconstruction framework includes four additional components to facilitate processes such as
image patch generation and fusion (see Fig. 2). Each component has a unique quality control unit (red diamond box)
that ensures the outputs are free from defects.

Step 1. soft tissue image patch generation: The first step of STAN-CT DICOM-to-DICOM image standardization
is soft tissue image patch generation. Image patches with size between 100 and 256 are randomly generated using the
input DICOM image. An image patch is a soft tissue image patch if at least 70% of the pixels are in the soft tissue
range (Hounsfield unit value ranging from -1000 to 900). The process will continue until each soft-tissue image patch
contains at least 50% overlapped pixels.

Step 2. standard image patch synthesis: With a trained STAN-CT generator, a soft-tissue image patch obtained in
the previous step will be standardized (see Section 3 for details).

Then, the synthesized image patches will be examined by STAN-CT discriminator. If a synthesized image patch can
fool the discriminator, it is considered as a qualified synthesized image patch. Otherwise, the synthesized image patch
will be discarded. This step ensures the quality of the synthesized image patches.

Step 3. standard DICOM image generation: Given all the qualified synthesized image patches, we first normalize
the pixel intensity from gray-scale to the Hounsfield unit using:

PHU =
Pg −min(x̂g)

max(x̂g)−min(x̂g)
(MAX −MIN) (7)

where PHU and Pg is the pixel value in Hounsfield unit and gray-scale unit respectively, x̂g is a qualified synthesized
image patch, and MAX and MIN are the maximum and minimum CT number of a source DICOM.

Meanwhile, with a soft tissue image mask created from the original DICOM images with Hounsfield unit ranging from
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−1000 to 900, the non-soft tissue parts of the synthesized and normalized image patches will be discarded. Finally,
we integrate all the valid soft tissue patches to generate the integrated synthesized images.

The quality of the integrated synthesized images will be checked using a quality control unit, which inspects whether
there is any box artifacts or missing values. If some artifacts are identified, the corresponding image patches will be
re-integrated by cropping boundary pixels.

Step 4. DICOM image evaluation: In the DICOM image evaluate step, both the synthesized and the original non-
standard DICOM image files will be viewed side-by-side by radiologists using a PACS reading workstation. Radi-
ologists will be asked to evaluate image quality, estimate the acquisition protocol, and extract tumor properties. The
radiologists’ reports will be used to evaluate the quality of the standardized CT images. Meanwhile, with all the
synthesized DICOM files generated in the previous step, image texture features will be automatically extracted and
compared for automatic performance evaluation.

4 Experimental result
Data

For the training data, we used total of 14,688 CT image slices captured using three different kernels (BL57, BL64,
and BR40) and four different slice thicknesses (0.5, 1, 1.5, 3mm) using Siemens CT Somatom Force scanner at the
University of Kentucky Medical Center. STAN-CT adopted BL64 kernel and 1mm slice thickness as the standard
protocol since it has been widely used in clinical practice. Random cropping was used for the image patch extraction
and resized into 256×256 pixel patches. Data augmentation was done by rotating and shifting image patches. Finally,
a total of 49,000 soft-tissue image patches were generated from the CT slices and were used as the training data of
STAN-CT. Two testing data sets were prepared for STAN-CT performance evaluation. Both data sets were captured
using Siemens CT Somatom Force scanner at the University of Kentucky Medical Center hospital. The first testing
data were captured using the non-standard protocol BR40 and 1mm slice thickness. The second testing data were
captured using the non-standard protocol BL57 and 1mm slice thickness. The image patch generation step was the
same as that of the training data. Each test data set contains 3,810 image patches.

STAN-CT architecture and hyperparameters

STAN-CT GAN model consists of a U-Net with fifteen hidden layers and an FCN with five hidden layers. The
4 × 4 kernel is used in the convolutional layer. LeakyRelu29 is adopted as the activation function in all the hidden
layers. Softmax is used in the last layer of FCN. Random weight is used during the network initialization phase. The
prediction thresholds for determining fake or real images is 0.01 and 0.99 respectively. Maximum training epochs
were set to 100 with a learning rate of 0.0001 with momentum 0.5. A fully optimized alternative training mechanism
(the same as GANai) was used for the network training. STAN-CT was implemented in TensorFlow30 on a Linux
computer server with eight Nvidia GTX 1080 GPU cards. The model took about 36 hours to train from scratch. Once
the model was trained, it took about 0.1 seconds to synthesize and normalize every image patch.

Evaluation Metric

For performance evaluation, we computed five radiomic texture features (i.e. dissimilarity, contrast, homogeneity,
energy, and correlation) using Gray Level Co-occurrence Matrix (GLCM). The absolute error E of each radiomic
texture feature was computed using:

E(Isyn, Itarget, f) =
|ϕ(Isyn, f)− ϕ(Itarget, f)|

ϕ(Itarget, f)
(8)

where ϕ is the GLCM feature extractor Isyn and Itarget is the synthesized image from STAN-CT and the target image
respectively. f is the corresponding feature space.
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dissimilarity 0.683 0.407 0.441 0.545
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homogeneity 0.028 0.018 0.019 0.024
energy 0.040 0.041 0.057 0.045
correlation 0.315 0.203 0.273 0.303

Table 1: Texture feature comparison between GANai,
STAN-CT and its two variants. Five texture features (dis-
similarity, contrast, homogeneity, energy and correlation)
were extracted from DICOM image patches. The absolute
error was reported for each feature.

Kernel Features

st
ra

ig
ht

-
fo

rw
ar

d

w
/o

ve
rl

ap
p-

ed
ch

ec
k

w
/r

ea
l/f

ak
e

ch
ec

k

ST
A

N
-C

T

BL57

dissimilarity 0.727 0.485 0.334 0.201
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energy 0.072 0.063 0.046 0.032
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BR40

dissimilarity 0.849 0.653 0.496 0.405
contrast 0.849 0.653 0.496 0.405
homogeneity 0.035 0.027 0.022 0.016
energy 0.048 0.045 0.051 0.040
correlation 0.386 0.345 0.289 0.201

Table 2: Texture feature comparison. Five texture fea-
tures were extracted from DICOM images constructed from the
same image patches using four different DICOM reconstruc-
tion methods. The averaged absolute error is reported for each
feature.

Table 3: Performance on tumor-specific tissues. Five texture features, i.e. dissimilarity, contrast, homogeneity, energy, and corre-
lation, were extracted from all the image patches of a tumor. The mean absolute error of each feature was reported.

Kernel Model dissimilarity contrast homogeneity energy correlation

BL57 GANai 0.124 ± 0.098 0.124 ± 0.098 0.018 ± 0.012 0.098 ± 0.054 0.877 ± 0.368
STAN-CT 0.114 ± 0.026 0.114 ± 0.026 0.017 ± 0.005 0.041 ± 0.019 0.847 ± 0.408

BR40 GANai 0.616 ± 0.104 0.616 ± 0.104 0.091 ± 0.018 0.222 ± 0.061 1.184 ± 0.646
STAN-CT 0.602 ± 0.081 0.602 ± 0.081 0.076 ± 0.011 0.182 ± 0.061 1.184 ± 0.646

Performance of image patch synthesis

Table 1 shows the absolute error of five GLCM-based texture features of STAN-CT, GANai (the current state-of-the-
art model), and two disentangled representation of STAN-CT on the soft tissues. In the model named “STAN-CT
w/o Llat”, we discarded from STAN-CT the latent loss function Llat of G. In the second one named “STAN-CT w/o
Lfeat”, we discarded the feature-based loss Lfeat ofD from STAN-CT. All the models were tested using kernel BL57
and BR40 with the same slice thickness (1mm). For kernel BL57, STAN-CT and its variants outperformed GANai in
all the texture features. For kernel BR40, STAN-CT was significantly better than GANai in four out of five features.
Also, Table 3 shows the feature comparison on the same tumor tissue. On all the five GLCM-based texture features
extracted from the images scanned using BL57 and BR40 kernels, STAN-CT clearly outperforms GANai.

The first four generators of each GAN models were selected for further analysis. Fig. 3 illustrates the change of the
absolute errors of the five GLCM-based texture features using the generators produced in the first four iterations of
alternative training of STAN-CT or GANai. The result indicates that STAN-CT can quickly reduce the errors in the
first a few iteration of the alternative training, while no clear trend was observed in the results of GANai.

Performance of DICOM reconstruction

A straightforward patch-based image reconstruction approach has three steps: 1) splitting a DICOM slice into over-
lapped or non-overlapped image patches; 2) standardizing each image patch; and 3) merging the standardized image
patches into one DICOM slice. A common problem in such a patch-based image reconstruction process is image
artifacts, such as boundary artifact or inconsistent texture. As shown in Table 2, the straightforward approach has the
highest absolute error on all the tested image features.

In STAN-CT, three quality control units were inserted into the framework, each being adopted to address a specific im-
age quality problem. Table 2 shows that STAN-CT achieved significantly better performance than the straightforward
method regarding the absolute errors on five selected texture features. Fig. 4 visualized the reconstructed DICOM
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Figure 3: Performance evaluation of STAN-CT generator. The first four generators of STAN-CT and GANai were compared
using the GLCM-based features. The x-axis denotes the training phase, and the y-axis denotes the absolute error of each selected
texture feature. The result indicates STAN-CT archived overall the best performance.

(a) DICOM reconstructed using a straightforward method. The red circle
highlights the boundary effect where two image patches were merged.
The green circle shows texture inconsistency.

(b) The same DICOM reconstructed using STAN-CT. No visual artifacts
were found according to the radiologist’s report.

Figure 4: DICOM Reconstruction Comparison

images using the two methods. The red (green) circle highlights the boundary effect where two image patches were
merged (texture inconsistency within a DICOM slice) using the straightforward method. In the same DICOM recon-
structed using STAN-CT, no visual artifacts were found according to the radiologist’s report.

We further compared STAN-CT with its two variants. The method named “w/ overlapped check” used only the first
quality control unit to check whether there were enough overlapped soft-tissue image patches. The method named “w/
real/fake check” used the first two quality control units, which not only checked if there were enough image patches,
but also examined whether the image patches were successfully standardized. Table 2 shows that both approaches
achieve better results than the straightforward method, but none of is better than STAN-CT, indicating all the three
quality control units are critical regarding artifact detection and removal. The standardized DICOM images, along
with the corresponding standard images, were reviewed by radiologists at the Department of radiology, University of
Kentucky using the picture archiving and communication system (PACS) viewer (Barco, GA, USA). The radiologists,
who were blinded to the image reconstruction algorithms, reported that no obvious difference was observed in lung
regions between the two kinds of images.

5 Discussion

First, by systematically removing every single component in the GAN model and in the DICOM reconstruction
pipeline using the the leave-one-out approach, we analyzed the impact of every component of STAN-CT. In STAN-CT,
both the latent loss LLat and the feature loss Lfeat are key components. To evaluate the impact of the loss functions,
two versions of STAN-CT GAN, where the latent loss or the feature loss has been removed respectively, were created.
Table 1 shows that none of them can achieve the same performance as that of STAN-CT regarding the GLCM-based
texture features. Also, Fig. 5 shows that the latent loss of STAN-CT LLat decreases during G-training, indicating
that the generator can reduce the gap between the distributions of the target image and the synthetic image effectively,
while maintaining flat during the D-training phases.

Second, we analyzed the STAN-CT training phase switches. During the STAN-CT training, the discriminator loss
(shown in Fig. 6) bounced between 0 and 2 rapidly in the early phase switches, indicating an efficient discriminator
and generator training. In the later phases, however, the training time increased significantly, indicating that both the
generator and the discriminator were converging. At the blue colored point, the discriminator failed to distinguish real
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Figure 5: Latent loss during GAN training. Latent loss is de-
creasing effectively in the G-training phase, while it keeps stable
in the D-training phase.
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Figure 6: Performance of the discriminator of STAN-CT in
different training phases. The discriminator loss decreases in
the D-training phase and increases in the G-training phase. The
blue-colored point indicates a failed-then-restart D-training.

from fake images after certain iterations of discriminator training. In this situation, the new discriminator was ruled
out and the D-training was restarted. If the D-training continued to fail, the STAN-CT alternative training can stop10.

Finally, the DICOM reconstruction pipeline includes four quality control units, each contributing to the improvements
of the quality of the resulting DICOM images. Table 2 shows that the contrast error of the straightforward DICOM
reconstruction (without using any of the quality control units) is 0.727, which can be reduced to 0.485 by adding
the overlapped soft tissue quality control, which provides consistent texture throughout the DICOM. It can be further
reduced to 0.334 (54% improvement) by adding the discriminator checker that ensures the success of image synthesis.
Eventually, if all the four quality control units were used, the contract error was reduced to 0.201 (72% improvement).

6 Conclusion

Data discrepancy in CT images due to the use of non-standard image acquisition protocols adds extra burden to
radiologists and also creates a gap in large-scale cross-center radiomic studies. We propose STAN-CT, a novel tool for
CT DICOM image standardization and normalization. In STAN-CT, new loss functions are introduced for efficient
GAN training, and a dedicated DICOM-to-DICOM image reconstruction framework has been developed to automate
the DICOM standardization and normalization process. The experimental results show that STAN-CT is significantly
better than the existing tools on CT image standardization. Our experiments demonstrate that inconsistency in CT
image acquisition can be effectively harmonized using STAN-CT. This work fits well with large-scale radiomic studies
in cancer researches where radiomic features can be extracted from standardized images rather than the original ones.
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