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Abstract 

Low trial generalizability is a concern.  The Food and Drug Administration had guidance on broadening trial 

eligibility criteria to enroll underrepresented populations.  However, investigators are hesitant to do so because of 

concerns over patient safety.  There is a lack of methods to rationalize criteria design.  In this study, we used data 

from a large research network to assess how adjustments of eligibility criteria can jointly affect generalizability and 

patient safety (i.e the number of serious adverse events [SAEs]).  We first built a model to predict the number of SAEs.  

Then, leveraging an a priori generalizability assessment algorithm, we assessed the changes in the number of 

predicted SAEs and the generalizability score, simulating the process of dropping exclusion criteria and increasing 

the upper limit of continuous eligibility criteria.  We argued that broadening of eligibility criteria should balance 

between potential increases of SAEs and generalizability using donepezil trials as a case study. 

Introduction 

Clinical trials, especially randomized controlled trials (RCTs), are the current gold standard for measuring treatment 

effectiveness and safety,1 before a drug can be approved by the Food and Drug Administration (FDA).  Trial sponsors 

and investigators often overemphasize the assessments of efficacy, and aim for good internal validity (i.e., how well 

the observed treatment effects are reflective of the true treatment effects in the study samples).2  On the other hand, 

the question of how well the study findings could be applied to the target patients in the real-world, referred to as 

external validity or generalizability, is often overlooked.3  Further, clinical trial designers often adopt eligibility criteria 

from existing similar studies, with no or little modifications, without sound scientific justifications.  Many phase 3 

trials continue to adopt the highly restrictive eligibility criteria used by their corresponding phase 1 and phase 2 trials4, 

resulting in study samples less representative of the real-world patient population who are in need of the treatments.  

For example, older adults are often excluded from, and hence underrepresented in cancer and Alzheimer’s Disease 

(AD) drug trials,5,6 despite being the primary target populations of these drugs.  A recent study has found that among 

the most frequently prescribed drug classes with known differences in pharmacokinetics or contraindications for older 

adults, only 62% of the 113 initial approval documents had pharmacokinetic information for the elderly.7  Overly 

restrictive eligibility criteria will lead to low clinical trial generalizability, which will ultimately lead to low treatment 

effectiveness and increased risk of adverse events in certain population subgroups when the treatments are practiced 

in real-world patients.  As a results, regulatory agencies such as the FDA had issued guidance on broadening eligibility 

criteria to increase the diversity of the clinical trial population during enrollment.8 

In clinical trials, the study population includes patients who meet the eligibility criteria; the 

target population includes patients to whom the study findings will be applied; and the study 

sample population includes participants enrolled in the trials (Figure 1).  Population 

representativeness measures the coverage of the study sample or study population over the 

target population with respect to study traits (e.g., demographic, diagnosis, and laboratory 

test results).  Although population representativeness is a different concept from clinical 

trial generalizability, it is the key measure of a trial’s generalizability.  To date, a number 

of methods and tools have been developed to quantify clinical trials’ population 

representativeness (or generalizability).9  These methods can be categorized into two major 

approaches: (1) sample-driven and often called a posterior generalizability, where these 

methods measure the representativeness the study samples (i.e., participants enrolled in 

clinical trials) over the target population, and (2) eligibility-driven and called a priori 
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generalizability, where these methods measure the representativeness of the study population (i.e., patients who met 

the eligibility criteria) over the target population.10  Although the a posterior generalizability is important, it cannot 

be changed after the fact as the trial has already been concluded.  In contrast, the a priori generalizability is driven by 

clinical trial’s eligibility criteria and can be tweaked when designing a trial.  A clinical trial will have good a priori 

generalizability when its study population and target population share similar demographic and clinical characteristics.  

Among the available a priori generalizability assessment methods, the Generalizability Index of Study Traits (GIST) 

2.0 is the best available quantitative, eligibility-driven generalizability measure.  GIST 2.0 quantifies the population 

representativeness using eligibility criteria and data from the real-world target population.11  It measures the proportion 

of potentially eligible patients across multiple trial eligibility criteria, while considering the relative importance of 

individual traits.12  GIST 2.0 has two components: the single GIST (sGIST) when considering individual criteria and 

the multi-GIST (mGIST) when considering all the criteria of a trial as well as their weights in a trial as a set.  The 

sGIST and mGIST range from 0 to 1, where a higher score indicates a greater generalizability.  GIST 2.0 has been 

validated in previous studies, including our own.13,14   

Although methods such as GIST are available for linking trial eligibility criteria and generalizability, it is unclear how 

broadening eligibility criteria will simultaneously impact trial generalizability and clinical outcomes in real-world 

patients.  Investigators tend to use restrictive eligibility criteria for recruitment due to concerns over patient safety 

(e.g., fear of increased number of adverse events), but this is often done at the expense of trial generalizability with 

no clear data evidence.  Therefore, it is crucial that we examine how a priori generalizability and the number of 

adverse events vary with adjustments to trial eligibility criteria so that a balance between internal and external validity 

can be identified.  To our knowledge, no methods or tools are available to support and rationalize the eligibility criteria 

development process in clinical trial design through balancing generalizability and patient safety. 

In this study, we aimed to analyze how broadening trial eligibility criteria will simultaneously impact trial 

generalizability, as measured by GIST, and clinical outcomes, as measured by serious adverse events (SAEs) using 

real-world data (RWD) from a large clinical data research network.  We focused on Alzheimer’s disease (AD) patients 

who took the FDA-approved donepezil (Aricept), the most widely used drug for AD treatment.  We obtained RWD 

data from the OneFlorida Clinical Research Consortium, a statewide clinical data repository that contains RWD, 

including electronic health records (EHRs) and administrative claims data, for over 14 million (> 50%) Floridians.  

We first built models to predict the number of donepezil-related SAEs using patients’ demographic and clinical 

characteristics.  Then, we illustrated several scenarios in which we adjusted eligibility criteria and observed how the 

number of SAEs and trial generalizability changed at the same time.  This study provided the initial evidence on how 

trial generalizability and clinical outcomes can be jointly affected by the adjustments of eligibility criteria and 

subsequently used as justification for broadening eligibility criteria as advocated by the FDA. 

Methods 

Data source and the overall patient cohort 

The overall patient cohort for this study included patients who were 

diagnosed with AD and treated with donepezil.  Donepezil is an 

acetylcholinesterase inhibitor under the brand name Aricept, which 

has known efficacy in patients with mild, moderate, and severe AD.  

We obtained individual-level patient data between January 2012 and 

March 2019 from the OneFlorida Clinical Research Consortium.  

OneFlorida is a statewide clinical research data repository that 

contains linked administrative claims and EHR data, including 

diagnoses, procedures, medications, and patient demographics, for 

approximately 14.4 million (> 50%) Floridians.  OneFlorida was one 

of the 9 clinical data research network funded by the Patient-Centered 

Outcomes Research Institute (PCORI), contributing to the national 

Patient-centered Clinical Research Network (PCORnet).  The 

OneFlorida data follow the PCORnet Common Data Model (CDM) 

that contains 22 data domains.  We identified AD patients using 

International Classification of Disease, 9th and 10th, Clinical 

Modification (ICD-9/10-CM) codes (i.e., ICD-9-CM: 331.0; ICD-10-

CM: G30.0, G30.1, G30.8, and G30.9).  Patients whose donepezil 

prescriptions were before their AD diagnoses were excluded from the 

Figure 2. Selection of the overall 

patient cohort. 
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study.  Patients whose first donepezil prescription was within 90 days of their first encounter date in OneFlorida were 

also excluded to ensure a sufficient observation period.  We identified 2,096 unique AD patients who were eligible 

for our study and extracted their data from OneFlorida.  The selection of the overall patient cohort of our study is 

illustrated in Figure 2.  

Prediction model for the number of SAEs on AD patients treated with donepezil 

To explore how adjustments to eligibility criteria affect the number of SAEs in the target population, we first built a 

prediction model for the number of SAEs on AD patients treated with donepezil, considering study traits (e.g., age) 

extracted from eligibility criteria as predictors.  We also considered as model predictors other AD-related risk factors 

(e.g., chronic conditions) that can contribute to the number of SAEs.  We argue that these additional predictors need 

to be considered as potential eligibility criteria in future trials.   

Predictor variables.  We first extracted all the eligibility criteria in all US-based Phase 3 donepezil AD trials on 

ClinicalTrials.gov.  We then extracted study traits corresponding to each eligibility criterion from the OneFlorida 

EHR data as model predictors.  For example, exclusion criterion “patients with psychiatric disorders affecting the 

ability to assess cognition such as schizophrenia, bipolar or unipolar depression” was converted to two binary study 

traits, (1) having schizophrenia and (2) having bipolar or unipolar depression, which were subsequently extracted 

from the EHR data using ICD codes for each patient.  In addition, we used the chronic condition algorithms from the 

Centers for Medicare & Medicaid Services (CMS) Chronic Conditions Data Warehouse (CCW) to extract chronic 

conditions from the EHR data as model predictors.15  As shown in Figure 3, we defined the observation window as 

the period before patients’ first donepezil prescription.  Patient should have more than 90 days of data in the 

observation window (i.e., the patient shall have an encounter in the OneFlorida network 90 days before the first 

donepezil prescription).  All predictor variables were extracted from the OneFlorida data within the observation 

window.  To determine donepezil use, we extracted donepezil prescribing and dispensing data using RxNorm CUI 

codes and National Drug Codes (NDCs) and identified the first and last date of donepezil use for each patient. 

 

Outcome variables.  Our outcome variable was the number of SAEs occurred after donepezil use.  To define SAEs, 

we first reviewed the drug label of donepezil (brand name Aricept) obtained from the DailyMed database and extracted 

the adverse events (AEs) from the warnings and adverse reactions sections.  We also extracted and summarized AEs 

listed in all the completed donepezil-related AD trials that had results on ClinicalTrial.gov.  We compiled a list of 

AEs from these two sources and identified 279 corresponding ICD-9-CM codes and 292 ICD-10-CM codes.  Based 

on the AE severity grading scale defined in the Common Terminology Criteria for Adverse Events (CTCAE), AEs 

leading to hospitalization or prolongation of hospitalization are grade 3 AEs and were considered as SAEs in our 

study.  Therefore, we identified encounters that had AE relevant ICD codes and subsequently had emergency 

department visits (ED), ED visits followed by inpatient hospital stays (EI), and inpatient hospital stays (IP) for each 

patient during the prediction window.  The prediction window was defined as the period after the first donepezil 

prescription date but before the last donepezil prescription date plus 30 days (Figure 3).  There were two limitations 

with our SAE definition: (1) we would miss certain SAEs, such as AEs that led to mortality because mortality data in 

OneFlorida was sparse, and (2) there was no explicit causal relationship between taking donepezil and the subsequent 

SAEs.  Nevertheless, our SAE definition was reasonable because (1) the FDA AE guideline required reporting of all 

AEs after the treatment, not just those directly caused by the treatment, and (2) our analyses considered the average 

number of SAEs relatively across patient populations.  

Prediction model.  The number of SAEs is count data with only non-negative integer values and excessive zeros.  

Both the zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) model can be used for this kind of 

outcomes.  The ZINB model is a better choice when the outcome variable is overdispersed (i.e., the variance is much 

larger than the mean).  Thus, we first examined the dispersion parameter of SAE counts to decide which of the two 

models was appropriate.  Then, we built the model using all predictors defined above.  We compared the model 

Figure 3. Definition of the observation window and prediction window. 
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predicted probabilities to the true distributions to assess model fit.  The prediction model was subsequently used as a 

basis for adjusting eligibility criteria while observing changes in predicted SAEs. 

Scenarios of eligibility criteria adjustments 

To rationalize the adjustments of eligibility criteria, we explored how broadening eligibility criteria jointly impacted 

trial generalizability and SAE.  To better illustrate the criteria broadening process, we used the pivot Phase 3 donepezil 

trial for AD, “Comparison of 23 mg Donepezil Sustained Release (SR) to 10 mg Donepezil Immediate Release (IR) in 

Patients With Moderate to Severe Alzheimer's Disease” (NCT00478205) as a starting point for constructing a list of 

eligibility criteria for a hypothetical trial design.  As AD trials often exclude patients with chronic conditions, we thus 

considered chronic conditions defined in the CMS CCW Chronic Condition algorithms as potential exclusion criteria, 

noting that some chronic conditions were already explicitly listed in NCT00478205 as exclusion criteria.  To compute 

the trial’s generalizability scores (sGIST and mGIST), we defined the target population as the AD patients who were 

treated with donepezil in the OneFlorida data and used the original trial eligibility criteria to identify study population 

(i.e., those who met the criteria and eligible for the study in target population).  The study population was defined as 

the eligible group and those who were not in study population but in the target population were defined as the non-

eligible group (i.e., AD patients who were treated with donepezil but did not meet the trial eligibility criteria).  For 

each criterion, a sGIST score could be calculated, with a lower sGIST score meaning the criterion was more stringent 

and thus excluded more patients from the study population compared to other criteria.  An mGIST score could also be 

calculated for a trial, considering all eligibility criteria combined as well as the weights of the different study traits.   

A higher mGIST would mean the trial had a higher population representativeness, and thus better generalizability.   

We considered two scenarios of eligibility criteria adjustments: (1) determine whether a binary (exclusion) criterion 

should be included or removed; and (2) determine the optimum range of a continuous criterion.  To simplify the 

discussion, we did not used the terms inclusion and exclusion criteria; instead, we only considered the actual effects 

of the criteria – whether participants with certain study traits should be included in the trial or not. 

In the first scenario, we considered how broadening binary criteria (i.e., disease diagnosis) impacted GIST and SAEs.  

We computed the sGIST score for each criterion and mGIST score for the hypothetical trial based on NCT00478205.  

To assess the overall effect of a criterion-corresponding study trait on SAEs, we used the prediction model to compute 

the predicted mean number of SAEs for each study trait.  If the sGIST score of the criterion was small and the 

corresponding study trait had a weak association with number of SAEs (i.e., the criterion was limiting trial 

generalizability but had little effect on the number of SAEs), the criterion could potentially be eliminated.  Further, 

we removed individual study traits from the original trial eligibility criteria one at a time and assessed its impact on 

the mGIST and predicted mean number of SAEs of the study population for the eligible and non-eligible groups, 

respectively.  Through monitoring the joint changes of mean SAEs and mGIST scores, we can observe if removing 

certain criteria is worthwhile considering the tradeoff between the mean number of SAEs in the target population 

(both eligible and non- eligible groups) and the trial generalizability in terms of mGIST score.   

In the second scenario, we considered how broadening a continuous criterion (i.e., age) jointly impacted the mGIST 

score and predicted mean number of SAEs.  In the trial NCT00478205, the age criterion was set to be between 45 and 

90 years old.  We broadened the age criterion by sequentially increasing the upper age limit, one year at a time, to 100 

years.  At each iteration of age increase, we computed the trial’s mGIST score and predicted mean number of SAEs.  

The mGIST scores would increase as the range of the age criterion enlarges; meanwhile, as it enlarges, if the model 

adjusted mean number of SAEs of patients within the age criterion (holding other criteria unchanged) is not 

significantly higher, the upper limit of the age criterion could be enlarged. 

Results 

Patient cohort characteristics 

We identified 2,096 unique patients who were eligible for our study.  Among these patients, 1,351 (64.5%) had zero 

SAEs and 745 (35.5%) had at least one SAE.  The overall mean age at AD diagnosis was 77.2, and the overall mean 

age at first donepezil medication was 78.2.  Patients who had any SAEs were slightly older than those who had no 

SAEs (77.7 vs. 77.0; p = 0.0973).  There were more female than male patients (63.4% vs. 36.6%; p = 0.4499).  Over 

50% of the patients were non-Hispanic white.  The percentage of the non-Hispanic black patients was higher in the 

patient group having SAEs compared to the no SAE group.  The characteristics of the study population is summarized 

in Table 1. 
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Table 1. Patient characteristics of the target population in OneFlorida. 

 Overall 

(N=2,096) 

# of SAEs = 0 

(N=1,351) 

# of SAE > 0 

(N=745) 
P value* 

 N (or 

Mean) 
% (or SD) 

N (or 

Mean) 
% (or SD) 

N (or 

Mean) 
% (or SD) 

Age at AD diagnosis 77.2 9.7 77.0 9.5 77.7 9.9 0.0973a 

Age at first donepezil 78.2 9.7 78.0 9.6 78.5 9.9 0.2303a 

Gender       0.4499b 

    Female 1328 63.4% 848 62.8% 480 64.4%  

    Male 768 36.6% 503 37.2% 265 35.6%  

Race/Ethnicity       <.0001b 

    NHW 1050 50.1% 706 52.3% 344 46.2%  

    NHB 408 19.5% 215 15.9% 193 25.9%  

    Hispanic 563 26.9% 376 27.8% 187 25.1%  

    Other 75 3.6% 54 4.0% 21 2.8%  

 Median IQR Median IQR Median IQR  

Number of donepezil 

prescriptions 
2.0 (1.0, 3.0) 1.0 (1.0, 2.0) 2.0 (1.0, 4.0) <.0001c 

Number of months on 

donepezil 
0.0 (0.0, 6.6) 0.0 (0.0, 0.9) 1.6 (0.0, 17.0) <.0001c 

*The p value was for the comparison between the # of SAEs = 0 and # of SAE > 0 group 
atwo samples T test; 
bChi-square test; 
cWilcoxon rank sum test; 

Analysis of donepezil AD trial eligibility criteria 

We identified a total of 5 Phase 3 trials conducted in the U.S. testing donepezil for treating AD (NCT00478205, 

NCT00566501, NCT00428389, NCT00096473, and NCT00000173) and extracted 113 eligibility criteria (54 

inclusion and 52 exclusion criteria).  On average, each donepezil AD trial had 23 criteria.   Some criteria could be 

decomposed into multiple sub-criteria (e.g., “hypertension and cardiac disease must be well-controlled” could be 

decomposed into “well-controlled hypertension” and “well-controlled cardiac disease”).  We decomposed these 

eligibility criteria and extracted the core elements of each criterion.  Many of the eligibility criteria were fundamentally 

similar (e.g., “age > 40” and “age > 45” both discussed a core element on patient age).  We considered the smallest 

core elements of criteria as individual study traits and extracted 193 unique study traits out of the 113 eligibility 

criteria.  However, not all study traits were computable against our OneFlorida patient database.  For example, there 

were 2 inclusion and 5 exclusion criteria related to the availability of caregivers to the patients (e.g., “caregiver must 

have regular contact with the patient”), which were not computable using OneFlorida data.  We found that 60 (31.1%) 

of the study traits were not computable.  The main reasons were: (1) the trait was based on subjective information 

(e.g., requiring “informed consent”, or health conditions that require investigator’s judgement); and (2) the data 

elements were not available in the OneFlorida data (e.g., information on whether a patient “lives in assisted living 

facility” was not available in the structured OneFlorida data). 

Prediction model for the number of SAEs 

The dispersion parameter (0.885; 

95% confidence interval [CI]: 

0.730, 1.071) for the SAEs was 

statistically significant from zero, 

indicating that ZINB regression, 

rather than ZIP regression, should 

be used for modeling.  As shown in 

Figure 4, the ZINB model 

predicted probabilities being close 

to the observed relative frequencies 

indicated a good fit.   

The ZINB model estimates were shown 

in Table 2.  

Figure 4. ZINB Predicted Probabilities and Observed Relative Frequencies 
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Table 2. Zero-inflated negative binomial model for predicting number of SAEs 

Part 1: logistic part for excessive zero (i.e., having no SAE) 

Parameter Odds Ratio (OR) 95% Confidence Interval p-value 

Age at first donepezil 0.972 (0.929, 1.017) 0.2181 

Male vs Female 1.739 (0.711, 4.255) 0.2256 

Race/Ethnicity 

    Hispanic vs NHW 0.204 (0.079, 0.531) 0.0011 

    NHB vs NHW      0.659 (0.232, 1.867) 0.4321 

Number of donepezil prescription 0.027 (0.003, 0.231) 0.0010 

Number of months on donepezil 0.966 (0.834, 1.119) 0.6448 

Chronic conditions * (Only p < 0.05 are shown here) 

    Anemia 0.268 (0.097,  0.74) 0.0110 

    Ischemic Heart Disease 0.122 (0.029,  0.52) 0.0044 

Part 2: negative binomial part 

Parameter Estimate 95% Confidence Interval p-value 

Age at first donepezil 0.998 (0.988, 1.007) 0.5995 

Male vs Female 1.072 (0.867, 1.326) 0.5213 

Race/Ethnicity 

    Hispanic vs NHW 0.874 (0.699, 1.093) 0.2369 

    NHB vs NHW      1.285 (1.042, 1.584) 0.0190 

Number of donepezil prescription 1.104 (1.071, 1.139) <.0001 

Number of months on donepezil 1.023 (1.017,  1.03) <.0001 

Chronic conditions * (Only p < 0.05 are shown here) 

    Chronic obstructive pulmonary disease (COPD) 1.397 (1.134, 1.719) 0.0016 

    Hyperlipidemia 0.756 (0.624, 0.916) 0.0042 

    Hypertension 1.517 (1.202, 1.914) 0.0004 

    Anxiety disorder 1.368 (1.115, 1.679) 0.0027 

 

The first part of the ZINB model was a logistic regression model for estimating the probability of having no SAE.  

Age and gender were not statistically significant in this part of the model.  Hispanics had a lower probability of 

having no SAE compared to non-Hispanic whites (OR = 0.204; p = 0.0011).  The number of donepezil prescriptions 

was a significant predictor (OR = 0.027; p = 0.0010), indicating that having more donepezil doses was associated 

with a lower probability of having no SAE.  In terms of chronic conditions, patients with anemia and ischemic heart 

disease had significant lower odds of having no SAE (OR = 0.268; p = 0.0110 and OR = 0.122; p = 0.0044).   

The second part of the ZINB model was a negative binomial regression, estimating the expected number of SAEs 

conditioned on having at least one SAE.  Age at first donepezil prescription, gender, and race/ethnicity were not 

statistically significant in this part of the model.  The number of donepezil prescriptions and the number of months on 

donepezil were significant predictors, indicating that increasing 1 donepezil prescription would increase the number 

of SAEs by 1.104 – 1 = 0.104 (beta = , p < 0.0001) and increasing 1 month of being on donepezil would increase the 

number of SAEs by 1.023 – 1 = 0.023 (beta = ; p < 0.0001).  In terms of chronic conditions, chronic obstructive 

pulmonary disease (COPD) had an estimate of 1.397 (p = 0.0016), indicating having COPD would increase the number 

of SAEs.  Hyperlipidemia had an estimate smaller than 1, indicating patients with hyperlipidemia would have 1 – 

0.756 = 0.244 (p = 0.0042) fewer SAEs.  Patients with hypertension would have 1.517 – 1 = 0.517 (p = 0.0004) more 

SAEs than those without hypertension.  Anxiety disorder had an estimate of 1.368 (p = 0.0027), indicating patients 

with anxiety disorder would also have 0.368 more SAEs. 

The relationships among eligibility criteria, SAEs, and trial generalizability 

The original donepezil trial NCT00478205 had 40 inclusion and exclusion criteria, with 4 criteria about caregivers.  

Based on the eligibility criteria from NCT00478205 and the 27 chronic conditions in the CMS CCW algorithms, we 

constructed a hypothetical trial design with 18 criteria as shown in Table 3.  Excluding non-computable criteria, we 

extracted 31 study traits from the 18 criteria.  Note that for simplification, we did not use individual study traits in this 

part of the analysis.  For example, strictly speaking, “visual or hearing impairment” were two different study traits: 

“visual impairment” and “hearing impairment”; nevertheless, we combined these two as one exclusion criteria. 

Table 3. Eligibility criteria of a hypothetical trial constructed based on NCT00478205. 

Num Short Name  Inclusion/

Exclusion 

Criteria Definitions 
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1 Age Inclusion age at first donepezil date 45 - 90 

2 Donepezil days Inclusion days on donepezil >= 90 days 

3 Visual/hearing Impairment Exclusion patients with visual impairment or hearing impairment* 

4 Cardiac diseases Exclusion patients with acute myocardial infraction, atrial fibrillation, 

heart failure, or ischemic heart disease* 

5 Uncontrolled Hypertension Exclusion patients with hypertension and have systolic blood 

pressure > 140 or diastolic blood pressure > 90 in recent 3 

months* 

6 Uncontrolled diabetes Exclusion patients with diabetes and have HbA1c > 7 % in recent 3 

months* 

7 Other AD treatments Exclusion patients taken any of Tacrine, Pyridostigmine, 

Galantamine, Isoflurophate, Demecarium, Physostigmine, 

Rivastigmine, Edrophonium, or Ambenonium 

8 Dementias other than AD Exclusion patients had no diagnosis of AD but had diagnosis of other 

dementias 

9 Parkinson's disease Exclusion patients diagnosed with Parkinson's disease 

10 Schizophrenia Exclusion patients with schizophrenia* 

11 Depression Exclusion patients with depression* 

12 Sleep disorder Exclusion patients diagnosed with sleep disorder 

13 Drug use disorders Exclusion patients with drug use disorders* 

14 Alcohol use disorders Exclusion patients with alcohol use disorders* 

15 Conditions affect absorption, 

distribution, or metabolism of the 

study medication 

Exclusion patients diagnosed with any of inflammatory bowel 

disease, gastric or duodenal ulcers, or hepatic disease 

16 Cancer Exclusion patients with a history of cancer (does not include basal or 

squamous cell carcinoma of the skin, benign prostatic 

hyperplasia) within 5 years* 

17 Use antidepressants Exclusion patients prescribed with any of amitriptyline, 

clomipramine, doxepin, imipramine, trimipramine, 

protriptyline, amoxapine, desipramine, or nortriptyline 

18 Fecal/urinary incontinence Exclusion patients diagnosed with fecal or urinary incontinence 

*These criteria were constructed based on CMS CCW chronic condition algorithms.  

We summarized the predicted mean number of SAEs and sGIST scores for each of the 16 exclusion criteria in Figure 

5.  Patients with Parkinson’s disease had the lowest mean number of SAEs at 0.65.  Patients who had taken 

antidepressant medications had the highest mean number of SAEs at 1.87.  However, only 12 patients in the 

OneFlorida data had taken antidepressants.  Patients who had alcohol use disorder also had a high mean number of 

SAEs at 1.70.  In terms of sGIST scores, the exclusion criterion of cardiac diseases had the lowest score of 0.578, 

indicating it was the most stringent criterion.  Exclusion based on depression and uncontrolled hypertension also had 

low sGIST scores of 0.716 and 0.768, respectively.  Exclusion based on the use of antidepressants had the highest 

sGIST score of 0.991.  Exclusion based on uncontrolled diabetes had a sGIST score of 0.964.  For alcohol use disorder, 

the sGIST was 0.962.   

The effects of removing an individual exclusion criterion on 

the number of SAEs and the mGIST score were shown in 

Table 4.  Out of the 2,096 AD patients treated with 

donepezil, 373 met the eligibility criteria of the original 

hypothetical study (i.e., the eligible group) with a predicted 

mean number of SAEs of 0.66.  The non-eligible group had 

a higher predicted mean number of SAEs of 0.99.  The 

mGIST score for the original hypothetical trial was 0.062.  

As an example, if we broadened the eligibility criteria by 

removing the exclusion criterion of cardiac diseases that had 

the lowest sGIST of 0.578, the mGIST score of the trial 

would increase to 0.078, while the number of patients in the 

eligible group increased from 373 to 503 and the adjusted 

mean number of SAEs for eligible and non-eligible groups 

would increase from 0.66 to 0.67 and from 0.99 to 1.01, 

respectively.  On the other hand, dropping the criterion of 

Figure 5. Model adjusted number of SAEs (upper) and 

sGIST (bottom) for each of the 16 exclusion criteria. 
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uncontrolled hypertension would lead to a smaller mGIST gain (i.e., from 0.062 to 0.074) but significantly increase 

the mean number of SAEs in the eligible group from 0.66 to 0.83.  Based on our results on SAE and mGIST, one can 

rationalize the choice of dropping cardiac diseases versus dropping uncontrolled hypertension as exclusion criteria. 

Table 4. Population size, model adjusted mean number of SAEs, and mGIST when dropping individual exclusion 

criteria, independently, stratified by eligible vs. non-Eligible group. 

Independently dropping individual 

exclusion criteria 

Eligible non-Eligible 

sGIST* mGIST Population 

Size (N) 

# of Mean 

SAEs 

Population 

Size (N) 

# of Mean 

SAEs 

00.Original 373 0.66 1642 0.99 . 0.062 

The lowest sGIST scores after dropping these exclusion criteria 

01.Drop Cardiac disease 503 0.67 1512 1.01 0.578 0.078 

02.Drop Depression 431 0.68 1584 0.99 0.716 0.074 

03.Drop Uncontrolled Hypertension 431 0.83 1584 0.95 0.768 0.074 

The highest sGIST scores after dropping these exclusion criteria 

13.Drop Drug use disorders 378 0.66 1637 0.99 0.955 0.062 

14.Drop Alcohol use disorders 378 0.66 1637 0.99 0.962 0.063 

15.Drop Uncontrolled diabetes 378 0.66 1637 0.99 0.964 0.062 

16.Drop Use antidepressants 373 0.66 1642 0.99 0.991 0.062 

*sGIST score of the specific exclusion criterion before dropping the exclusion criterion. 

Table 5. Population size, model adjusted mean number of SAEs, and mGIST when dropping combined individual 

exclusion criteria, sequentially, stratified by eligible vs. non-Eligible group. 

Subsequently 

dropping criterion 

Eligible non-Eligible 

mGIST Population 

Size (N) 

# of Mean 

SAEs 

Population 

Size (N) 

# of Mean 

SAEs 

00.Original 373 0.66 1642 0.99 0.062 

01.Drop Cardiac disease 503 0.67 1512 1.01 0.078 

02.Drop Depression 603 0.70 1412 1.02 0.096 

03.Drop Uncontrolled Hypertension 744 0.83 1271 0.98 0.120 

04.Drop Dementias other than AD 865 0.82 1150 1.00 0.141 

05.Drop Sleep disorder 972 0.85 1043 1.00 0.157 

06.Drop Cancer 1101 0.83 914 1.04 0.175 

07.Drop Visual/Hearing Impairment 1206 0.85 809 1.04 0.194 

08.Drop fecal/urinary incontinence 1320 0.90 695 0.97 0.214 

09.Drop Conditions affect absorption 1413 0.93 602 0.92 0.232 

10.Drop Parkinson's disease 1499 0.91 516 0.97 0.241 

11.Drop Other AD treatments 1575 0.91 440 0.99 0.256 

12.Drop Schizophrenia 1645 0.90 370 1.04 0.260 

13.Drop Drug use disorders 1703 0.91 312 1.01 0.269 

14.Drop Alcohol use disorders 1778 0.94 237 0.80 0.280 

15.Drop Uncontrolled diabetes 1846 0.94 169 0.78 0.290 

16.Drop Use antidepressants 1856 0.95 159 0.69 0.292 

Table 5 shows a different scenario of dropping exclusion criteria, where we assessed the impact of dropping multiple 

exclusion criteria on the mean number of SAEs and mGIST score of the trial.  It was clear as we dropped additional 

exclusion criteria, both the population size of the eligible group and the mGIST score of the trial increased.  However, 

the predicted mean number of SAEs also increased, highlighting the need to find a balance between gaining trial 

generalizability and potentially increasing SAEs. 

Figure 6 illustrates the second scenario of eligibility criteria adjustments, where we aimed to find the optimal range 

of a continuous criterion.  Using the age criterion (i.e., patients from 45 years old to 90 years old) as an example, we 

gradually increased the upper limit of the age criterion from 40 to 100.  Considering patients’ age at first donepezil 

prescription, the predicted mean number of SAEs for each unit increase of the upper age limit, the sGIST score of the 

age criterion, and mGIST score of the trial were plotted in Figure 6.  As the upper limit of the age criterion increased, 

the number of SAEs slightly increased at the beginning and then decreased slightly, but essentially vibrated between 

1.3 to 1.5.  The confidence interval of the model predicted mean number of SAEs were large between 50 and 60 as 

well as between 90 and 100, but relatively narrow between 70 and 80, because we had more data of patients between 

70 and 80.  Both the sGIST score of the age criterion and the overall mGIST of the trial increased, at first, quickly 
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from 70 to 80 and then slowed down after around 85.  Considering both the GIST and the predicted mean number of 

SAEs, it may be beneficial to increase the upper limit of the age criterion to 100 because the increase in trial 

generalizability was not accompanied with significant increase in mean number of SAEs.   

Discussion and conclusion 

Our study demonstrated that adjusting clinical 

trial eligibility criteria would simultaneously 

impact trial generalizability and SAEs in the 

target population using RWD from a large 

clinical data network—OneFlorida.  We also 

demonstrated the potential decision processes 

of rationalizing both categorical and continuous 

eligibility criteria with RWD.  By examining 

the predicted number of SAEs for subgroup 

defined by each criterion, the subgroup with a 

lower risk of having SAE should be allowed to 

participate.  By examining the sGIST scores, the 

eligibility criterion has the most stringency 

could potentially be dropped.  Nevertheless, 

adjustments to eligibility criteria should 

consider both the generalizability of the trial 

(reflected by the GIST scores) and the predicted 

mean number of SAEs simultaneously.  For 

categorical traits like chronic conditions, 

usually used as exclusion criteria, if dropping 

such a trait (i.e., so that patients with that certain disease would be included in the trial) would largely increase the 

number of SAEs but gain little in trial generalizability, it may not be a good idea to do so.  For continuous trait like 

age, we shall broaden the age limits to include as many patients as possible, especially older adults, but without 

increasing the risk of potential SAEs.  Studies had shown that older patients, especially for those above 80, were 

under-represented in existing AD trials.6  As demonstrated in our study, for the donepezil trial for treating AD patients, 

the patients who aged above 80 had a similar expected number of SAEs comparing to those who were younger; thus, 

increasing the upper age limit to include older participants should be allowed.  In sum, eligibility criteria design of a 

trial should find the balance between manageable risks of adverse events for those eligible for the trial and the 

maximum trial generalizability.  

Our approach of using RWD to rationalizing clinical trial eligibility criteria by linking them with a generalizability 

score and the number of SAEs can be easily applied to other clinical data networks that contain large collections of 

RWD.  For other diseases and treatments, the same steps could be used to examine how adjustments to eligibility 

criteria can jointly impact trial generalizability and drug-related SAEs, which informs trial design.  Clinical trials are 

typically conducted in phases, where one could use our approach and data collected from early phase trials (e.g., phase 

1 and 2 trials) to inform the design, especially eligibility criteria design, of later phase trials (e.g., phase 3 trials).  Such 

an approach will yield a high return on investments, where phase 3 trials can be tailored to have the greatest 

generalizability with manageable participant risks. 

Moreover, our study also shows the feasibility of using RWD to build a trial participant identification and recruitment 

tool.  This tool would allow exploration of the potential target population and their characteristics, designing and 

tailoring the trial eligibility criteria, assessing the sample size of the study population, estimating the clinical outcomes 

(e.g., number of SAEs), and assessing the trial’s generalizability.  With such a tool, RWD could be used to support 

trial design to narrow the population representativeness gap between the trial participants and real-world target 

patients.  Additionally, such tool would also help assess participant risks in terms of SAEs when planning the trial. 

Our study is not without limitations.  First, we had no information on medication adherence because of the limitation 

of the EHR data, where only prescription data are available.  We simply assumed that patients who were prescribed 

with the medication did take the medication.  In future studies, being able to link EHR data with medication dispensing 

data can potentially alleviate this limitation.  Second, a number of the eligibility criteria were not computable because 

of the limited availability of the data elements in structured OneFlorida data (e.g., MMSE scores).  However, these 

data elements are often documented in free-text clinical narratives.  In future studies, we can explore advanced natural 

Figure 6. Model adjusted mean number of SAEs across age (blue solid line, 

the band were 95% confidence interval) sGIST score for age criterion with 

lower limit of 40 (red dash line), and mGIST score of the trial (green dash 

line). 
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language process (NLP) methods to extract these important data elements from unstructured clinical narratives.  

Moreover, in addition to SAEs, other clinical outcomes such as survival and treatment efficacy could be explored to 

enhance the decision processes.  

In sum, tools and methods to support the design of eligibility criteria are in great need.  Our ultimate goal is to build 

an easy-to-use eligibility criteria design tool that could rationalize the eligibility criteria by balancing clinical outcomes 

and trial generalizability with real-world data.  
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