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Abstract 

Because they contain detailed individual-level data on various patient characteristics including their medical 
conditions and treatment histories, electronic health record (EHR) systems have been widely adopted as an efficient 
source for health research. Compared to data from a single health system, real-world data (RWD) from multiple 
clinical sites provide a larger and more generalizable population for accurate estimation, leading to better decision 
making for health care.  However, due to concerns over protecting patient privacy, it is challenging to share individual 
patient-level data across sites in practice. To tackle this issue, many distributed algorithms have been developed to 
transfer summary-level statistics to derive accurate estimates. Nevertheless, many of these algorithms require multiple 
rounds of communication to exchange intermediate results across different sites. Among them, the One-shot 
Distributed Algorithm for Logistic regression (termed ODAL) was developed to reduce communication overhead 
while protecting patient privacy.  In this paper, we applied the ODAL algorithm to RWD from a large clinical data 
research network—the OneFlorida Clinical Research Consortium and estimated the associations between risk factors 
and the diagnosis of opioid use disorder (OUD) among individuals who received at least one opioid prescription. The 
ODAL algorithm provided consistent findings of the associated risk factors and yielded better estimates than meta-
analysis.  
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Introduction 

Electronic health record (EHR) systems have increasingly been implemented around the world and across the United 
States (U.S.), providing an extensive data resource for the conduct of biomedical research and improvement of health 
care1–3. Many large clinical data consortia have been founded to provide platforms and tools to collect and integrate 
EHR data from multiple clinical sites to obtain more reliable and generalizable conclusions4-7. The Patient-Centered 
Clinical Research Network (PCORnet) is a large national network of networks covering more than 100 million patients 
through 348 health systems in the U.S5, 6, funded by the Patient-Centered Outcomes Research Institute (PCORI), one 
of the prominent examples of large-scale, national research networks. The OneFlorida Clinical Research Consortium 
(OneFlorida CRC) is one of the 9 clinical data research networks (CDRNs) funded by the Patient-Centered Outcomes 
Research Institute (PCORI) that contribute to the national PCORnet to accelerate the translation of promising research 
findings into improved patient care. The OneFlorida network has collected robust longitudinal and linked patient-level 
real-world data (RWD) for ~15 million (>50%) Floridians, including data from Medicaid & Medicare claims, cancer 
registries, vital statistics, and EHRs from its clinical partners8.  

The OneFlorida data repository integrates various data sources from contributing organizations, which current 
included 12 healthcare organizations: 1) four academic health centers (i.e., University of Florida Health [UFHealth], 
University of Miami Health System [UMHealth], Florida State University and regional campus practice partners, and 
University of South Florida [USF]), 2) seven healthcare systems including Tallahassee Memorial Healthcare (TMH 
affiliated with Florida State University), Orlando Health (ORH), Adventist Health (AH, formerly known as Florida 
Hospital), Nicklaus Children’s Hospital (NCH, formerly known as Miami Children’s Hospital), Bond Community 
Health (BCH), Capital Health Plan (CHP), and Tampa General Hospital (TGH affiliated with USF), and 3) 
CommunityHealth IT—a rural health network in Florida. In addition, the OneFlorida network has obtained claims 
data from the Florida Medicaid (FLM) program. As a network, the OneFlorida CRC provides care for more than 50% 
of Floridians through 4,100 physicians, 914 clinical practices, and 22 hospitals with a catchment area covering all of 
the 67 Florida counties9. The scale of the data in OneFlorida is ever-growing and as of December 2019 included 
longitudinal and robust patient-level records of approximately 14.4 million Floridians and over 561.1 million 
encounters, 1.16 billion diagnoses, 1 billion prescribing records, and 1.44 billion procedures.  

The availability of EHR data allows opioid use disorder (OUD) to be studied using larger and more representative 
samples than previously was possible. OUD is defined in the Diagnostic and Statistical Manual of Mental Disorders, 
Fifth Edition (DSM–5) as a problematic pattern of opioid use that leads to clinically significant impairment or 
distress10. Currently, it is estimated that globally 27 million people have OUD11.  In 2018, over 2 million people in the 
U.S. suffered from OUD and over 47,600 people died from opioid overdose12. In 2017, the U.S. Department of Health 
and Human Services (HHS) announced a public health emergency due to the increasing prevalence of OUD and the 
occurrence of opioid overdose and called for strategies to control the opioid epidemic13. Studies have shown that OUD 
is heterogeneous in terms of demographic and clinical characteristics and treatment outcomes. For example, OUD 
disproportionally affects non-Hispanic Whites and Native Americans, younger adults, and those with a history of 
mental health disorders14. Geographic variations have also been documented, where rural areas are affected most by 
OUD15. Analyses based on data from a single site within a small geographically constrained area and relatively 
homogenous population cannot capture the geographic variations and the heterogeneity of OUD patterns that limit the 
generalizability of the findings. Therefore, in this analysis, we aim to utilize diverse multicenter data from the different 
sites in OneFlorida CRC to account for the potential variation in the OUD population. 

In multicenter studies, sharing data is a major challenge due to privacy concerns16. To circumvent the issue of sharing 
individual patient-level data, many distributed algorithms have been developed to jointly study multiple datasets by 
communicating only summary-level statistics17-20. Among them, Duan et al19-20 proposed a privacy-preserving One-
shot Distributed Algorithm for Logistic regression (ODAL), which can be used to identify risk factors of a binary 
healthcare outcome of interest. Compared to existing methods, ODAL requires only one round of communication 
across sites and can achieve high accuracy as a pooled analysis in which a logistic regression is fitted on the combined 
dataset20. However, Duan et al.20 evaluated the performance of ODAL using simulated data and random partition of a 
real-world dataset from a single health system. Such a dataset may not be representative of the multisite scenarios in 
a real-world data research network, where the data from each site were collected at different locations and with 
different population characteristics. 

In this paper, we evaluated the performance of the ODAL algorithm using real-world linked EHR and claims data 
from the OneFlorida network. We studied the association between OUD and several relevant clinical risk factors 
among individuals receiving at least one opioid prescription. Our results demonstrate that ODAL yields greater 
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accuracy than meta-analysis, which is currently the most popular and preferred method for distributed analysis. From 
the analysis, the significant risk factors for OUD that we identified are consistent with those reported in previous 
studies.  

 

Materials and Methods 

Data Source and Study Population 

OneFlorida contains robust longitudinal and linked patient-level 
RWD of ~15 million (>50%) Floridians, including data from 
Medicaid & Medicare claims, cancer registries, vital statistics, 
and EHRs from its clinical partners.  OneFlorida is a HIPAA 
limited data set (i.e., dates are not shifted and patients’ 9-digit zip 
codes are available) that contains detailed patient and clinical 
variables, including demographics, encounters, diagnoses, 
procedures, vitals, medications, and labs, following the PCORnet 
Common Data Model (CDM)21.  The OneFlorida data undergo 
rigorous quality checks at a data coordinating center (i.e., 
University of Florida [UF]), and a privacy-preserving record 
linkage process is used to deduplicate records of patients seen in 
different healthcare systems within the network22. Figure 1 
shows the geographic locations of OneFlorida partners.  

Based on the OneFlorida data, individuals whose first opioid 
prescriptions were made between 01/01/2012 and 03/01/2019 
were identified. The date of the first opioid prescription is set to 
be the index date. We considered a total of 9 most frequently used 
opioid medications, including codeine, fentanyl, hydromorphone, meperidine, methadone, morphine, and oxycodone23. 
These nine medications accounts for more than 90% of opioid prescriptions in the United States23-26. All brands and 
dosages of these medications were identified with RXCUI. The outcome of interest is the 12-month risk of OUD after 
patients’ first opioid prescription. Our primary outcome was the recorded diagnosis of OUD as a proxy for OUD, 
which was identified using the corresponding codes from the International Classification of Diseases, Ninth Revision, 
Clinical Modification (ICD-9-CM) (304.0, 305.5) and ICD-10-CM (F11.1*, F11.2*)27. Once eligible, all individuals 
remain in the cohort, regardless of whether they continue to receive opioid prescriptions until they are censored 
because of an OUD diagnosis or the end of the observation period. In addition, we excluded individuals with an OUD 
diagnosis prior to their first opioid prescription and those who had any cancer diagnosis. A total of 1,155,304 records 
were identified in OneFlorida. After the exclusion of patients with missing data, a total of 336,800 individuals were 
included in our final analysis from 5 sites. Table 1 displays the distribution of the included population across different 
sites. 
 
Table 1. Breakdown of study population by site. 
 

Site  OUD At-risk population OUD rate 

Site 1 47 31,836 0.15% 

Site 2 36 17,368 0.21% 

Site 3 16 3,379 0.47% 

Site 4 72 27,871 0.26% 

Site 5 930 256,115 0.36% 

All sources 1,407 336,711 0.42% 
 
Risk Factors 
Because the primary goal of this analysis is to show how ODAL performs compare to meta-analysis in RWD, we 
extracted only a set of demographic and clinical risk factors that were identified from the literature. All records 12 

Figure 1. The OneFlorida Clinical Research 
Consortium. 
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months before the first opioid prescription (i.e., the index date) and 3 months after the first opioid prescription were 
used. For patients who developed an OUD 3 month after the first opioid, their records before OUD diagnosis were 
used. We included demographic variables (age, race, gender, and insurance type), BMI, lipid panel results, smoking 
status, selected clinical diagnoses, and prescriptions. Because laboratory test results suffered from a high rate of 
missing values (>50% in the total study population), they were removed from the analyses. In addition, the clinical 
diagnoses that were made in <1% of the total study population were removed to minimize potential bias introduced 
by the small sample size. Finally, patients who had missing values for any risk factors were removed, as the current 
algorithms are unable to handle missing values and our sample size is sufficient to power the study even after removing 
patients with missing values. A total of 16 risk factors/predictors were included in the analysis. Table 2 displays the 
summary statistics for these predictors. Overall, patients diagnosed with OUD are younger and more likely to be male, 
non-Hispanic Whites, smokers, with Medicaid insurance, and have different clinical conditions that were included in 
the analysis as risk factors. 
 
Table 2. Characteristics of included risk factors between individuals developing incident of OUD diagnosis vs. 
those without OUD  

  Without OUD With OUD Overall 
  (n=335,610) (n=1,101) (n=336,711) 

Mean age, mean (SD) 47.7 (20.8) 43.9 (14.2) 47.7 (20.8) 
Gender    

Female 190,141 
(56.7%) 584 (53.0%) 190,725 

(56.6%) 

Male 145,469 
(43.3%) 517 (47.0%) 145,986 

(43.4%) 
Race/ethnicity    

Hispanic 27,047 (8.1%) 49 (4.5%) 27,096 (8.0%) 
Non-Hispanic black 79,952 (23.8%) 171 (15.5%) 80,123 (23.8%) 

Non-Hispanic White 215,855 
(64.3%) 863 (78.4%) 216718 

(64.4%) 
Other 12,756 (3.8%) 18 (1.6%) 12,774 (3.8%) 

Type of insurance    
Medicaid 64,633 (19.3%) 339 (30.8%) 64,972 (19.3%) 
Medicare 83,393 (24.8%) 246 (22.3%) 83,639 (24.8%) 

Cash or no payment* 24,984 (7.4%) 213 (19.3%) 25,197 (7.5%) 
Other 18,712 (5.6%) 32 (2.9%) 18,744 (5.6%) 

Other governmental payment 13,414 (4.0%) 17 (1.5%) 13,431 (4.0%) 

Private 130,474 
(38.9%) 254 (23.1%) 130,728 

(38.8%) 
BMI, mean (SD) 29.0 (8.07) 27.5 (7.33) 29.0 (8.10) 
Smoking    

Former smoker 80,357 (23.9%) 214 (19.4%) 80,571 (23.9%) 

Never smoker 179438 
(53.5%) 244 (22.2%) 179682 

(53.4%) 
Smoker 75,815 (22.6%) 643 (58.4%) 76,458 (22.7%) 

Alcohol use disorders (ICD-9: 291, 303; ICD-10: F10) 
1 9745 (2.9%) 75 (6.8%) 9820 (2.9%) 

Depression (ICD-9: 311; ICD-10: F33, F32) 
1 35,928 (10.7%) 260 (23.6%) 36,188 (10.7%) 

Anxiety (ICD-9: 300; ICD-10: F41) 
1 43,821 (13.1%) 348 (31.6%) 44,169 (13.1%) 
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Sleep disorders (ICD-9: 327; ICD-10: G47) 
1 27,585 (8.2%) 74 (6.7%) 27,659 (8.2%) 

Rheumatoid arthritis (ICD-9: 714; ICD-10: M05, M06) 
1 5,030 (1.5%) 23 (2.1%) 5,053 (1.5%) 

Other pain conditions (ICD-9: 338; ICD-10: G89, R52) 
1 53,399 (15.9%) 378 (34.3%) 53,777 (16.0%) 

Cannabis-related disorders (ICD-9: 304.3, 305.2; ICD-10: F12) 
1 8,699 (2.6%) 105 (9.5%) 8,804 (2.6%) 

Nicotine-related disorders (ICD-9: 305.1; ICD-10: F17) 
1 67,110 (20.0%) 561 (51.0%) 67,671 (20.1%) 

Other psychoactive disorders (ICD-9: 305.9; ICD-10: F19) 
1 3,738 (1.1%) 160 (14.5%) 3,898 (1.2%) 

Cocaine-related disorders (ICD-9: 304.2, 305.6; ICD-10: F14) 
1 4,013 (1.2%) 99 (9.0%) 4,112 (1.2%) 

*no payment includes self-pay, nor charge, refusal to pay/bad debt, Hill-Burton free care, research/donor, and other. 
 
Statistical Analysis 
 
We assume that there is a total of K sites, with 𝑁 =	∑ 𝑛&'

&()  observations. Define logit(𝑥) = log{𝑥/(1 − 𝑥)}. Let 𝑧8&  
and 𝑦8& to be the risk factors (as a vector) and the binary outcome (i.e., status of opioid use disorder) for the i-th patient 
in the j-th site. Denote 𝑥8& = :1, 𝑧8&<,	 we aim to fit a logistic regression between {𝑧8&}  and {𝑦8&}, i.e.,  

logit:𝑃𝑟:𝑦8& = 1<|𝑥8&< = 	𝑥8&@ 𝛽 
and we are interested in estimating the regression coefficients (including the intercept), i.e., 𝛽.  
 
Our statistical analysis is based on the second-order algorithm (i.e., ODAL2) proposed in Duan et al20, with slight 
modifications. The ODAL algorithms require one site in the research network to serve as a local site, which provides 
patient-level data and all the other sites share their summary-level statistics with the local site to estimate the results 
more accurately. Using data from OneFlorida, a collaborative environment, we modify the algorithm by allowing all 
sites to serve as the local site. By allowing each site to serve as the local site, the surrogate likelihood function is built 
in each site, and the surrogate estimates are obtained from each site. The final estimator is obtained through a weighted 
average, which reduces the impact of a specific local site (e.g., distorted local population, poor data quality in a specific 
local site) on the final estimate, and potentially improves the robustness and accuracy of the ODAL algorithm.   
 
More specifically, we consider the following detailed procedure: 
 

Step 1: In site j = 1, …K, run logistic regression at the j-th site to obtain  �̅�& and its variance 𝑉D&. Broadcast 
{�̅�& ,𝑉D&} 
Step 2: In site j = 1, …K,  

• obtain �̅� = (∑ 𝑉D&
E))E) ∑ 𝑉D&E)�̅�&'

&()
'
&() ; 

• calculate and broadcast ∇𝐿& = 	
)
HI
∑ {𝑌8& − expit:𝑥8&@ �̅�<}𝑥8&,
HI
8()  and ∇N𝐿& =

	 )
HI
∑ expit:𝑥8&@ �̅�<{1 − expit:𝑥8&@ �̅�<}𝑥8&𝑥8&@
HI
8() ; 

• construct  

𝐿O&(𝛽) = 	
1
𝑛&
P[𝑌8&𝑥8&@ 𝛽

HI

8()

− log{(1 + exp(𝑥8&@ 𝛽)}] + TP
𝑛&
𝑁

H

U()

∇𝐿U − 𝛻𝐿&:�̅�<W
@

𝛽

+
1
2
:𝛽 − �̅�<

@ TP
𝑛&
𝑁

H

U()

∇N𝐿U − 𝛻N𝐿&:�̅�<W :𝛽 − �̅�<, 
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• obtain and broadcast  𝛽O& = argmax\	𝐿]&(𝛽), and 𝐻& = 	
)
_
∑ expit:𝑥8&@ 𝛽O&<{1 −
HI
8()

expit:𝑥8&@ 𝛽O&<}𝑥8&𝑥8&@ . 
Step 3: Output  𝛽O = (∑ 𝐻&)E) ∑ 𝐻&'

&()
'
&() 𝛽O&  

 
 

The following Figure 2 provides a schematic illustration of the above algorithm.  
 

 
Figure 2. Illustration of the ODAL algorithm. Step I: Use patient-level data within each site to obtain  �̅�&  and its 
variance 𝑉D& , then broadcast {�̅�& , 𝑉D&}, where j = 1,…,K. Step II: Obtain the initial value �̅� with �̅�a and calculate the 
intermediate terms ∇𝐿&  and at ∇𝐿&N at j-th site. With intermediate information, construct local surrogate likelihoods to 
obtain and broadcast 𝛽O& and 𝐻&. Step III: Synthesize the evidence to get output 𝛽O. 
 
In practice, to utilize the ODAL algorithm within a clinical data network, the first step is to distribute the pre-written 
code to the collaborating sites. With the code, the initial values of parameters are calculated locally within each site. 
Then, these values are broadcasted by uploading them to a shared cloud folder. When all of the initial values are 
uploaded, the local or central site can calculate the initial value, �̅�, which is broadcasted to the rest of the sites for 
calculating the intermediate results (i.e., ∇𝐿&  and ∇𝐿&N). These results are uploaded to the shared cloud folder and are 
synthesized into the final estimate 𝛽O. The procedure of applying ODAL algorithm to various data networks keeps the 
same.  

 

With the data from OneFlorida, we compared the ODAL algorithm with the pooled analysis and meta-analysis. The 
pooled analysis is treated as the gold standard, which fits a unified logistic regression on the combined dataset. Results 
from the meta-analysis are obtained by fitting logistic regressions separately within each site and synthesizing the 
local estimates through a weighted average. Compared with meta-analysis, ODAL has better estimation accuracy for 
studying rare conditions, and similar performance when the outcome and exposures are common.   

 

Results 

Figure 3 presents the comparison of the estimated log odds ratio and 95% confidence interval for each risk factor 
using three methods: pooled estimate (red), meta-analysis (green), and ODAL (blue). ODAL provides more accurate 
estimation results for most of the risk factors than meta-analysis, in that the estimates are closer to the analysis where 
all data are pooled together. Of the 16 risk factors, ODAL improved the estimation for 15 risk factors. For the one risk 
factor that was not improved (i.e., depression), the relative bias of ODAL compared to the pooled analysis is below 

1225



1%. For risk factors such as alcohol use disorder, insurance type, and cannabis-related disorders, the relative bias of 
meta-analysis is greater than 20%, which ODAL can reduce to below 3%.  
 

In the analysis using the ODAL method, we identified 10 risk factors that were statistically significantly associated 
with OUD: anxiety, cocaine-related disorders, depression, insurance type, nicotine-related disorders, other 
psychoactive disorders, other pain conditions, age, race, and smoking. These findings are consistent with previous 
studies examining risk factors for OUD. For example, mental health conditions, such as anxiety, depression, and 
psychoactive substance use disorders have previously been associated with higher risks of OUD28-30. Smoking, the 
use of other substances, and polysubstance use were also associated with a higher risk of OUD among individuals 
who primarily use opioids31,32. Demographic variables, such as sex (being female), age (being a young adult), or 
ethnicity (being non-Hispanic White) were also associated with having OUD. Among these variables, although the 
finding of gender, which had a positive estimated log odds ratio, was not consistent with previous finding33, the 
observed gender effect was not statistically significant. The consistent findings from our analysis suggested the ODAL 
method can be used to identify clinically relevant risk factors for OUD using distributed real-world data. Moreover, 
due to the low event rates of OUD in the clinical sites, the estimates provided by the ODAL algorithm outperform 
those of meta-analysis, which is consistent with the findings in Duan et al20. ODAL may be especially valuable for 
studying rare outcomes or exposures in a multicenter analysis. 
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Figure 3 displays the estimated log odds ratio and 95% confidence interval for each risk factor using the three methods: 
pooled estimate (red), meta-analysis (green), and ODAL (blue). The risk factors are ranked by the performance of 
ODAL compared with meta-analysis starting from the best one (i.e., rheumatoid arthritis). The last risk factor (i.e., 
depression) is the only one whose estimated effect size is not improved by the ODAL algorithm among the 16 risk 
factors.  
 

Conclusion and Discussion 

In this paper, we evaluated the performance of the ODAL algorithm using real-world EHR data from the OneFlorida 
Clinical Research Consortium and investigated the association between OUD and 16 clinical risk factors. Compared 
with meta-analysis, the ODAL algorithm yielded a better estimate of 15 risk factors. Ten of the 16 factors showed 
statistically significant associations. Our findings are consistent with previous reports on risk factors for OUD, 
supporting the reliability of the real-world performance using the ODAL algorithm. 
 
We modified the original ODAL algorithm by allowing each site to serve as the local site. For this modification, one 
extra step (i.e., broadcast the local estimate and variance obtained by logistic regression in each site) is required to 
obtain the initial value compared with the original ODAL algorithm. This additional step requires not much effort as 
it only requires the local estimates of the model parameters and their standard errors to be transferred from each site, 
and it can reduce the impact of a specific local site on the final estimate, and improve the robustness and accuracy of 
the ODAL algorithm. 
 
The ODAL algorithm was developed using the pooled analysis as the gold standard method, which fits a unified 
logistic regression model on the combined dataset. Therefore, it requires that the data are homogeneously distributed 
across sites. However, when there exists heterogeneity in the distribution of data across sites, the pooled analysis may 
not be a gold standard and will require correcting the model to address the heterogeneity34. Taking this into 
consideration, we plan to extend our method to handle heterogeneity across clinical sites by allowing site-specific 
effects and covariates. 
 
For future works, the use of both structured and unstructured data would also be of great interest when analyzing large 
data networks. The wide adoption of EHR systems has made large-scale, longitudinal clinical data available for 
research. The U.S. Food and Drug Administration (FDA) recently coined the term real-world data (RWD) to refer to 
information derived from sources outside research settings, including EHRs, claims data, and billing data, among 
others. EHRs contain important structured data, such as diagnoses and procedures, as well as unstructured clinical 
narratives such as physicians’ notes.  More than 80% of the clinical information in the EHR is documented in clinical 
narratives35, which contain much detailed patient information. In this study, we used only the structured data from the 
OneFlorida network because other important risk factors (e.g., homelessness, social determinants of health, 
prescription, and utilization patterns) were not readily available and thus could not be included in our analysis.  In 
future studies, we plan to use advanced natural language processing (NLP) methods to extract additional risk factors 
from clinical narratives. Furthermore, to avoid the bias caused by using a complete-case analysis, methods for handling 
missing data, such as multiple imputation, can be considered before applying the ODAL algorithm. 
 
In addition to the OneFlorida network, there are a number of other large-scale national and international data research 
networks. The Observational Health Data Sciences and Informatics (OHDSI) network is another prominent example—
an international network of observational health databases that covers more than half a billion patient records4.  Novel 
distributed-learning methods, which are privacy-preserving, communication efficient, and accurate are needed to 
exploit these large data networks in the future. 
 
Finally, the ODAL algorithm can be extended in several aspects. First, methods to integrate and analyze other types 
of outcomes can be considered36, such as count data or time-to-event outcomes. Second, we have been developing 
open-source and user-friendly software to implement the ODAL algorithm within research networks to facilitate data 
integration across health systems and promote research that can provide novel insights into important issues in 
healthcare.  
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