
Artificial Intelligence Decision Support for Medical Triage

Chiara Marchiori, PhD1, Douglas Dykeman, PhD1, Ivan Girardi, PhD1, Adam Ivankay,
MS1, Kevin Thandiackal, MS1, Mario Zusag, MS1, Andrea Giovannini, PhD1, Daniel

Karpati, MS2, Henri Saenz, MS2

1IBM Research, Rueschlikon, Switzerland
2Medgate AG, Basel, Switzerland

Abstract

Applying state-of-the-art machine learning and natural language processing on approximately one million of tele-
consultation records, we developed a triage system, now certified and in use at the largest European telemedicine
provider. The system evaluates care alternatives through interactions with patients via a mobile application. Rea-
soning on an initial set of provided symptoms, the triage application generates AI-powered, personalized questions to
better characterize the problem and recommends the most appropriate point of care and time frame for a consultation.
The underlying technology was developed to meet the needs for performance, transparency, user acceptance and ease
of use, central aspects to the adoption of AI-based decision support systems. Providing such remote guidance at the
beginning of the chain of care has significant potential for improving cost efficiency, patient experience and outcomes.
Being remote, always available and highly scalable, this service is fundamental in high demand situations, such as the
current COVID-19 outbreak.

Introduction

Shortage of physicians and increasing healthcare costs have created a need for digital solutions to better optimize
medical resources. In addition, patient expectations for mobile, fast and easy 24/7 access to doctors and health services
drive the development of patient-centered solutions. The need to be triaged, diagnosed and treated remotely or at
home without having to wait in crowded rooms has never been more relevant than in outbreak periods as the COVID-
19 one1–3. Symptom checkers and differential diagnosis generators (DDX) developed for the public in form of web
and mobile apps are at the crossroad of these needs. Already several of these developed over the past few years are
established on the market. Isabel Healthcare is mostly designed for medical doctors (MDs). It allows the user to
enter some demographic information and symptoms and simply suggests a list of all potential diagnoses, ranking them
by likelihood and red flagging the potentially dangerous ones. It also displays many literature and web resources
for a further exploration of the potential diagnosis (from popular Wikipedia to specialized medical sources such as
UptoDate). ADA is developed for the patient. It has a similar starting point, but then engages in a long dialog with the
patient to collect additional information on the initially entered symptom and the presence of additional ones. At the
end of the dialog, ADA provides a generic and high-level summary on the urgency of the condition and returns a list
of the most probable diagnoses (such as “n out of 10 people with the same symptoms had this condition”). For each
displayed diagnosis there is an associated recommendation, such as “this condition can usually be managed at home”,
“seek medical advice”, “seek emergency care”.

The telemedicine triage that we developed, the Artificial Intelligence Triage Engine (AITE), is an integral part of a
rich ecosystem of telemedicine services and is fundamentally different from symptom checkers in several aspects.
Starting with few input symptoms (see Figure 1), AITE engages in short and focused dialogues to finally provide
clear and simple recommendations to patients. Patients receive suggestions on which medical service provider to go
to depending on the characteristics of their condition. In critical cases, patients are recommended to call the telecare
provider immediately for a teleconsultation. If the health condition of the patient is assessed as being less urgent,
they can select an appointment of their choice via a phone or video consultation with a trained telecare specialist (see
Figure 2). Should patients require physical intervention, they will be referred to an appropriate care provider for a face-
to-face consultation. The advantages are clear. By using the mobile application, emergency cases can be treated faster
than in standard call center settings. Moreover by automatically filtering out patient requiring physical intervention,
telemedical resources can invest more time in treating telecare eligible patients. Furthermore, to recommend the most
appropriate course of action, the app draws from the patient’s personal medical history as well as from similar cases
handled by the telecare provider in the past.

793



Figure 1: Screenshoots of the medical application currently in use.

Built on case records and guidelines using AI-based methods, the system consists of the following building blocks:
1) an engine for the automated ingestion of unstructured clinical notes, the extraction of relevant medical entities and
their organization into a knowledge graph (KG); 2) a data-driven dialog system that allows a conversation with such
medical knowledge base and drives the patient interactions; 3) an inference engine able to suggest the most appropriate
recommendation in terms of point of care and time frame for treatment. All these components are depicted in Figure 2
and will be discussed in detail in the following sections.

Medical data

NLP Pipeline

Ontology
Knowledge Graph

Patient 
Interaction

Doctor notes
Medical guidelines
Literature

Preprocessing
Entity extraction
Relation extraction

Dictionary look-up
Parsing rules
Deep Learning

Data ingestion
HTML crawlers

Medical ontology
Records and medical 
entities KG

Concept clustering
(Non-) Taxonomic 
relation extraction

Recommendation
Engine

Mobile application
Dialogue with patients

Neural query expansion
Pseudo-relevance 
ranking

Patient risk assessment
Point of care, Time to 
treat

KG inference
Deep Learning
Explainable methods

Improvement 
Validation
Testing

Data 
extraction 
testing

Ontology 
Management 
Tool

Monitoring 
production 
settings

Disposition 
inference 
testing

... ... ...

... ... ...

Patient XY complains belly 
pain and cough since four 
days. Started taking 
medications today.

Patient XY complains belly 
pain and cough since four 
days. Started taking 
medications today.

Patient XY complains about 
belly pain and cough since 
four days. Started taking 
medications today.

Patient XY complains belly 
pain and cough since four 
days. Started taking 
medications today.

Patient XY complains belly 
pain and cough since four 
days. Started taking 
medications today.

Patient XY complains about 
belly pain and cough since 
four days. Started taking 
medications today.

Ingest Extract Organise Knowledge

Expose Medical Knowledge

Figure 2: Overview of the solution building blocks. Right column: improvement, testing and validation tasks per-
formed with physicians help.

Data

To build the triage application described here, we used more than 900k case records written in German and collected
over more than 7 years. This is only a fraction of the available data, since only records generated by top-ranked

794



doctors (based on years of experience and internal audits) were selected. The records are notes that call center agents
and doctors took while talking to the patients over the phone. They are structured in sections that contain demographic
data such as age and gender, previous illnesses, and free text descriptions of the patient’s current medical condition. It
should be noted that in this kind of records, the free text contains a shallow and subjective description of the patient’s
problem. Patient narrative can contain mention of recent surgery or treatments and whether the patient can perform
or not a specific test/movement, but no physical exams nor lab tests. Potential diagnoses consistent with the symptom
description are listed. The descriptions in the records are expressed in formal medical language as well as in layman’s
terminology. Typical for these settings, sentences are not always complete (e.g., subjects or verbs may be missing)
and include misspellings, dialect vocabulary, non-standard medical abbreviations and inconsistent punctuation. This
is a challenge for the linguistic processing of the case records.

NLP pipeline

A natural language processing (NLP) pipeline extracted medically relevant concepts from each case record. The
pipeline consisted of the following stages: (1) data preprocessing for misspelling correction and abbreviation expan-
sion, (2) named entity recognition (NER) and (3) concept clustering for the dynamic creation of an ontology of medical
concepts from the corpus. Acronyms and abbreviations used unambiguously were linked to the corresponding entities
directly in the medical dictionaries. Ambiguous acronyms and abbreviations were resolved, when possible, using algo-
rithms that include context for disambiguation. Although we were able to detect many entity types, i.e. from anatomy
and physiology to medical procedures and medicines, the main focus was on the extraction of current, non-current and
negative mentions of symptoms and diagnosis in simple and complex expressions. Special attention was devoted to
symptom and disease characterization in terms of body part location (e.g. pain in the leg, abscess in the arm), intensity
(strong, light), time duration (chronic, acute), activity by which the symptom manifests or changes in character (e.g.
dyspnea at rest, exertional dyspnea). For medical entity extraction we used a system based on the combination of dic-
tionary look-up, advanced rules and deep learning. The dictionaries used in the NER were built partly using existing
German-language medical dictionaries and ontologies (UMLS mapped German terms, ICD10, MedDRA, etc.) and
partly using the list of words contained in the case records. They therefore contain a mapping of technical and lay-
man’s terms, for a total of more than 140k unique words (including declination, capitalization). Negated mentions of
medical entities are very frequent in this type of records and were detected using German language-specific negation
particles or expressions.

For relations that associate a medical entity to a specific body part, advanced parsing rules were used to detect short
distance relations with high precision, while a deep learning (DL) stage was used to detect distant relations, improving
therefore the overall recall. We trained a DL binary classifier with positive and negative examples. The annotated
data consisted of 10k triples (E1, R, E2) manually generated on the raw texts; where E1 is a symptom, disease, or
operation, E2 is an anatomical location, and R is the positive or negative relation between the two entities. To obtain
a good balance of training examples, 50% triplets had R = “located in” and 50% triplets had R = “not located in”.
This approach can also be used in case of multi-relation extraction by building a binary classifier for every relation,
where the use of correctly balanced negated examples helps improve the training. The raw text data was processed
by (a) removing stop words, (b) transforming to lower case, (c) normalizing to ASCII characters, (d) transforming
delimiters (e.g. “;”, “,”, “.”) to word embeddings by adding white spaces, and (e) excluding any non-alphanumerical
characters and characters not in the delimiter set. For each word, we concatenated word-, positional- and part-of-
speech-features (POS-features) creating the input feature vector. Word features were constructed using pre-trained
word embeddings on the raw text data, using either word2vec4 or ELMo25 embeddings. Positional features were
defined as the combination of the relative distances of the current word from the entities E1 and E26. We explored
three different architectures Convolutional Neural Network7 (CNN) and Bidirectional Gated Recurrent Unit Network
(Bi-GRU), Bidirectional Long Short Term Memory Network (Bi-LSTM), combining the models proposed in8–11.

In the CNN architecture, the input feature vector with dimension k was fed to convolutional layers. These layers
encoded the word sequence into n-gram representations, to capture the contextual information. For a given sentence,
a weight matrix w ∈ Rm×k was applied to generate the new features ci from the window of words xi:i+m−1 where:

ci = Relu(w · xi:i+m−1 + b) , (1)

795



…

…
Position features (embeddings) ℝp

POS features ℝd

Word features (embeddings) ℝw

Pat. XY complains about 
persistent pain in stomach .

Vector 
representation
ℝlx(w+p+d)=ℝlxk

Sentence in input

Zero-padding to 
maximum sentence 

length

Global max-pooling

Output Softmax

…

ŷ 2 [0, 1]
Error ���! y 2 {0, 1}

…

Fully connected layers with dropout

Convolution windows 
out of {3, 5, 7}

Conv Layer with 100 convolutional 
filters for each window

(W1 ∊ ℝ3xkx100, W2 ∊ ℝ5xkx100,
W3 ∊ ℝ7xkx100)

…

…
Position features (embeddings) ℝp

POS features ℝd

Word features (embeddings) ℝw

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

Pat. XY complains about 
persistent pain in stomach .

Vector 
representation
ℝlx(w+p+d)

Sentence in input

Zero-padding to 
maximum sentence 

length

Bidirectional LSTMs

Attention mechanism 𝛼1 𝛼2
𝛼n

Output
Softmax

…

ŷ 2 [0, 1]
Error ���! y 2 {0, 1}

Figure 3: Architecture of the CNN model (left panel) and Bi-LSTM model (right panel) for relation extraction. In the
figure w, p, d are the dimensions of word-, positional and POS-features, l = 45 is the maximum sentence length.

with m convolutional window. This filter was applied to each possible window of words in the sentence

x1:m, x2:m+1, .....xn−m+1:n (2)

to produce a feature map:
c = [c1, c2, ......, cn−m+1], (3)

with c ∈ Rn−m+1. By applying multiple filters (denoted f ) on xi:i+m−1, we obtained a new representation of the
sentence. By setting different values for m, we obtained different n-gram representations of the sentence which
was input to a max pooling layer, similarly to6, 7, 12. The last layers of the CNN architecture comprised several fully
connected layers with dropout and a softmax for the classification. The architecture schema of the CNN model is
shown in the left panel of Figure 3. The dimensions of the word embeddings w, the positional embeddings p, the
number and size of the convolutional windows, the number of filters f , the number of fully connected layers and their
dimensions, the number of epochs and the dropout rate were tuned during training. In the Bi-GRU and Bi-LSTM
architectures, the input feature vector with dimension k was fed into Bi-GRU or Bi-LSTM layers, followed by an
attention and a softmax layer for the classification. The architecture schema of the Bi-LSTM is given in the right panel
Figure 3.

For all architectures, we used grid search to find the optimal values of the model-specific hyperparameters. We used
a randomly constructed cross-entropy loss function with mini-batch updating and Adam optimizer for five epochs. In
our experiment, we found optimal values for w = 50 and p = 20. The annotated data was split in 60% training, 10%
validation and 30% testing. Precision, recall and f-score on the test set on the different architectures are shown in
Table 1.

Notably, the described NLP pipeline is able to ingest one million patient records at run time and extract the relevant
medical entities and their relations in about two hours. Therefore, if needed, new, improved versions of the system
could be produced almost on a daily basis, by ingesting new case records whenever available. A highly performant
pipeline is also important for efficient debugging of the NLP algorithms.

Ontology and Knowledge Graph

Several approaches have been developed for ontology learning13, 14, which is defined as the extraction of terms, con-
cepts, taxonomic relations and non-taxonomic relations from data. An ontology can be built from scratch for example

796



Table 1: Prediction results of the different architectures on relation extraction (i.e., predicting whether the relation is
R1 orR2), where P(Rk), R(Rk), F(Rk) are precision, recall and f-score andR1 = “not located in”,R2 = “located in”.
Similar values were obtained by conducting several experiments and averaging the results.

Experiment P(R1) R(R1) F(R1) P(R2) R(R2) F(R2)
Word2Vec-CNN 0.77 0.84 0.81 0.82 0.74 0.77
Word2Vec-Bi-GRU 0.90 0.88 0.89 0.77 0.80 0.78
ELMo-Bi-LSTM 0.92 0.90 0.91 0.80 0.85 0.83

using clustering algorithms or from an existing ontology performing classification tasks.

The first step in the creation of the ontology in our application was the grouping of the annotations gathered through
the NLP pipeline that describe the same medical concept. For this process we used a hierarchical procedure, named
concept clustering. This is important to improve performance of the inference engine to ensure high recall for systems
based on patient similarity and reduce feature correlation for machine learning classifiers. It is especially laborious in
German, due to the frequent use of complex compound names that can be also expressed by several permutations of the
corresponding simple entities. For example, Augendruckschmerz - painful sensation of pressure in the eye - contains
the three simple entities [Auge, Druck, Schmerz] – [eye, pressure, pain] – and can also be expressed by Druckschmerz
am Auge, schmerzhaftes Druckgefühl hinter den Augen, etc. This concept clustering was performed in consequent
stages, at dictionary level first, by grouping all synonyms in one single dictionary entry (e.g. abdomen, belly) and at
annotation level, by grouping annotations with similar semantic blocks, e.g. [belly, pain], [abdominal, pain]. This
multi-stage approach can be used to tailor the level of granularity of the medical concepts to the different applications
and end users, in our case to medical triage and patients. For example, if such a level of detail is not required, all
explicit mentions of finger phalanxes can be merged into the concept finger at a customized annotation level.

The created medical concepts are then organized in an ontology, where the following relations among medical concepts
were considered: 1) child of (Taxonomic Relations) and 2) located in, negation of, characterization of, specification
of (Non-Taxonomic Relations). The relations child-of were automatically built using as a reference the relations
contained in two manually curated elementary ontologies, “Anatomy” (e.g. Augenlid is child of Auge - eyelid is child
of eye) and “General Symptom” (e.g. Druckschmerz is child of Schmerz), which were derived from standard medical
resources(e.g.,15). To summarize, more than one million medical expressions were merged into 17k medical concepts
specific to medical triage, related to a very broad range of problems (e.g. urinary, digestive, respiratory, locomotive,
skin, eye). These medical concepts were organized in a large ontology containing 17k nodes (15k symptoms, 2k
diseases) and 100k edges. In addition to a name and its synonyms, each medical concept was also characterized
by metadata, used, for example, to assign the semantic type (symptoms, disease), distinguish between red flags and
common symptoms, female or male specific conditions, psychological or other types of symptoms. Metadata are
consumed by the system which drives the dialogue with the end users (Q&A system).

The diagram of the stages used to construct the ontology is summarized in Figure 4.

It should be noted, that this solution allowed for the creation of an ontology of medical concepts directly and automat-
ically from the ingested data, whereby layman’s and technical terminology as well as many synonym expressions are
mapped to the same concept. In addition, this solution is useful for languages that are not yet well covered by standard
ontologies such as UMLS/SNOMED.

After ontology creation, the input case records together with the extracted medical concepts and metadata were auto-
matically ingested and organized in a language agnostic knowledge graph (KG). KGs are structured knowledge bases
(KBs) that store information in form of relationships (edges) between entities (nodes or vertices)16–18. The graph
is represented by its sparse adjacency matrices, indicating which vertices are connected with a given relation. The
created KG consisted in more than 1M of nodes of the type case record, age, gender, symptom, disease, red flags,
historical recommendation and 23M edges linking these entities, such as, for example symptom-to-patient, disease-
to-patient, patient-to-point-of-care, age-group-to-patient. The language agnostic KG was built for multilingual triage
applications by first using data in one specific language (German) as a reference and then mapping the medical en-

797



Medical Entities 
from NLP Pipeline Concepts

Relations

Non-
TaxonomicTaxonomic

Concept 
Clustering

Hierarchies
Construction

Relation
Extraction

form organised in

Elementary 
ontologies

Figure 4: Diagram of the stages used for ontology learning and their outputs. The stages are connected to the outputs
with dashed arrows.

tities (KG nodes) to numerical codes. To obtain language interoperability, these numerical codes should correspond
to international standards, such as the UMLS concept unique identifier, or ICD and SNOMED codes. However, the
coverage of these coding systems for the specific languages can vary considerably and therefore a complete mapping
was not possible.

Patient Interaction

An essential part of the triage process is the Q&A session, during which additional, carefully chosen symptoms are
asked to the patient. As the patients do not have the necessary knowledge for proper triage, this process ensures that
they enter all relevant symptoms, even the ones that they might consider irrelevant or unnecessary to input. Users might
not know correlations between symptoms that are important. The question generation algorithm drives the interaction
with the patient. Its goal is to identify which medical concepts need to be asked as the most relevant to the initial
input provided by the patient, emulating the human expert decision process. In our system, the question generation
algorithm is fully learnt from the data: the questions are determined dynamically based on the patient’s input and the
system’s knowledge on the training data. We explored two different approaches. One based on information retrieval
algorithms, i.e., pseudo-relevance feedback based query expansion techniques (such as entropy, mutual information)
and the second one on neural network techniques. In the first approach question generation and patient risk assessment
are jointly optimised so that the collection of additional relevant information from the patient aims to improve the
classification task. While in the second approach the two tasks are optimised (i.e., trained) separately.

For the neural network based model we constructed a training corpus masking one or multiple medical concepts from
each patient case and optimised the network to predict the obscured features. We split the data in 70% for training,
10% for validation and 20% for testing. Due to the high number of word features that may be obscured, the prediction
task becomes very hard. A random classifier would only achieve an accuracy of 5.6× 10−5 (inverse of the number of
word features) for the top one (i.e., highest probability) prediction.

Table 2: Testing results of a neural network based (NN) query expansion module compared to information retrieval
techniques. In the table we show the top-k accuracy (Acc@k), using inverse probability masking.

Model Acc@1 Acc@5 Acc@10
f 0.0095 0.087 0.175
BIM 0.0093 0.037 0.0578
CHI 0.0019 0.0336 0.0664
RSV 0.0107 0.0873 0.170
KLD 0.0016 0.0654 0.138
NN 0.13 0.26 0.34

In Table 2 we compared the performance of a neural network based query expansion model19 with the following

798



rankers: i) frequency-based (f), ii) binary independence model (BIM20), iii) χ2 value (CHI21), iv) Robertson selec-
tion value (RSV22), v) Kullback-Leibler divergence (KLD23, relative entropy). For a comprehensive review of those
methods see also24. The frequency-based ranking of the terms (f) ranks the most often occurring symptoms the high-
est, while low-occurrent ones lower as in the formula F (s,R) =

∑
r∈R Is∈r , where R is the set of relevant cases

retrieved, s is the token to be ranked and I the identity if the token s belongs to the set r, zero otherwise. A drawback
of this method is that it ranks potentially irrelevant symptoms high, that are only common because they are frequent
in the data, hence also in the relevant subset of cases. The binary independence model (BIM) ranks symptoms based
on the equation below:

BIM(s,R,N) = log
p(s|R)·[1− p(s|N)]

p(s|N)·[1− p(s|R)] , (4)

where s denotes the symptom to be ranked, R is the set of relevant retrieved cases and N is the case base. p(s|R)
and p(s|N) stand for the probabilities of the symptom occurring in the relevant set of cases and the whole case base
respectively. The exact probabilities are unknown but can be approximated with the counts. The χ2 value is used to
determine whether there is significant difference in expected values of two events. In our case, these two events are
the query occurrence in the relevant set of cases and the occurrence in the whole set of training data. The definition is
given in the equation below:

CHI(s,R,N) = log
[p(s|R)− p(s|N)]2

p(s|N)
. (5)

The Kullback-Leibler divergence (KLD, relative entropy) of the aforementioned probabilities is also used as a term
ranking metric. It is defined as written in the equation below:

KLD(s,R,N) = p(s|R)·log p(s|R)
p(s|N)

. (6)

KLD is a measure of how two probability distributions differ from each other. The Robertson selection value (RSV)
ranks the symptoms based on the product of their differences in occurrence probabilities and their term weight for each
document in the relevant records. This is intuitively promising as certain tokens might be low-occurrent compared to
others, yet of major importance for the downstream classification task, which is captured by a higher term weight.
RSV is described in the equation below:

RSV (s,R,N) =
∑
r∈R

w(s, r)·[p(s|R)− p(s|N)] , (7)

where w(s, r) denotes the weight of term s in the given relevant record r. NN based question generation systems
show very promising results in order to generate questions that are medically relevant and consistent with the initially
provided symptoms, hence fundamental for the construction of a QA system. The described experiment has been
used to benchmark different algorithms. In real settings, the question generation system is only one component of the
dialogue system and only a subset of medical conditions is used. A key aspects in the dialogue is the usage of the
medical ontology. Central to the development and digitization of AI-based decision support system are user acceptance
and user friendliness. In AITE, for example, patients can state their symptoms in a natural way since many different
forms of expressing the same symptom have been learned from the training data provided by the telemedicine provider.
An elastic search engine provides the mapping from the user input to the medical concepts using all variety of symptom
expressions extracted from the data and stored in the ontology. The Q&A part plays an important role in defining the
overall user experience, hence speed and usability are crucial. In order to achieve the best user experience, the Q&A
was customized according to patient age, gender, and medical status, and special attention was paid to a simple and
understandable formulation of the questions. Questions should be relevant to the input symptoms and conversations
should be short. This required that a final recommendation could be reached in only few interactions, with a short
waiting time between these, i.e., less than one second. Especially difficult was to design a system to avoid asking
“similar questions” that are interpreted by a human as repetitive and redundant. This was partially solved by using the
hierarchical structure of the medical ontology, by excluding all the children of a medical concept as possible question
candidates, if the patient has denied having their parent. For instance, the system will not ask any symptoms related to a
specific part of the abdomen (upper, lower, right, left, center) if the patient denies having an abdomen problem. These

799



Key Performance Indicators (KPIs) were explicitly evaluated during several testing campaigns in different settings
which led to continuous refinement of the Q&A model and logic.

Recommendation engine

The inference engine is the part of the system that will reason on the collected information and give a final recom-
mendation. The are several approaches to build a recommendation engine for patient risk assessment. In one type
of approach, patient similarity is calculated on the KG using node and edge weights, to identify the sub-graph region
containing the patient data most similar to the user. This region might also be used to retrieve the possible key missing
medical conditions, in systems where question generation and recommendation inference are coupled. Node and edge
weights in the KG are learned from the data and medical guidelines with cross entropy cost minimisation. In a second
type of approach, the KG is used as a knowledge base to extract feature vectors, (e.g. by learning embeddings from
the graph25–28, combining embeddings learned from the original text with graph features) to build a machine learning
classification engine. While it is not possible to report final accuracy levels due to confidentiality, we tested an imple-
mentation of this second approach which achieved f-scores as high as 87.5%, 74.0% and 90.4% on high-, medium- and
low-risk classes respectively, with a confidence threshold of 0.6. Based on CNN methods7, it is extensively described
in29. Finally, patient risk assessment can be performed with high classification performance also with advanced DL
techniques. In this latter case, however, the methods are perceived as a ‘black box” in terms of how they generate
the predictions from the input data and the addition of an explanation method is needed for user acceptance29. In
implementing the first approach, we modeled the retrieval of similar patients on the KG with a sequence of graph
operations. The technology was developed on proprietary libraries on sparse linear algebra16, 17. The final implemen-
tation was extremely efficient and allowed for very fast graph operations. The computation of graph traversals with
arbitrary depth for sparse adjacency matrices was of the order of milliseconds (O(ms)) for single graph traversal. High
performance was obtained by keeping the KG in memory. The response time for any single query was measured to
be well below the four seconds requirement with a single worker, as the system architecture enables scaling, and thus
efficient large-scale patient support. The KG was also used for traceability and transparency in the recommendation
rationale. The retrieval of similar patients to the users allows to understand why a certain recommendation was given
from historical cases.

Figure 5: Average application response time in seconds for increasing computational resources (number of workers)
with 30 concurrent user requests.

A key requirement for usability and user-friendliness was speed and scalability. Patient requests can be spread over the
available servers, and speedup from concurrency is linear with the available hardware resources as shown in Figure 5.
All patient interactions can be handled on average in less than one second with enough computational resources.

800



Subject matter expertise in clinical validation and testing

Clinical testing and validation were fundamental for the certification of the solution. In such a complex system, test-
ing and validation were performed at different levels, encompassing: 1) semi-automated validation of single building
blocks (e.g. NLP, Ontology, Q&A); 2) automated validation of the end-to-end output on a set of clinically validated
ground truth cases (automated recommendation testing); (3) validation of the system in real-life and production set-
tings. Whenever possible automated testing procedures were streamlined to the execution of the pipeline for the
creation of the system, so that they could be run at any update or modification of training corpus or pipeline compo-
nents. Physicians support was fundamental in all testing steps as depicted in the right column of Figure 2. Automated
recommendation testing was performed by first creating a ground truth set in which patient demographic, symptoms
and the corresponding recommendations were known and validated by clinicians. Recall, sensitivity, precision and f-
score were then calculated by comparing those recommendations with the ones given by the system on the same input.
Although metric values can not be disclosed, it has to be noted that all had to be above required thresholds (with a
special attention to emergency recall) for system release . Validation of the system in real life was performed by physi-
cians and other subject matter experts, by evaluating defined KPIs on a statistically significant sample during the usage
of the tool in different settings. To reduce the time and effort requested to the physicians in these activities, special
methods and tools were developed to enable a continuous loop between clinician review and quick implementation.

Conclusion

We have presented results, solutions and approaches used to build an interactive, AI-based system for automated
medical triage from a large corpus of case records. We have considered various aspects in developing such an end-
to-end system, from precision on the recommendation, transparency for trust, adoption and end-user friendliness, to
the system scalability in terms of number of users served. A key aspect of our research work was the development
of a pipeline capable of automatically generating a very rich ontology of medical concepts and a knowledge base,
directly from a large corpus of ingested records. This included a highly efficient DL-augmented NLP stage with high
precision and recall for the extraction of medical entities and their relations, and a language agnostic implementation of
a medical knowledge graph for multilingual applications. A second key aspect was the implementation of reasoning
methods on such a knowledge base, comprising a user-friendly, fully data-driven question generation technology
and an inference engine for the final recommendation. A third key aspect was that several testing procedures were
automated and streamlined to the development activities, for a continuous and consistent feedback implementation.
The abstraction and modularity of the underlined solutions are crucial for the reusability of the components in general
settings such as automated knowledge ingestion and organisation, development of dialogue systems and decision
support applications. Providing such automated triage services will help healthcare providers satisfy a larger number
of patients and focus their valuable medical resources on telecare eligible patients at the same time. The optimisation
of the medical resources will improve patient experience overall.

References

1. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus
indicating person-to-person transmission: a study of a family cluster. Lancet 2020 January 24.

2. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia.
N Engl J Med. 2020 January 29.

3. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med
2020 February 20.

4. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111-
3119.

5. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer.
Deep contextualized word representations. NAACL 2018.

6. Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via convolutional
deep neural network. In Proceedings of COLING 2014, pages 2335-2344.

801



7. Y. Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751, Doha, Qatar, October 2014.
Association for Computational Linguistics.

8. Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. Signal Processing, IEEE Transac-
tions on, 45(11), 2673–2681.

9. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation, 9(8):1735– 1780.
10. J. Elman. Finding Structure in Time. Cognitive Science, 14, 179-211, 1990.
11. Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre et al. 2014. Learning Phrase Representations using

RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734.

12. Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12:2493–2537.

13. Biemann, Chris. 2005. Ontology learning from text: a survey of methods. LDV Forum, 20(2):75–93.
14. W. Wong, W. Liu, and M. Bennamoun. Ontology learning from text: a look back and into the future. ACM

Computing Surveys (CSUR), 44(4):20, 2012.
15. Cornelius Rosse, José L.V. Mejino. A reference ontology for biomedical informatics: the foundational model of

anatomy. Journal of Biomedical Informatics 2003, 36(6):478-500.
16. Weber, Valéry and Laino, Teodoro and Pozdneev, Alexander and Fedulova, Irina and Curioni, Alessandro. 2015.

Semiempirical molecular dynamics (SEMD) I: midpoint-based parallel sparse matrix-matrix multiplication algo-
rithm for matrices with decay. Journal of Chemical Theory and Computation, 11:3145-3152.

17. Alessandro Curioni, Teodoro Laino, Valery Weber. Method for performing sparse matrix-matrix multiplication.
US 20170147530 A1, United States Patent and Trademark Office, 19 November 2015.

18. M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine learning for knowledge
graphs. Proceedings of the IEEE, 104:11–33, 2016.

19. D. Dykeman, A. Giovannini, I. Girardi, A. Ivankay, C. Marchiori, K. Thandiackal, M. Zusag. Patent filed (Docket
P201905699US02).

20. S.E., Robertson, K.S. Jones. Relevance weighting of search terms. Journal of the American Society for Informa-
tion science 27(3), 129–146 (1976).

21. T.E., Doszkocs. Aid, an associative interactive dictionary for online searching. Online Review 2(2), 163–173
(1978).

22. S.E, Robertson. On term selection for query expansion. Journal of documentation 46(4), 359–364 (1990).
23. C., Carpineto, R., De Mori, G., Romano, B., Bigi. An information-theoretic approach to automatic query expan-

sion. ACM Transactions on Information Systems (TOIS) 19(1), 1–27 (2001).
24. Hiteshwar Kumar Azad and Akshay Deepak. Query expansion techniques for information retrieval: a survey.

Information Processing & Management, 2019 56(5), 1698-1735.
25. Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repreentations. In Proceed-

ings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 701–710.
ACM, 2014.

26. Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale information
network embedding. In Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077.
ACM, 2015.

27. Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.

28. Zhilin Yang, William Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with graph embed-
dings. In International Conference on Machine Learning (ICML), 2016.

29. I. Girardi et al. Patient risk assessment and warning symptom detection using deep attention-based neural net-
works. LOUHI, 2018.

802


