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Abstract

To study human idiopathic hypercalciuria we developed an animal model, genetic hypercalciuric 

stone-forming rats, whose pathophysiology parallels that of human idiopathic hypercalciuria. Fed 

the oxalate precursor, hydroxyproline, every rat in this model develops calcium oxalate stones. 

Using this rat model, we tested whether chlorthalidone and potassium citrate combined would 

reduce calcium oxalate stone formation and improve bone quality more than either agent alone. 

These rats (113 generation) were fed a normal calcium and phosphorus diet with hydroxyproline 

and divided into four groups: diets plus potassium chloride as control, potassium citrate, 

chlorthalidone plus potassium chloride, or potassium citrate plus chlorthalidone. Urine was 

collected at six, 12, and 18 weeks and kidney stone formation and bone parameters were 

determined. Compared to potassium chloride, potassium citrate reduced urinary calcium, 

chlorthalidone reduced it further and potassium citrate plus chlorthalidone even further. Potassium 

citrate plus chlorthalidone decreased urine oxalate compared to all other groups. There were no 

significant differences in calcium oxalate supersaturation in any group. Neither potassium citrate 

nor chlorthalidone altered stone formation. However, potassium citrate plus chlorthalidone 

significantly reduced stone formation. Vertebral trabecular bone increased with chlorthalidone and 

potassium citrate plus chlorthalidone. Cortical bone area increased with chlorthalidone but not 

potassium citrate or potassium citrate plus chlorthalidone. Mechanical properties of trabecular 

bone improved with chlorthalidone, but not with potassium citrate plus chlorthalidone. Thus in 
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genetic hypercalciuric stone-forming rats fed a diet resulting in calcium oxalate stone formation, 

potassium citrate plus chlorthalidone prevented stone formation better than either agent alone. 

Chlorthalidone alone improved bone quality, but adding potassium citrate provided no additional 

benefit.
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INTRODUCTION

Calcium (Ca) oxalate (Ox) stones are most common in human stone formers1, the majority 

of whom have idiopathic hypercalciuria (IH)2. The increase in urine Ca leads to increased 

supersaturation with respect to Ca-containing solid phases, principally CaOx and Ca 

hydrogen phosphate (CaP), which increases the probability for nucleation and growth of 

crystals into clinically significant stones.

To model human IH we generated a strain of rats, the genetic hypercalciuric stone-forming 

(GHS) rats. Selectively inbred for over 113 generations, GHS rats are hypercalciuric 

compared to their parent Sprague-Dawley rats3. When fed a normal Ca diet, all GHS rats 

form CaP kidney stones4. Like patients with IH, these rats have increased intestinal Ca 

absorption4, 5, decreased renal Ca reabsorption6, and increased bone resorption7, leading to 

increased urine Ca excretion and CaP stone formation4 as well as a decrease in BMD8, 9 The 

addition of the oxalate precursor, hydroxyproline, to the diet of GHS rats results in universal 

formation of CaOx stones10. Serum 1,25-dihydroxyvitamin D3 levels are normal11. We have 

shown that hypercalciuria in the GHS rats is polygenic12 as it is in humans13. Thus the 

pathophysiology of the hypercalciuria in the GHS rats closely mirrors that of humans with 

IH.
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Two pharmacologic therapies used to decrease recurrent stone formation in humans are 

potassium citrate (KCit) or thiazide diuretics, alone or in combination2, 14 In humans both 

KCit and thiazides individually have been shown to decrease stone formation15 and improve 

bone quality; however, there is little data directly comparing the efficacy of these two 

medications in combination. We have previously shown that giving GHS rats thiazides 

(specifically chlorthalidone, CTD) decreases urine Ca, reduces urine CaP supersaturation 

and decreases CaP stone formation16. We also found that CTD improves BMD and bone 

quality in GHS rats17. In another study we observed that giving GHS rats KCit also 

decreases urine Ca, but increases CaP supersaturation and does not decrease stone 

formation18. Most recently we found that CTD alone was superior to the combination of 

CTD plus KCit for reducing CaP stone formation and improving BMD and bone quality in 

the GHS rats19. As CaOx stones are the type most commonly found in humans, in the 

current study we tested the hypothesis that the combination of CTD and KCit would reduce 

CaOx stone formation and improve bone quality in GHS rats better than either agent alone.

METHODS (full Methods in supplement)

Study Protocol

Three month old male 113th generation GHS rats were randomly divided into 4 groups (each 

n=10) and housed individually in metabolic cages. All rats were fed a fixed amount of a 

normal Ca (1.2% Ca) and phosphorus (0.65%) diet containing 5% hydroxyproline, 

supplemented with either KCl (4 mmol/d) as control, KCit (4 mmol/d), CTD (4-5mg/kg/d)

+KCl or KCit+CTD. At weeks 6, 12 and 18, 24h urine was collected for analyses as 

described previously19. Each rat received an intraperitoneal injection of 1% calcein green at 

10 and 2 days prior to sacrifice for dynamic histomorphometry. At 18 weeks, rats were 

euthanized, blood collected and organs removed. Univ. of Rochester Committee for Animal 

Resources approved all procedures.

Urine and Serum Chemistries

Urine Ca, P, ammonium, potassium, and sodium were measured on a Beckman AU 

autoanalyzer and urine pH using a glass electrode. Urine citrate and sulfate were measured 

by ion chromatography and oxalate was measured enzymatically. All urine solutes were 

measured at 6, 12 and 18 weeks and a mean value for each time period as well as an overall 

mean was calculated. Serum Ca, P, Na, K, Cl, bicarbonate and creatinine were measured 

with a Roche 501 clinical chemistry analyzer which utilizes ion selective electrodes for 

determinations of Na, K and Cl and chemical assays for Ca, P, bicarbonate and creatinine. 

All methods have been used previously17–23.

Urine Supersaturation

Urine supersaturation with respect to CaOx and CaP solid phases were calculated using the 

computer program EQUIL224 as done previously4, 10, 18, 19, 23.
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Kidney Stone Formation

Kidneys, ureters and bladders were imaged to determine extent of kidney stone formation. 

Three observers blinded to treatment scored all radiographs on a scale ranging from 0 (no 

stones) to 4 (extensive stones) and the mean score reported for each rat.

Bone Measurements

Dual Energy X-ray Absorptiometry—Dual energy X-ray absorptiometry was used to 

determine tissue density and mineral content. The areal bone mineral density (aBMD), bone 

mineral content (BMC) and bone area (BArea) were measured.

Micro-Computed Tomography—Micro-computed tomography (microCT) was used to 

measure volumetric bone mineral density (vBMD) and microarchitecture of the mid-

diaphysis of right femurs and L6 vertebrae.

Tissue-Level Remodeling—Tissue-level remodeling was assessed via 

histomorphometry on both mineralized (undecalcified) bone and unmineralized (decalcified) 

bone. Stained sections were viewed microscopically and results quantified.

Histomorphometry—Undecalcified histomorphometry differentiates between 

mineralized and demineralized tissue. Sections were used for static and dynamic 

histomorphometric analysis. Cross-sections of the left distal tibiae were used for back-

scattered electron microscopy. Sections of undecalcified right tibiae were stained and 

quantified. Trabecular bone was analyzed in the proximal tibia metaphysis. Sections of 

calcein labeled undecalcified right tibiae were used for dynamic histomorphometry and 

quantified. Sections of decalcified left tibiae were stained for tartrate-resistant acid 

phosphatase for assessment of osteoclasts and bone resorption.

Biomechanical Properties

Biomechanics of femurs were assessed to define a load-displacement curve and ultimate 

load, stiffness, ultimate displacement, and energy to break. Data were normalized for 

specimen geometry. Three-point bending was performed on the right femurs. Vertebral 

compression was measured on L6 vertebrae. Vertebral compression does not result in 

complete fracture; the failure point was determined by an 8-10% reduction in load. The 

proximal end of the femurs was subjected to femoral neck fracture.

Degree of Mineralization

Back-scattered electron microscopy (BSE) on both right tibiae and left distal tibiae cross-

section samples was done with a scanning electron microscope and images were taken using 

a solid state BSE detector.

Statistical Analysis

Urine analytes, serum values and stone formation, expressed as mean±SE, were compared 

among the four treatment groups by a one-way ANOVA with subsequent Bonferroni 

correction for pairwise comparison among the treatment groups (Statistica, StatSoft, Tulsa, 
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OK). The interaction effects of KCit and CTD at 18 weeks were tested by comparing to KCI 

using linear regression models on urine analytes, serum values and stone formation (SAS 

9.4, Cary, NC), assuming normally distributed. Bone parameters were compared by t-test 

using the SPSS Statistics 20 program (SPSS, Chicago, IL) and expressed as mean±SD. 

p<0.05 was considered significant.

RESULTS

Urine and Serum

Mean overall urine Ca for the entire 18 week study was decreased in rats fed KCit and in 

those fed CTD while the combination of KCit+CTD decreased it further (Figure 1, 

Supplemental Figure 1 for each collection period). Mean overall urine citrate and urine P 

were both increased by KCit but not CTD. KCit+CTD increased both urine citrate and urine 

P compared to KCl and to CTD; however, the increases were less than that observed with 

KCit alone. There were no drug interactions between KCit and CTD for any of these 

parameters.

Mean overall urine oxalate was not altered by KCit alone or CTD alone compared to KCl 

while KCit+CTD decreased urine oxalate compared to each of the other groups (Figure 2, 

Supplemental Figure 2 for each collection period). Mean urine ammonium (NH4) was 

decreased by KCit, but increased by CTD. KCit+CTD decreased urine NH4 comparably to 

KCit alone. There was a negative drug interaction for the effects of KCit and CTD on urine 

NH4 (p<0.0001). Urine pH was increased by KCit and decreased by CTD. KCit+CTD 

increased urine pH comparably to KCit alone. There was a positive drug interaction for the 

effects of KCit and CTD on urine pH (p<0.0001).

Mean overall urine volume for the entire 18 week study was decreased in rats fed CTD 

while the combination of KCit+CTD decreased it further (Figure 3, Supplemental Figure 3 

for each collection period). There were no drug interactions between KCit and CTD on urine 

volume. Mean overall urine Na was not altered by KCit and KCl+CTD but fell with KCit

+CTD. There were no drug interactions between KCit and CTD on urine Na. Mean urine K 

was not altered by KCit but increased with CTD and fell with KCit+CTD compared to CTD 

alone. There was a positive drug interaction between KCit and CTD for urine K (p=.012).

Mean overall urine supersaturation with respect to CaP was increased by KCit, while CTD 

had no effect on supersaturation compared to KCl (Figure 4, Supplemental Figure 4 for each 

collection period). KCit+CTD increased CaP supersaturation compared to KCl and to CTD. 

There was a positive drug interaction for the effects of KCit and CTD on CaP 

supersaturation (p=0.0003). There was no effect of KCit, CTD or the combination of KCit

+CTD on overall CaOx supersaturation and no drug interaction for the effects of KCit and 

CTD on CaOx supersaturation.

At 18 weeks on each diet, serum values for chloride, bicarbonate, P and creatinine were not 

different between groups (Table 1). Serum Na was decreased by KCit+CTD compared to 

KCl. Serum potassium was decreased by CTD and by KCit+CTD compared to KCl. Serum 

Ca was increased by CTD and by KCit+CTD compared to both KCl and KCit alone.
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Stone Formation

Representative radiographs of kidneys at 18 weeks on the indicated diets are shown in 

Figure 5a and quantitation of the radiographs from all the rats in Figure 5b. Significant 

CaOx calcification was found in all rats fed the KCl control diet. KCit alone and CTD alone 

had no effect on CaOx stone formation. The combination of KCit+CTD led to less stone 

formation than those given KCl or KCit. There was no drug interaction for the effects of 

KCit and CTD.

Bone

MicroCT analysis demonstrated that trabecular bone volume (BV/TV) in the L6 vertebrae 

was increased with both CTD and KCit+CTD compared to KCl and with CTD compared to 

KCit (Figure 6A). There was no difference in trabecular thickness (Tb. Th.) in L6 in 

response to any of the treatments. Trabecular number (Tb.N.) in L6 was increased by CTD 

compared to KCl and to KCit and KCit+CTD increased Tb.N compared to KCl. Trabecular 

spacing (Tb.Sp.) in L6 was decreased by CTD compared to KCl and to KCit while KCit

+CTD decreased Tb.Sp. compared to KCl.

There was no change in volumetric BMD in cortical bone from the femur of rats on any of 

the treatments (Figure 6B). Bone area and cross sectional thickness in femurs from rats fed 

KCit were not different from KCl and were increased with CTD alone compared to both 

KCl and KCit. KCit+CTD did not alter bone area or cross sectional thickness compared to 

KCl and to KCit; however, both were decreased compared to CTD alone. There was no 

change in percent bone volume to total volume on any of the treatments.

Vertebral compression tests indicate that CTD supported a greater ultimate load, a greater 

failure load and a greater energy to fail compared to the KCl control, while KCit and KCit

+CTD had no effect on any of these parameters (Table 2). For material properties, there was 

increased ultimate stress, failure stress and toughness with CTD compared to KCl and to 

KCit+CTD. When rats received KCit+CTD there was no difference compared to KCl. The 

results from three-point bending tests indicate that cortical bone from KCit fed rats 

supported a larger failure displacement and larger failure strain compared to KCl (Table 2), 

while stiffness and failure strain were increased by CTD. KCit+CTD did not alter any 

cortical mechanical properties compared to KCl.

For dynamic undecalcified histomorphometry, the percent bone volume to total volume was 

increased by KCit, CTD and KCit+CTD compared to KCl control (Table 3). Percent osteoid 

volume and percent osteoid surface were decreased by KCit, CTD and KCit+CTD compared 

to KCl. There were no changes in dynamic histomorphometry with any of the diets. The 

number of osteoclasts/total volume was significantly increased by KCit+CTD.

DISCUSSION

Calcium oxalate stones are most prevalent in human stone formers1, the majority of whom 

have IH1, 2 . The increased urinary Ca excretion leads to an increase in supersaturation with 

respect to the Ca containing solid phases which increases the probability for nucleation and 

growth of crystals into clinically significant kidney stones. In addition to non-pharmacologic 
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therapy, CaOx stones are generally treated with KCit and/or thiazide diuretics such as 

CTD2, 14 Each of these pharmacologic therapies has been shown to be effective in reducing 

stone recurrence; however, there is little data with respect to efficacy of combining them to 

further reduce stone formation15. Patients with IH often have reduced bone density and 

increased rate of fractures25. KCit and thiazide diuretics have also been shown individually 

to increase bone density26; and one study of 18 men and 10 women found that the 

combination of thiazides and potassium citrate reduced stone formation and increased bone 

density when combined with a low calcium diet27. The study presented here found that in 

GHS rats fed a diet that results solely in CaOx stone formation, the combination of KCit

+CTD prevented stone formation better than either agent alone and that CTD alone improves 

bone quality, but the addition of KCit provides no additional benefit for bone.

The administration of KCit led to an increase in urinary citrate, a reduction in urinary Ca and 

an increase in urinary phosphate, all similar to what we have reported previously18, 19 After 

intestinal absorption, citrate leads to systemic alkalization leading to less tubular 

reabsorption of citrate and an increase in its excretion28. Increasing dietary citrate leads to a 

decrease in urine Ca through several known mechanisms. The systemic alkalization induced 

by dietary citrate leads to an increase in tubular fluid pH and an increase in renal tubular Ca 

reabsorption. It also leads to increased bone formation and decreased bone resorption29. The 

increased urinary P with KCit appears secondary to intestinal citrate binding Ca which 

decreases intestinal CaP complexation allowing more P to be absorbed and excreted. The 

administration of CTD also decreased urinary Ca. Thiazide diuretics increase tubular Ca 

reabsorption in animals and in man. We have shown in rats16 and in humans30 that the 

decrease in urinary Ca persists due to a concomitant reduction in intestinal Ca absorption. It 

is unclear why urine Ox was not altered by either KCit or KCl+CTD but fell significantly 

with KCit+CTD. This reduction of urine Ox with the combination therapy, but not with 

either therapy alone, was observed in each of the 3 individual urine collection periods. In our 

previous publication urinary oxalate also fell with KCit+CTD19 providing further validity to 

the observation. While we do not have a clear explanation as to why oxalate excretion fell 

with the combined therapy, it is possible that thiazides reduce Ca absorption and therefore 

leave more Ca in the intestine to bind oxalate and lower net absorption31. Citrate has been 

shown to reduce intestinal Ca absorption in a rat model32 so CTD and citrate together may 

be additive, or even synergistic, in lowering Ca absorption, providing greater Ca to bind 

intestinal oxalate and therefore reducing renal oxalate excretion. Further studies will be 

required to understand this interesting observation.

Neither KCit nor CTD alone or in combination led to an alteration in CaOx supersaturation 

yet the combination significantly reduced CaOx kidney stone formation. The reasons that 

stone formation fell, yet supersaturation was not altered, are not clear from this study. Urine 

CaOx supersaturation was almost twice as high in each of the four groups compared to GHS 

rats fed a diet without added hydroxyproline19; perhaps any changes induced by these 

medications were not sufficient to alter these high levels of supersaturation. While CaOx 

supersaturation was numerically lower with KCit+CTD than in any of the other groups, this 

reduction was not significant. While we present supersaturation data, as it appears to be an 

important parameter in regulating stone formation33, 34, we recognize that it is not the sole 

determinant of stone formation. For example calculated supersaturation dues not account for 
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inhibitors or promoters of stone formation24. In addition, no calculated measure of 

supersaturation has been formally validated for use in rodents.

The increase in urine oxalate caused by the addition of the oxalate precursor hydroxyproline 

to the diet of GHS rats results in the formation of only CaOx stones10. Indeed in this study 

with hydroxyproline added to the diet, urine oxalate was approximately twice that of a 

similar study in which hydroxproline was not added to diet19. Previously we have shown 

that in GHS rats not given hydroxyproline, which form only CaP stones, CTD alone is 

superior to KCit or to KCit+CTD in reducing CaP stone formation and improving bone 

quality19. In both studies KCit and CTD, alone and in combination had remarkably similar 

effects on urine Ca, citrate, P, NH4 and pH. However, CaP crystal formation is sensitive to 

pH, the higher the pH the greater the supersaturation with respect to CaP, while CaOx crystal 

formation and supersaturation is relatively pH insensitive35. Similar to this prior study CTD, 

but not KCit, led to an improvement in bone density and quality, the addition of KCit to 

CTD did not improve density or quality further.

Thus based on the results of this study and that of our previous study19, the approach to 

preventing stones in hypercalciuric stone formers differs with stone type. With CaOx stones, 

KCit+CTD is most beneficial in preventing stones while with CaP stones CTD alone appears 

to be the optimal treatment.

In considering a direct interaction between the effects of KCit and the effects of CTD, there 

were differences in some, but not all, urine parameters that demonstrated a significant 

interaction effect when rats received both KCit+CTD. There was a lesser effect on urine 

NH4 and uric acid SS when both drugs were given than the sum of either alone. There was a 

greater effect on urine pH and CaP SS when both drugs were given than the sum of either 

alone. There was no significant interaction on urine Ca, citrate, oxalate, CaOx SS or stone 

formation when both drugs were given. Since there is no drug interaction with respect to 

CaOx SS or stone formation, the importance of these drug interactions is not clear.

Hypercalciuric stone formers generally have decreased bone density and increased 

propensity to fracture25. As we found previously, GHS rats given CTD with or without KCit 

had increased trabecular bone volume, though there was no increase in cortical bone mineral 

density. Most rat models are more sensitive to changes in trabecular bone than cortical bone 

because trabecular bone has many more cells than cortical bone and remodels eight times 

faster36. Rats given CTD alone demonstrated increased vertebral bone strength and material 

properties which was not observed when KCit was also given. KCit and CTD increased 

different structural properties of the bone, though the combination had no effect compared to 

control rats fed KCl. An increase in percent bone volume and a decrease in unmineralized 

osteoid was found in rats fed KCit alone, CTD alone or the combination when compared to 

control rats. The greater improvements in bone quality in response to CTD compared to 

KCit are similar to what we have found previously17, 19

In human studies both thiazide diuretics and KCit have been shown to improve bone mineral 

density26, 35 In three small studies of hypercalciuric stone formers, improvements in bone 

density and/or quality were found25, 37, 38 Many patients receive thiazide diuretics for 
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hypertension. A meta-analysis of twenty-one observational studies including almost four 

hundred thousand patients concluded that there was a significant 24% reduction in the risk 

of hip fracture in those receiving thiazide diuretics39. Potassium citrate therapy for 11 

months improved vertebral bone mineral density in patients with Ca nephrolithiasis40. 

Potassium citrate also improved distal radius BMD in hypercalciuric patients41. Bone 

mineral density as measured by CT scan was also improved by both thiazides and KCit42. In 

this study we again demonstrate that a thiazide diuretic improves bone density and the 

mechanical properties of bone which is consistent with observations in humans37,38. Why 

we did not find that KCit improved bone in GHS rats is unclear. Humans tend to eat an acid 

producing diet and KCit has been shown, in at least one study, to improve bone density in 

osteoporotic humans43. Perhaps if our GHS rats were fed a diet that results in more 

endogenous acid production KCit would lead to an improvement in bone density and quality.

In conclusion, we found that in GHS rats who universally form CaOx stones when fed 

hydroxyproline, the combination of KCit+CTD led to a greater reduction in stone formation 

than either agent alone. CTD alone improved bone density and quality while the addition of 

KCit had no additional benefit. Previously we have shown that for CaP stones, CTD alone is 

superior to KCit alone or KCit+CTD in preventing stone formation and, similar to the 

current study, to improve bone density and quality19. Thus, in this hypercalciuric model of 

kidney stones, optimal treatment appears to differ for the two most common types of kidney 

stones found in humans; KCit+CTD for CaOx stones and CTD alone for CaP stones. If these 

results are confirmed in human hypercalciuric CaOx stone formers, then the combination of 

these two agents, which are often used alone, would be beneficial in prevention of stone 

formation and at least the thiazide would help improve bone density and quality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Statement

Calcium oxalate (CaOx) stones are the most common kidney stone formed by humans, 

most of whom have idiopathic hypercalciuria (IH) and reduced bone density. To model 

human IH we generated the genetic hypercalciuric stone-forming (GHS) rats, which form 

solely CaOx stones when fed hydroxyproline. In humans, both potassium citrate and 

thiazide diuretics individually decrease stone formation; however, there is little data 

comparing these medications in combination. In GHS rats, the combination of potassium 

citrate and a thiazide prevented CaOx stone formation better than either agent alone. 

CTD alone improved bone quality, adding KCit provides no additional benefit for bone.
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Figure 1. Urine calcium, citrate and phosphate.
Rat diets were all supplemented hydroxyproline and with either KCl (4 mmol/d) as a 

control, potassium citrate (KCit, 4 mmol/d), chlorthalidone (CTD, 4-5mg/kg/d)+KCl or 

KCit+CTD. Twenty-four-hour urine collections were done at 6, 12 and 18 wks for analysis 

of solute levels as described in Methods and an overall mean of all three collections was 

calculated. Results are mean±SE for 10 rats/group. *p<0.05 vs KCl, op<0.05 vs KCit alone, 
#p<0.05 vs CTD alone.
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Figure 2. Urine oxalate, NH4 and pH.
Rat diets were all supplemented hydroxyproline and with either KCl (4 mmol/d) as a 

control, potassium citrate (KCit, 4 mmol/d), chlorthalidone (CTD, 4-5mg/kg/d)+KCl or 

KCit+CTD. Twenty-four hour-urine collections were done at 6, 12 and 18 wks for analysis 

of solute levels as described in Methods and an overall mean of all three collections was 

calculated. Results are mean±SE for 10 rats/group. *p<0.05 vs KCl, op<0.05 vs KCit alone, 
#p<0.05 vs CTD alone.
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Figure 3. Urine volume, Na, K.
Rat diets were all supplemented hydroxyproline and with either KCl (4 mmol/d) as a 

control, potassium citrate (KCit, 4 mmol/d), chlorthalidone (CTD, 4-5mg/kg/d)+KCl or 

KCit+CTD. Twenty-four hour-urine collections were done at 6, 12 and 18 wks for analysis 

of solute levels as described in Methods and an overall mean of all three collections was 

calculated. Results are mean±SE for 10 rats/group. *p<0.05 vs KCl, op<0.05 vs KCit alone, 
#p<0.05 vs CTD alone.
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Figure 4. Urine supersaturation of CaP and CaOx.
Rat diets were all supplemented with hydroxyproline and with either KCl (4 mmol/d) as a 

control, potassium citrate (KCit, 4 mmol/d), chlorthalidone (CTD, 4-5mg/kg/d) + KCl or 

KCit+CTD. Twenty-four-hour urine collections were done at 6, 12 and 18 wks for analysis 

of solute levels as described in Methods. These values were used to calculate relative 

supersaturation and an overall mean of all three collections was calculated. Values for 

relative supersaturation are unitless. Results are mean±SE for 10 rats/group. *p<0.05 vs 

KCl, op<0.05 vs KCit alone, #p<0.05 vs CTD alone.
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Figure 5. Kidney stones and calcification.
At the conclusion of the 18 wk study the extent of kidney stones and calcification were 

determined by three observers as described in Methods. A) Representative x-rays of kidneys 

from rats receiving KCl, KCit, CTD or KCit+CTD. B) Quantitation of stone formation and 

calcification in all rats (Mean±SE, n=10/group). *p<0.05 vs KCl, op<0.05 vs KCit alone, 
#p<0.05 vs CTD alone.

Krieger et al. Page 18

Kidney Int. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Krieger et al. Page 19

Kidney Int. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Changes in bone parameters after 18 weeks.
Rat diets were all supplemented with hydroxyproline and with either KCl (4 mmol/d) as a 

control, potassium citrate (KCit, 4 mmol/d), chlorthalidone (CTD, 4-5mg/kg/d) + KCl or 

KCit+CTD. At the conclusion of the 18 wk study, bones were collected from all rats and 

analyzed as described in Methods. A) Percent bone volume (BV/TV), trabecular thickness 

(Tb.Th.), trabecular number (Tb.N.) and trabecular separation (Tr. Sp.) of L6 vertebrae are 

presented. B) Cortical volumetric bone mineral density (vBMD), bone area (B.Ar.), cortical 

thickness (Cs.Th), and % bone volume/total volume (%BV/TV) of femoral cortical bone are 
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presented. Results are mean±SD for n=10 bones/group. p<0.05 vs KCl, op<0.05 vs KCit 

alone. There were no significant differences comparing KCl+CTD to KCit+CTD.
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Table 1.

Serum measurements after 18 weeks in GHS rats fed KCl, KCit, KCl+CTD or KCit+CTD with OH-proline.

solute KCl KCit KCl+CTD KCit+CTD

Sodium (mmol/L) 144.8 ± 0.7 142.7 ± 0.7 142.7 ± 0.5 141.5 ± 0.9
a

Potassium (mmol/L) 4.67 ± 0.13 4.44 ± 0.18 3.88 ± 0.17
a

3.73 ± 0.14
a,b

Chloride ( mmol/L) 100.4 ± 0.5 89.4 ± 8.9 95.3 ± 0.6 93.9 ± 0.6

Bicarbonate (mmol/L) 24.6 ± 0.5 24.8 ± 0.7 25.0 ± 0.4 26.4 ± 0.2

Calcium (mg/dL) 10.2 ± 0.08 10.2 ± 0.07 10.7 ± .06
a,b

10.6 ± 0.3
a,b

Phosphate (mg/dL) 5.56 ± 0.20 6.08 ± 0.40 5.97 ± 0.21 5.74 ± 0.22

Creatinine (mg/dL) 0.30 ± 0.01 0.30 ± 0.01 0.32 ± 0.01 0.32 ± 0.02

Results are mean ± SE for 9-10 rats/group.

a
p <0.05 vs KCl alone;

b
p<0.05 vs KCit alone.

There were no significant differences comparing KCl+CTD to KCit+CTD.
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Table 2.

Mechanical properties of trabecular (vertebral compression) and cortical (three-point bending) bone from GHS 

rats fed KCl, KCit, KCl+CTD or KCit+CTD.

KCl KCit KCl+CTD KCit+CTD

Vertebral compression

  Structural Properties

 Ultimate load (N) 185.9±34.1 225.6±34.4 269.5±40.6
a 227.5±43.8

 Failure load (N) 169.1±44.2 216.2±43.2 262.9±38.2
a 219.6±52.3

 Energy to fail (mJ) 28.5±16.8 44.5±17.1 62.8±17.7
a 46.9±18.0

  Failure displacement (mm) 0.45±0.21 0.49±0.22 0.57±0.20 0.58±0.26

 Stiffness (N/mm) 744.0±417.4 685.6±219.1 686.6±123.3 634.9±129.7

  Material Properties

 Ultimate stress (MPa) 33.6±6.8 41.9±6.5 51.9±11.9
a

38.7±8.5
b

 Failure stress (MPa) 30.5±8.4 40.1±7.9 50.7±11.6
a

37.2±9.6
b

 Failure strain (%) 9.8±4.1 10.0±4.5 11.9±4.2 12.0±4.8

 Toughness (mJ/mm3) 0.7±0.4 1.4±0.6 2.1±0.8
a

1.2±0.6
b

 Young’s Modulus (MPa) 614.6±364.6 598.4±140.5 626.0±145.3 512.6±112.4

Three-point bending

  Structural Properties

Failure Displacement (mm) 0.44±0.07 0.57±0.10
a 0.57±0.12 0.57±0.14

 Failure Load (N) 152.1±5.0 144.8±15.2 155.0±14.9 144.5±11.7

 Energy to fail (N) 49.2±10.3 45.7±15.2 47.1±14.5 43.4±15.4

 Stiffness (N/mm) 450.8±47.3 496.0±49.2 513.9±46.4
a 480.5±40.8

  Material Properties

 Failure Stress (MPa) 89.1±6.0 85.5±9.6 88.1±16.8 85.4±7.8

 Failure Strain (%) 4.9±0.7 6.3±1.1
a

6.4±1.4
a 6.2±1.5

 Toughness (mJ/mm3) 317.1±67.7 300.0±106.0 303.7±123.7 280.3±101.2

 Young’s Modulus (MPa) 2395.5±244.2 2660.5±216.6 2602.5±430.1 2606.1±291.5

Results are mean ± SD for 9-10 rats/group.

a
p <0.05 vs KCl alone

b
p<0.05 vs KCl+CTD.
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Table 3.

Histomorphometry analyses of tibiae from GHS rats fed KCl, KCit, KCl+CTD or KCit + CTD.

KCl KCit KCl+CTD KCit+CTD

Histomorphometry

  Undecalcified Static

 BV/TV (%) 0.18±0.05 0.25±0.03
a

0.31±0.04
a,b

0.29±0.04
a

 OV/BV (%) 0.002±0.002 0.0005±0.0005
a

0.0003±0.0003
a

0.0002±0.0002
a

 OS/BS (%) 0.10±0.18 0.01±0.01
a

0.006±0.007
a

0.008±0.008
a

 Osteoid width (μm) 4.4±2.1 2.7±2.0 3.6±5.9 1.4±1.68

  Dynamic

 MS/BS (%) 0.27±0.26 0.26±0.08 0.20±0.08 0.18±0.06

 MAR (μm/day) 1.51±0.21 1.43±0.24 1.38±0.16 1.38±0.14

 BFR/BS (μm3/μm2/day) 0.42±0.28 0.38±0.15 0.28±0.11 0.25±0.09

Decalcified

 Oc.S/BS (%) 0.47±0.29 0.32±0.19 0.41±0.17 0.42±0.12

 N.Oc/BS (1/mm) 6.7±2.9 7.4±1.4 5.6±2.0 6.8±1.7

 N.Oc/TV (1/mm2) 15.4±11.6 23.8±5.8 25.1±10.0 32.6±12.0
a

Results are mean ± SD for 8-10 rats/group. OV = osteoid volume; BV = bone volume; OS= osteoid surface; BS = bone surface; MS = mineralized 
surface; MAR = mineral apposition rate; BFR = bone formation rate; Oc.S = osteoclast surface; N.Oc. = number of osteoclasts; TV = total volume.

a
p <0.05 vs KCl alone;

b
p<0.05 vs KCit alone.

There were no significant differences comparing KCl+CTD to KCit+CTD.
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