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Abstract 

Identifying pathogenic mutations in BRCA1 and BRCA2 is a critical step for breast cancer prediction. Genome-wide 
association studies (GWAS) are the most commonly used method for inferring pathogenic mutations. However, 
identifying pathogenic mutations using GWAS can be difficult. The hypothesis of this study is that the pathogenic 
mutations in human BRCA1/BRCA2, which are present in many species, are more likely to be located in the 
evolutionarily conserved sites. This study defines the evolutionary conservativeness based on the previously developed 
Characteristic Attribute Organization System (CAOS) software. ClinVar is used to identify human pathogenic 
mutations in BRCA1 and BRCA2. Statistical tests suggest that compared to the non-pathogenic mutations, human 
pathogenic mutations were more likely to locate at the evolutionary conserved positions. The approach presented in 
this study shows promise in identifying pathogenic mutations in humans, suggesting that the methodology may be 
applied to other disease-related genes to identify putative pathogenic mutations. 

Introduction 

According to the Center for Disease Control and Prevention (CDC), breast cancer is one of the most common cancers 
in women in the United States.1 Mutations on genes such as breast cancer susceptibility gene 1 (BRCA1) and 2 
(BRCA2) that connote an increased risk of breast cancer have been identified. According to a meta-analytic study, 
BRCA1 mutation carriers had 57% risk for developing breast cancer and 40% chance for ovarian cancer by the age 
of 70.2 The breast cancer risk for BRCA2 mutation carriers was 49% and ovarian cancer risk was 18% at the age of 
70 years old. Identifying the pathogenic mutations in BRCA1 and BRCA2 is therefore critical for disease prediction 
and prevention. To date, the most widely used method to identify pathogenic mutations is through using high 
throughput sequencing and genome-wide association studies (GWAS).3,4 A limitation of GWAS studies is the 
requirement of sequencing data from an adequate number of cases. Distinguishing between pathogenic and benign 
mutations using GWAS can thus be difficult in rare diseases where the number of cases is less abundant.5  

BRCA1 and BRCA2 are genes with long evolutionary history and present in many species.6 BRCA1 has been 
identified in plants and animals, while BRCA2 has also been found in fungi. Among the BRCA1 and BRCA2 genes, 
some positions are more conserved than others across evolutionary history.6 Research has shown that the pathogenic 
mutations in humans are more likely to exist in fixed sites of proteins.7 Several studies have shown the disease-
associated missense mutations in BRCA1 are correlated with the conserved residues among different species.8,9,10 
However, these studies have a limited number of species included and use nucleotide percentage similarity among 
sequences to determine conservativeness.  

Different from the previous studies, this study proposes the use of a previously developed phylogenetic approach, 
called the Characteristic Attribute Organization System (CAOS), to determine the evolutionary conservativeness of 
different positions for a given gene.11 CAOS discovers rules associated with a given phylogenetic tree as shown in 
Figure 1a.11 A pure (Pu) rule or character attribute (CA) is a state that exists in all elements of a clade but not the 
alternate clade; a private (Pr) CA is present in some members of a clade but absent in the alternate clade. A variation 
number (VN) is defined as the number of occurrences of a position as a CA in all the tree clades. A flowchart of the 
VN calculation is shown in Figure 1d. For example, the VN of the first position in Figure 1a will be zero, the third 
position will be two, and the fifth position will be four. Evolutionary conservativeness in this study is defined as the 
positions with a relatively small VN. Thus, the first position in Figure 1a is more conserved than the third position. 
The clades in both Figure 1b and 1c have three sequences of cytosine and two sequences of adenine. The compositions 
are the same using conventional statistic method.9 By CAOS definition, however, the clade in Figure 1b has a VN of 
two while Figure 1c has a VN of five. The clade in Figure 1b is thus more conserved. The hypothesis of this study is 
that the positions of human pathogenic mutations in BRCA1 and BRCA2 genes are more likely to be evolutionarily 
conserved than the positions of the non-pathogenic mutations.  
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Methods  

The pipeline for analysis developed for this study is shown in Figure 2. The overall process includes sequence retrieval, 
multiple sequence alignment, phylogenetic tree construction, and analysis of the conservativeness of gene positions. 
The results were assessed relative to previously annotated clinical pathogenicity of positions in the genes of interest. 
Homo sapiens DNA repair associated breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) reference transcripts 
were retrieved from National Center for Biotechnology Information (NCBI) nucleotide database (Accession numbers 
NM_007294 and NM_000059, respectively). 12 

Sequence retrieval and alignments 

The Basic Local Alignment Search Tool (BLAST) was used to retrieve sequences that were similar to Homo sapiens 
BRCA1 and BRCA2.13 Both BRCA1 and BRCA2 were searched over the nucleotide collection database for all animal 
organisms. The max target sequences were set to 20,000 with expected threshold of one. The result sequences were 
filtered such that, if there were multiple sequences for one organism, the entire sequence with the best hit and with the 
highest max score in the BLAST results was kept. Synthetic sequences were removed.  

In addition to using BLAST for finding similar sequences, BRCA1 and BRCA2 orthologs from multiple vertebrates 
were retrieved from the NCBI Orthologs database. Multiple sequences may be available for a given species, but only 
one sequence with the longest length for each species was retrieved. Sequences from BLAST and NCBI Orthologs 
were used separately for multiple sequence alignment. Multiple sequence alignments were performed using multiple 
sequence comparison log-expectation (MUSCLE) software with the default settings.14  

d. 

Figure 1. Characteristic Attribute Organization System (CAOS)11. a. An example to define CAOS rules. b-c. 
Examples of CAOS differs from statistical methods. d. The flowchart for the VN calculation. 

 

b. a. c. 
 

Figure 2. Flowchart of the pipeline. 
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Tree building 

Maximum parsimony trees were generated using the phylogenetic analysis using parsimony (PAUP*) software and 
the aligned sequence sets.15 A heuristic search method with two-hundred replicates and tree bisection reconnection 
(TBR) branch swapping was applied and the best tree was retained. A total of four trees were generated, two each for 
BRCA1 and BRCA2. The “BLAST tree” refers to the maximum parsimony tree using the sequences from the BLAST 
search; the “orthologs tree” refers to the maximum parsimony tree using the sequences retrieved from NCBI orthologs. 
The trees were then used for CAOS analysis. 

Clinical variation retrieval 

Clinical variations for BRCA1 and BRCA2 were downloaded from ClinVar.16 Only the single nucleotide variations 
were included. For BRCA1, the variations in the coding region of accession NM_007294.3 were kept. The coding 
region variations of NM_000059.3 were kept for BRCA2. Clinical significance was used to categorize whether a 
variation is considered pathogenic or non-pathogenic. This study only considered the variation position (i.e., not the 
specific variation). If the clinical significance was noted as “Pathogenic” then the variation position would be 
categorized as pathogenic. Otherwise, it was considered non-pathogenic. If there were multiple variations at the same 
position and at least one variation at that position is pathogenic, then the position was categorized as pathogenic.   

Characteristic attribute organization system (CAOS) analysis 

The Characteristic Attribute Organization System (CAOS) system was used to identify positions of interest (“rules”) 
for each tree node.11 Each position of the aligned sequences was assigned a VN, which was calculated based on the 
breadth first search and was described in Figure 1d. A Student’s T-test was performed using the VNs of pathogenic 
positions and non-pathogenic positions. Two control groups were generated by randomly picking positions and their 
corresponding VNs from the aligned sequences. The size of the control groups matched the number of pathogenic and 
non-pathogenic positions, correspondingly. The randomly chosen control groups were then used to perform a T-test. 
This process was repeated randomly five times. These T-tests served as negative controls to examine the effect of size 
differences on the T-test results. 

The conventional statistical method, which calculates the nucleotide percentage similarity for a given position, was 
also used to find the conservativeness of the pathogenic and non-pathogenic positions. For each position, the 
percentage similarity was calculated by dividing the number of occurrences of the most abundant nucleotide by the 
total number of sequences. A Student’s T-test using the percentage similarity was conducted as a comparison to the 
T-test using the VNs. In addition to the T-test, the sequences at pathogenic positions and non-pathogenic positions 
were extracted to build phylogenetic trees separately. The number of clades was counted in each tree for comparison. 
Because there were more pathogenic than non-pathogenic positions, N non-pathogenic positions were randomly 
selected to generate 20 random trees as controls for sizes, where N was the total number of pathogenic positions. 

Results 

Sequence retrieval and alignments 

The length of the Homo sapiens BRCA1 transcript is 7088 base pairs (bp). The coding region is 5592 bp long, spanning 
from position 114 to 5705. Homo sapiens BRCA2 transcript is 11,386 bp long, with the coding region spanning from 
position 228 to 10,484. Sequences like human BRCA1 and BRCA2 were found using BLAST and filtered such that 
only one sequence was kept for each organism. After filtering, 808 organisms were found to have sequences similar 
to Homo sapiens BRCA1 and 382 organisms had sequences similar to Homo sapiens BRCA2 as shown in Table 1. In 
the NCBI orthologs database, there are 273 BRCA1 orthologs from jawed vertebrates other than Homo sapiens and 
266 BRCA2 orthologs. Among the 809 BRCA1-like sequences found using BLAST, 62 are present in the BRCA1 
orthologs database. The overlap between BRCA2 BLAST and orthologs sequences are 93. 

Table 1. Number of species included for BRCA1 and BRCA2 multiple sequence alignment using either BLAST13 or 
NCBI Orthologs, and the number of overlapped sequences between BLAST and orthologs sequences. 

 BLAST Orthologs Overlapped 

Total BRCA1 sequences 809 274 62 

Total BRCA2 sequences 383 267 93 
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Table 2. The total number of species from each order or class and the maximum number of organisms from the same 
order of the BLAST sequences or the same class of the orthologs sequences grouped together in the corresponding 
phylogenetic tree.  

a. BRCA1 sequences obtained using BLAST. 
Order Total* Max* Order Total Max Order Total Max 

Carnivora 134 104 Eulipotyphla 1 1 Pilosa 11 11 

Cetartiodactyla 46 45 Glires 316 258 Primates 51 44 

Chiroptera 128 77 Hyracoidea 3 3 Proboscidea 2 2 

Chrysochloridae 3 3 Insectivora 58 39 Scandentia 6 6 

Cingulata 14 11 Macroscelidea 4 3 Sirenia 4 4 

Dermoptera 2 2 Perissodactyla 16 8 Tenrecidae 3 2 

Didelphidae 1 1 Pholidota 4 3 Tubulidentata 2 1 

*Total is the total number of species from each order or class.  

**Max is the maximum number of organisms from the same order of the BLAST sequences or the same class of the 
ortholog sequences grouped together. 

b. BRCA1 sequences obtained using NCBI orthologs database. 
Class Total Max Class Total Max Class Total Max 

Alligators 4 4 Bony fishes 58 40 Lizards 9 9 

Amphibians 3 2 Cartilaginous fishes 1 1 Mammals 125 124 

Birds 69 69 Coelacanths 1 1 Turtles 4 4 

c. BRCA2 sequences obtained using BLAST. 
Order Total Max Order Total Max Order Total Max 

Alligatoridae 2 2 Glires 54 19 Primates 138 136 

Carnivora 33 18 Hyracoidea 1 1 Proboscidea 2 2 

Cetartiodactyla 41 41 Insectivora 33 25 Saurischia 2 1 

Chiroptera 28 28 Longirostris 2 2 Scandentia 3 3 

Chrysochloridae 1 1 Macroscelidea 1 1 Sirenia 3 2 

Cingulata 7 7 Ostariophysi 1 1 Tenrecidae 3 3 

Dermoptera 2 2 Perissodactyla 6 6 Testudinoidea 1 1 

Durocryptodira 2 1 Pholidota 3 3 Tubulidentata 1 1 

Eulipotyphla 3 1 Pilosa 11 11 Unidentata 2 2 

d. BRCA2 sequences obtained using NCBI orthologs database. 
Class Total Max Class Total Max Class Total Max 

Alligators 4 4 Bony fishes 54 53 Lizards 9 9 

Amphibians 3 3 Cartilaginous fishes 2 2 Mammals 124 119 

Birds 67 67 Coelacanths 1 1 Turtles 3 3 
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The BLAST sequences of both BRCA1 and BRCA2 were mainly from the class Mammalia. The orthologs sequences 
were from jawed vertebrates consisted of several classes as shown in Table 2. All BRCA1 BLAST sequences were 
from the class Mammalia consisted of 21 different orders. Fifty-one sequences were from the order Primates. Among 
the 383 BRCA2 BLAST sequences, 373 were from the class Mammalia, six from Archelosauria, two from Testudines 
and Archosauria group, and one each from Actinopterygii and Lepidosauria. The BRCA2 BLAST sequences were 
from 27 different orders with 138 Primates sequences. BRCA1 orthologs sequences were from nine different classes 
with 125 mammal sequences and BRCA2 orthologs sequences were from the same nine classes with 124 mammal 
sequences. MUSCLE was used for multiple sequence alignment. After alignment, the length of BRCA1 BLAST, 
BRCA1 orthologs, BRCA2 BLAST, BRCA2 orthologs sequences were 13,945 bp, 19,727 bp, 18,170 bp, and 29,216 
bp, respectively. 

 

 

Figure 3. Brief tree visualization using iTOL17. 

3a. BRCA1 BLAST tree 3b. BRCA1 orthologs tree 

3c. BRCA2 BLAST tree 3d. BRCA2 orthologs tree 
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Tree building 

Four maximum parsimony trees were generated using the four sets of sequences and were shown in Figure 3 using 
the interactive tree of life (iTOL) software.17 Each tree leaf was a species. The tree leaves were colored according to 
the taxonomical order or class they belong to and the legend was shown on the left of each graph. The trees were 
unrooted. The total number of species from each order of BLAST sequences or each class of orthologs sequences 
were listed in Table 2 column Total. The maximum number of organisms, which were from the same order of the 
BLAST sequences or the same class of the orthologs sequences, grouped in the same clade was shown in Table 2 
column Max. Such clades were the largest clades in the tree that only contained taxa from the same order for BLAST 
sequences or the same class for the orthologs sequences. Most organisms from the same order or class were clustered 
into a single clade as suggested by Table 2 and shown in Figure 3, suggesting the trees were taxonomically valid. These 
results also indicated the evolutionary importance of BRCA1 and BRCA2 in different species, as the phylogenetic 
tree generated using simply the transcripts can cluster most species from the same order or class into the same group. 

Clinical variation retrieval 

The number of pathogenic and non-pathogenic positions for BRCA1 and BRCA2 were listed in Table 3. There was a 
total of 4834 single nucleotide variations identified for BRCA1 transcript variant 1, accession NM_007294.3 in 
ClinVar (accessed November 19th, 2019).16 Among the 4834 variations, 586 were deemed pathogenic and 4248 were 
deemed non-pathogenic variations. Four hundred and eight-two of the 586 pathogenic variations were found in the 
coding region, while 3102 of the 4248 non-pathogenic variations were identified in the coding region. For the variation 
positions in the coding region, 441 positions were categorized as pathogenic and 2402 were non-pathogenic.  

Table 3. The number of pathogenic and non-pathogenic positions for BRCA1 and BRCA2 

 Pathogenic Non-Pathogenic 

BRCA1 (NM_007294.3) 441 2402 

BRCA2 (NM_000059.3) 596 4668 

 

For BRCA2 transcript with accession NM_000059.3, 7723 single nucleotide variations were in ClinVar as of 
November 19th, 2019.16 Seven hundred and sixty-one variations were found to be pathogenic with 670 in the coding 
region. There were 6962 non-pathogenic variations identified and 5875 in the coding region. In the coding region, 596 
positions were found to be pathogenic and 4668 positions were deemed non-pathogenic. The analysis revealed that 
there were five times more non-pathogenic positions than pathogenic positions in BRCA1 and seven times more in 
BRCA2.  

Figure 4. Histogram and normalized histogram of the VNs of CAOS rules at pathogenic and non-pathogenic 
positions in BRCA1 BLAST sequences. The x-axis represents the variation number. The y-axis represents the 
number of gene positions (top) and the percentage of gene positions (bottom) with a specific variation number. 
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Characteristic attribute organization system (CAOS) analysis 

For a given tree, the CAs for each clade of the tree found by CAOS were collected to find the time of appearance or 
the VN of each sequence position. The VNs at the pathogenic positions and non-pathogenic positions were extracted 
to perform a Student’s T-test. The histogram and the normalized histogram of the VNs of pathogenic and non-
pathogenic positions from BRCA1 sequences obtained using BLAST were shown in Figure 4. The x-axis was the VN 
and the y-axis was the number or percentage of positions with that VN. The pathogenic positions were marked in pink 
and the non-pathogenic positions were marked in blue. The pathogenic positions had a mean VN of 189.23 while the 
non-pathogenic positions had a mean VN of 210.82. The smaller mean VN suggested that the pathogenic positions 
were more conserved evolutionarily compared to the non-pathogenic positions. The t-value was 8.57 and the p-value 
was 8.37E-17. These results suggested a significant difference between the VNs of pathogenic and non-pathogenic 
positions. The T-tests for the BRCA1 orthologs sequences and BRCA2 BLAST and orthologs sequences showed 
similar results, as listed in Table 4.  

Table 4. The T-test results for VNs’ comparison between pathogenic and non-pathogenic positions in each set of 
sequences 

 Pathogenic Non-Pathogenic T-test 

 Mean Median  STD Mean Median STD t-Value p-Value 

BRCA1 BLAST 189.23 181.00 48.39 210.82 205.00 49.76 -8.57 8.37e-17 

BRCA1 Orthologs 104.86 112.00 48.13 133.05 140.00 47.40 -11.32 4.31e-27 

BRCA2 BLAST 154.48 157.00 34.98 169.81 172.00 36.51 -10.02 2.66e-22 

BRCA2 Orthologs 97.03 104.00 46.37 117.66 125.00 44.87 -10.25 3.60e-23 

 

Two sets of randomly picked positions, with each set matched the size of corresponding pathogenic and non-
pathogenic positions, and their VNs were used to perform T-tests as controls to examine the effect of size difference. 
This process was repeated five times. As a result, there were no significant differences from the controls, as shown in 
Figure 5. The control groups demonstrated that the significant T-test results shown in Figure 4 were not caused by the 
size differences between the pathogenic and non-pathogenic positions. 

 

Figure 5. Control normalized histograms of the VNs of CAOS rules at pathogenic and non-pathogenic positions 
in BRCA1 BLAST sequences. 
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As a comparison to VNs’ results, T-test was also performed using the percentage similarities at the pathogenic and 
non-pathogenic positions. The percentage similarity was defined as the frequency of the nucleotide with the most 
occurrence in a given position. A larger percentage similarity indicated that a given position is more evolutionarily 
conserved. The T-test results of BRCA1 BLAST sequences using percentage similarity were shown in Figure 6. There 
was no significant difference between the pathogenic and non-pathogenic positions when using percentage similarity. 
Similarly, the T-test results for the BRCA1 orthologs, BRCA2 BLAST, and BRCA2 orthologs sequences using 
percentage similarity were less significant than using the VNs. These results were not shown here. Such differences 
in significance showed the advantage of CAOS over the conventional statistical method.  

The pathogenic positions and non-pathogenic positions characterized for BRCA1 and BRCA2 transcripts were 
extracted to build phylogenetic trees separately. The number of clades for BRCA1 BLAST tree using pathogenic and 
non-pathogenic positions is shown in Table 5. Because there are more non-pathogenic positions than pathogenic 
positions, 20 trees were built using randomly selected non-pathogenic positions matching the number of pathogenic 
positions, and the average number of branches was calculated to serve as a control. These trees served as controls to 
test the effect of size on trees. The pathogenic tree resulted in fewer tree clades than the non-pathogenic tree. The 
average number of branches in the control group trees is less than in the non-pathogenic tree, suggesting the number 
of positions included can affect the tree topology. However, with the same number of positions included, there were 
still more clades in the control group trees than the pathogenic tree, suggesting the pathogenic positions contain less 
information to build complex phylogenetic trees. The number of clades for other sequence sets showed similar results 
and were not shown here.  

Table 5.  Number of clades in pathogenic, non-pathogenic, and the average of twenty non-pathogenic trees where the 
number of positions selected equaled to the number of positions in the BRCA1 BLAST pathogenic tree. 

 Pathogenic Non-pathogenic Controls 

Number of branches 571 759 645.9 

 

Discussion  

Mutations in BRCA1 or BRCA2 greatly increase the risk of human breast cancer and identifying pathogenic mutations 
in humans can help to detect breast cancer in the early stages, thus increasing the patient survival rate. GWAS is 
widely used to infer pathogenic mutations. However, many mutations can be family specific and hard to detect. This 
study proposed a method to study the correlation between the evolutionarily conservativeness of mutations and their 
pathogenicity in human breast cancer. The method proposed in this study may be applied to other complex diseases 
with a genetic component, and it can be beneficial especially to rare diseases where limited patient data are available.  

Transcript variants of BRCA1 and BRCA2 were used instead of whole genome or protein sequences for several 
reasons. Transcript variants were the intermediate between DNA and mRNA with introns removed. The short length 
of the transcript variants compared to the whole gene sequence makes it computationally efficient while retain the 
most important information in the genes. They contain information needed to produce the respective proteins, but 
are more specific than protein sequences. NM_007294.3 for BRCA1 and NM_000059.3 for BRCA2 were the 
reference variants commonly seen in ClinVar. Using transcript variants made it convenient to compare the data in 

Figure 6. Percentage similarity histogram of pathogenic and non-pathogenic positions in BRCA1 BLAST sequences. 
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ClinVar. The current version of BRCA1 transcript variant on NCBI is NM_007294.4 instead of NM_007294.3, but 
the coding region of NM_007294.4 and NM_007294.3 are the same. It will also be of future interest to further 
separate the pathogenic and non-pathogenic variants into synonymous and non-synonymous groups. 

Instead of using pure statistical methods, an evolutionary approach using CAOS was taken in this study. This approach 
was chosen to preserve potentially more biologically meaningful relationships, such as illustrated in Figures 1b and 
1c. Both Figure 1b and 1c have three sequences of cytosine and two sequences of adenine for a given position. 
Intuitively, one might consider that the position in Figure 1c is less informative as it can change freely among different 
species. The clade in Figure 1b, on the other hand, shows the conservativeness of the position because one subgroup 
would have the same sequence while the other subgroup has another sequence. By CAOS definition, the clade in 
Figure 1b has a VN of two while Figure 1c has a VN of five, meaning the clade in Figure 1b is more conserved than 
the clade in Figure 1c. However, such a conclusion cannot be made when using the conventional statistical method as 
the percentage similarity in both trees are the same.  

As with any evolutionary analysis framework, there are several methodological choices that one can make to 
identify positions of interest in a given gene. This study chose to use maximum parsimony as the optimality criterion 
for inferring the phylogenetic trees. The choice for maximum parsimony was largely for convenience, computational 
efficiency, and previous experience with the phylogenetic inferencing technique in the context of CAOS. However, 
CAOS could be adapted to any character-based phylogenetic inferring technique, including those using a maximum 
likelihood or Bayesian optimality criterion. The methodology for VN determination would need to be adjusted to 
accommodate these additional optimality criteria (the VN in this study only accommodated for counts of differences 
between groups, which is in alignment with how maximum parsimony determines similarity). Similarly, the choice 
of BLAST and MUSCLE as the sequence retrieval and alignment tools could also be substituted with other tools. 
BLAST was chosen because it can identify more sequences like BRCA1/BRCA2 than using the NCBI orthologs 
alone. However, the sequences identified using might not be BRCA1/BRCA2 related sequences, thus the 
BRCA1/BRCA2 homologous sequences from the NCBI orthologs database were also used. MUSCLE was used for 
multiple sequence alignment in this study. However, a more sophisticated alignment method such as codon-
alignment will be considered for future studies. T-tests were used in this study to compare the pathogenic and non-
pathogenic positions. However, additional statistical analysis may be used to further validate the findings (e.g., using 
non-parametric tests, such as the Mann-Whitney U test) to avoid the assumption that the variation numbers of the 
pathogenic and non-pathogenic positions are normally distributed. The results of this study suggest that the general 
framework for gathering and organizing complex disease genes and subjecting them to an evolutionary analysis is a 
promising approach to identify putatively pathogenic mutations. 

The method proposed in this study might be used to prioritize potential pathogenic mutations in human breast cancer 
solely based on sequencing data from different species. Although there are pathogenic mutations that seemed not to 
be conserved throughout evolution, as indicated by large VNs, the mutations in conserved positions do have a larger 
chance of being pathogenic. One limitation of the VN is that for a given set of sequences, a relatively smaller VN is 
defined as more conserved than a larger VN. But since the VNs depend on a specific set of sequences, no numerical 
cutoff for a VN can be given. The approach taken in this study alone may not be powerful enough to identify human 
pathogenic variants, however, it can be used as an important feature for a more sophisticated method. Our next goal 
is to develop a model/tool for calculating the probability of a variant being pathogenic or not, and the variant 
number described in the manuscript will be an important component for our future study. For the future study, we 
will also take into consideration other measurements such as the protein folding and intermolecular interactions. We 
will then compare the performance between our method to other existing methods. The method proposed can also be 
applied to rare diseases, in which GWAS study can be difficult because of the limited number of cases. 

Human pathogenic alleles can be wild type in other species18. It is interesting to study why some positions are 
pathogenic in human while wild type in other species in BRCA1 and BRCA2 genes. It may be explained by 
compensated pathogenic deviations (CPD) and their compensated differences18. Studying CPDs are clinically 
important as it may help to explain why people carry BRCA1/BRCA2 mutations do not develop breast cancer. If 
people carrying BRCA1/BRCA2 pathogenic mutations as well as mutations in the compensated sites never developed 
breast cancer, then these sites can serve as markers and therapeutic targets for breast cancer. The specific CPDs and 
the compensatory differences will be the focus of future studies. One plausible way to find the CPDs is by finding the 
positions in the genes where the conservativeness is seen in some subgroups of the tree as shown in Figure 1b using 
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CAOS. Such CPDs may also explain why some species were not clustered together with the species in the same order 
or class. 

Conclusion 

This study intended to apply an evolutionary framework to study BRCA1/BRCA2 human pathogenicity in relation to 
evolution. The requirement of sequences from different species instead of different patients made this study unique 
compared to other GWAS studies. Statistical analysis showed the advantage of using CAOS to define conservativeness 
than using nucleotide percentage similarity. Future works based on this study may be clinically meaningful. 
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