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Abstract

Purpose: To introduce synchrotron x-ray microcomputed tomography (microCT) and 

demonstrate its use as as a natively isotropic, nondestructive, 3D validation modality for diffusion 

MRI (dMRI) in whole, fixed mouse brain.

Methods: Postmortem dMRI and microCT data were acquired of the same whole mouse brain. 

Diffusion data were processed using constrained spherical deconvolution. Synchrotron data were 

acquired at an isotropic voxel size of 1.17 μm. Structure tensor analysis was used to calculate fiber 

orientation distribution functions (fODFs) from the microCT data. A pipeline was developed to 

spatially register the two datasets in order to perform qualitative comparisons of fiber geometries 

represented by fODFs. Fiber orientations from both modalities were used to perform whole-brain 

deterministic tractography to demonstrate validation of long-range white matter pathways.

Results: fODFs were able to be extracted throughout the entire microCT dataset, with spatial 

registration to dMRI simplified due to the whole brain extent of the microCT data. Fiber 

orientations and tract pathways showed good agreement between modalities.

Conclusion: Synchrotron microCT is a potentially valuable new tool for future multi-scale 

dMRI validation studies, providing comparable value to optical histology validation methods 

while addressing some key limitations in data acquisition and ease of processing.
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1 Introduction

Diffusion magnetic resonance imaging (dMRI) is a method that estimates microanatomical 

tissue properties from macroscopic, spatio-angular measurements of the restricted diffusion 

of water molecules (1,2). Several dMRI acquisition and modeling approaches have been 

developed to estimate tissue properties such as fiber integrity (3,4), cellular compartmental 

analysis (5–7), axon diameters (8,9), and long-range fiber trajectories (10). Metrics derived 
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from dMRI reconstructions have played an important role in the clinical diagnosis of several 

neurological diseases (11) but are limited by the poor spatial resolution of the data. Axons 

have diameters on the order of microns (12), while typical clinical dMRI voxels are on the 

order of millimeters. This discrepancy in scale introduces uncertainties in the reconstruction 

of microstructural tissue properties and long-range fiber pathways. Accordingly, dMRI 

methods require validation with ground-truth imaging across spatial scales capable of 

resolving micron-level cellular architectures as well as centimeter-level pathways and 

measures of connectivity across whole brains.

Efforts to validate dMRI reconstructions have primarily relied on optical imaging 

techniques. For the validation of local fiber orientation and dispersion properties estimated 

from dMRI, several groups have used histological analysis of tissue sections (13–17), 

polarized light imaging (18,19) and optical coherence tomography (20,21). Optical imaging 

methods have also been combined with fluorescent neural tracers to validate tractography 

pipelines in a number of species (22–26).

While optical imaging methods provide sufficient detail to characterize tissue microstructure 

and delineate white matter pathways, they also come with a number of limitations. The low 

penetration depth of optical light requires the tissue to be physically sectioned into thin 

slices. Three-dimensional (3D) representations of the sample are generated either by virtual 

stacking of two-dimensional images of each slice (27) or through deconvolution methods 

with confocal acquisitions (17,28). In both cases, the slice thickness is generally several 

times greater than the achievable in-plane resolution, leading to anisotropic voxel sizes. This 

effect can potentially bias the estimation of 3D fiber orientations and complicate the process 

of spatially registering the ground-truth and dMRI datasets. Optical acquisitions can also be 

prohibitively labor-intensive to deliver sufficient volumetric data across whole brains, 

requiring a method of preselecting target regions for imaging. Neural tracer studies are 

similarly limited to imaging projections to or from a single injection region per specimen, 

making ground-truth, whole-brain connectivity studies extremely costly.

Recent work has shown the ability to acquire micron-resolution synchrotron computed 

tomography (microCT) scans of the whole mouse brain and register them with both prior 

whole-brain dMRI and subsequent region-of-interest electron microscopy (EM) data (29). In 

this work, we present qualitative results demonstrating that this imaging pipeline can provide 

an alternative, complementary ground-truth dataset for dMRI validation. Synchrotron 

microCT addresses the limitations of optical imaging by providing isotropic, micron-level 

spatial resolution across whole mouse brains with no physical sectioning, allowing for future 

studies validating dMRI methods at the scale of local microstructural features up to long-

range white matter pathways.

2 Methods

2.1 Animal procedures and tissue preparation

All procedures performed on animals followed protocols approved by the Institutional 

Animal Care and Use Committee. An eight-week-old, female C57BL/6 mouse (26 g) was 

anesthetized with 60 mg/kg pentobarbital. The animal was then injected with heparin 
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intraperitoneally and sacrificed by intercardial perfusion with 0.01 M phosphate buffer 

saline solution. This was immediately followed by 4% paraformaldehyde (pH 7.4)/PBS 

fixative solution. The brain was extracted from the skull and post-fixed in the same fixative 

overnight at 4°C and washed in PBS for 74 hours to remove fixative before imaging.

2.2 MRI acquisition and analysis

Prior to MRI experiments, the brain was submerged in Fluorinert (FC-3283, 3M Electronics) 

to improve shimming and mitigate susceptibility-mismatch artifacts. Data were acquired at 

9.4 Tesla (20 cm internal diameter, horizontal bore, Bruker BioSpec Small Animal MR 

System, Bruker Biospin, Billerica, MA) using a 6 cm performance gradient insert 

(maximum gradient strength: 1000 mT/m, Bruker Biospin) and a 35 mm internal diameter 

quadrature volume coil (Rapid MR International, Columbus, Ohio). Diffusion data were 

acquired with a conventional 3D spin-echo/Stejskal-Tanner diffusion-weighted sequence at 

150 μm isotropic resolution across 30 diffusion-encoding directions at a b-value of 3000 

s/mm2 (TR=400 ms, TE=18.5 ms, δ=5 ms, Δ=11.04 ms, receiver bandwidth=200 kHz, 

partial Fourier along first phase encoding direction=7/8, number b0s=10, duration=55 h 19 

min 40 sec).

Before further analysis, the data were denoised using the dwidenoise protocol in the 

MRTrix3 software package (30–32). Fiber orientation distribution functions (fODFs) were 

calculated using constrained spherical deconvolution (33,34) up to a maximum spherical 

harmonic (SH) order of ℓmax = 4. The data were also fit to a tensor model (36) in order to 

calculate fractional anisotropy (FA) (1).

For anatomical reference, a water peak-height image was constructed from 3D echo-planar 

spectroscopic imaging (EPSI) of the same sample. This technique has been shown to be a 

high-fidelity T2*-weighted source of image contrast (37) and is particularly sensitive to 

local susceptibility changes associated with the presence of myelin in white matter (38). 

Data were acquired at 50 μm isotropic resolution using a multi-gradient echo sequence with 

an oscillating readout gradient train (TR=1000 ms, TE of first echo=3.41 ms, echo 

spacing=3.41 ms, number of echoes=128, receiver bandwidth=100 kHz, flip angle=84.3°, 4 

averages, duration=21 h 23 min 44 s).

2.3 Synchrotron x-ray microCT acquisition

The sample preparation and data acquisition protocol used for microCT imaging has been 

recently published (29) and is briefly summarized here. Following dMRI acquisition, the 

brain was stained using the brain-wide reduced-osmium staining pyrogallol-mediated 

amplification protocol (39,40). MicroCT data were acquired at the sector 32-ID beamline of 

the Advanced Photon Source at Argonne National Laboratory with a central beam energy of 

25.5 keV. Raw projection data had a field of view of 2.25×1.41 mm2. A 6×18 grid of such 

acquisitions was collected to cover a total field of view sufficient to image the whole brain 

rotated around its rostral-caudal axis. This process was repeated across 3600 rotation angles. 

The projections were digitally aligned and stitched together using a mosaic tomography 

technique (41) and reconstructed into a single volume with an isotropic voxel size of 1.17 

μm using the TomoPy package (42). Our microCT data can be viewed online through 
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Neuroglancer (http://neuroglancer-demo.appspot.com/) using http://

nova.kasthurilab.com:8000/neuroglancer/recon_crop8_neurog/image as the precomputed 

source link.

2.4 Calculation of microCT fODFs

Voxel-wise fiber orientations were estimated throughout the microCT data using an image 

processing technique used in previous validation studies (13–17) called structure tensor 

analysis (43). This method uses image gradients to provide a 3D orientation estimate and a 

scalar confidence metric at every voxel. Voxels representing non-fiber tissue were excluded 

using thresholds on the confidence metric and the raw grayscale value (see Supporting 

Information for details). To construct fODFs, the dataset was subdivided into regions of 

interest (ROIs) matching the size of the corresponding dMRI voxels (150 μm). Within each 

ROI, histograms of fiber orientation estimates were fit to SH functions up to ℓmax = 8.

2.5 Spatial registration

Compared to optical techniques, registration of the microCT and dMRI datasets was 

simplified by the fact that unsectioned ground-truth data and fODFs were available across 

the whole brain, meaning that existing whole-brain registration routines could be applied 

directly. An overview of the registration pipeline is shown in Figure 1. The strategy was to 

calculate the transformation from microCT space to dMRI space by leveraging the 

anatomical detail of the EPSI peak-height image, then to apply this transformation to the 

microCT fODFs. First, the b0 images of the dMRI dataset were averaged to form a template. 

The EPSI volume was registered to the b0 template using an affine transformation calculated 

with the ANTS registration package (44,45). The microCT data were downsampled to dMRI 

resolution using the same binning ROIs used for fODF construction. Downsampled 

microCT data were then registered to the EPSI volume using affine and symmetric 

diffeomorphic transformations calculated using the SyN algorithm (46) in ANTs. The 

concatenated transforms from microCT to EPSI to b0 were then applied to the microCT 

fODFs using the mrtransform command in MRtrix3, which reorients (47) and modulates 

(48) fODFs to preserve fiber densities across bundles before and after transformation.

2.6 Tractography

Whole-brain deterministic tractography was performed with the SD_STREAM algorithm 

(30) in MRTrix3 using registered fODFs for each dataset to demonstrate the utility of 

microCT for long-range connectivity studies. A total of 200,000 streamlines were generated 

from each modality, with a step size of 37.5 μm and a maximum angle between successive 

steps of 35°.

3 Results

3.1 MicroCT fODFs

Structure tensor analysis was used to calculate a total of n=151,094 fODFs from the 

microCT data, requiring around 120 hours of computation using 128 cores of a local 

computing cluster. Figure 2 shows representative axial slices of microCT data, with insets 

visualizing fODFs as 3D glyphs. Squares in the 3×3 grids within each inset represent ROIs 

Trinkle et al. Page 4

Magn Reson Med. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://neuroglancer-demo.appspot.com/
http://nova.kasthurilab.com:8000/neuroglancer/recon_crop8_neurog/image
http://nova.kasthurilab.com:8000/neuroglancer/recon_crop8_neurog/image


the size of a single dMRI voxel. The fODFs agree qualitatively very well with the fiber 

orientations observed in the microCT data, closely following the arc in the anterior 

commissure (yellow) and corpus callosum (red), capturing the parallel fibers of the posterior 

(blue) and anterior (pink) commissures, and the change in fiber orientations where the lateral 

septal complex of the striatum intersects the fornix system (green).

The size of the microCT fODFs is proportional to the fraction of voxels within each ROI 

identified as representing fibers. This is clearly seen along the anterior commissure (Figure 

2, pink): the fODFs calculated within fiber-dense ROIs are much larger than those outside 

the main tract. This fraction can be considered a proxy for fiber density (FD), and is 

visualized in Figure 3. The FD metric shows good contrast between gray and white matter, 

indicating that the structure-tensor pipeline was successful in correctly identifying white 

matter fibers.

3.2 Spatial correspondence of fODFs

An example of registered microCT fODFs is shown across a slice of downsampled microCT 

data in Figure 4 alongside the corresponding dMRI fODFs. The two modalities show good 

qualitative correspondence in anatomical structures and fODF shapes, particularly along the 

fiber pathways shown in the inset. Full registration results are visualized in Supporting 

Information Video S1.

3.3 Tractography

Deterministic tractography was used to map long-range white matter pathways across both 

datasets. Whole-brain tractography results are shown in Figure 5. Overall, tracts from the 

two modalities show good visual agreement in the mapping of major tracts, indicating the 

success of dMRI tractography algorithms on structure tensor-derived fODFs, further 

demonstrating the multi-modal correspondence in fiber orientation information and 

motivating the use of microCT in future connectivity and tractography validation studies.

4 Discussion

Full characterization of the strengths and weaknesses of various dMRI methods will require 

the application of several complementary ground-truth imaging approaches. This study set 

out to introduce and qualitatively probe the capabilities of whole-brain synchrotron x-ray 

microCT as a new approach that specifically addresses some limitations in optical-based 

techniques. Note that we chose to forego efforts to quantitatively evaluate dMRI 

performance due to the relatively poor angular resolution of the dMRI data collected for this 

study. Our data were acquired with only 30 diffusion directions which were found after 

acquisition to be non-uniformly spaced across the sphere (Supporting Information Figure 

S1) due to a software malfunction. Accordingly, we chose to limit reconstructions to ℓ = 4 

(15 coefficients) to provide robustness to noise. For this reason, our goal was to introduce 

microCT and show meaningful, qualitative correspondence between reconstructions from 

the two modalities, rather than draw conclusions on the performance of any specific dMRI 

method. To that end, we are encouraged by the level of multi-modal correlation seen in the 
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fODFs (Figures 4–5) and believe it demonstrates the utility of synchrotron microCT for 

future validation studies.

4.1 Comparison of microCT with optical methods

Optical imaging techniques achieve in-plane resolutions on the order of hundreds of 

nanometers. For volumetric acquisitions, however, the through-plane resolution is 

significantly higher, dictated by slice thicknesses on the order of tens of microns and the 

limits of deconvolution methods. Accordingly, while in-plane optical images are sufficient 

for resolving individual axons and other details of neural microstructure, the limited 

through-plane resolution and geometric corrections required after tissue sectioning 

complicate the reconstruction of large volumes and might bias the estimation of features 

relevant to dMRI validation, such as fiber orientations. The microCT data used in this study 

has a nominal resolution of 1.17 μm. While this is lower than achievable optical resolutions, 

our results show that it is sufficient for resolving the orientation of local fiber bundles 

(Figure 2). Importantly, the data have natively isotropic resolution, avoiding the need for 

extensive post-processing to estimate the 3D architecture of the neural tissue.

Limitations on feasible data acquisition times and storage have required previous optical-

based validation studies to preselect specific ROIs for high-resolution imaging, based on 

prior anatomical knowledge (17) or automated, data-driven approaches (21). Alternatively, 

synchrotrons provide enough x-ray flux to image the entire mouse brain with sufficient 

signal-to-noise ratio in a single day of acquisition. This provides more data for each 

specimen and removes potential user bias in the selection of regions for validation.

Optical imaging methods rely on neural tracer injections to map long-range fiber pathways 

for tractography validation. These methods provide unparalleled specificity at the cost of 

only allowing one injection per dataset, which prohibits validation of whole connectomes in 

individual specimens. We have shown in previous work (29) the potential for direct tracing 

of individual axons in synchrotron microCT datasets without the need for neural tracers. 

This direct approach is not feasible with standard optical methods, as slice cutting and 

mounting are associated with tissue distortions (50) that make it prohibitively challenging to 

reliably trace axons across slice boundaries after digital alignment.

This work also demonstrates that volumetric imaging of whole samples with microCT 

greatly eases spatial registration between modalities (Figures 1 and 4). Optical-based 

validation studies have typically depended on complicated, multi-step registration pipelines 

involving multiple histological acquisitions at different scales to map individual histological 

ROIs to the corresponding dMRI voxels (17,21). With isotropic resolution across the whole 

brain, microCT data can be registered directly to MRI using existing packages after 

appropriate downsampling.

4.2 Future work and limitations

While this study was limited to data from a single specimen, we believe our qualitative 

results are promising and motivate the collection of additional data for future quantitative 

dMRI validation studies. Various fODF reconstruction methods will be benchmarked against 

microCT at different spatial scales, evaluating agreement in fODF shape, peak identification, 
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and fiber dispersion metrics. Discrepancies between modalities will be further explored at 

the nanoscale using the volumetric EM imaging capabilities of our full imaging pipeline 

(29).

The tractography results presented in this study (Figure 5) suggest an additional benefit of 

large-volume microCT. With fODFs available across the whole brain, ground-truth 

tractography can be correlated with axon tracings and dMRI tractography at different scales 

in the same specimen. Such a rich dataset could be used in future studies to better 

understand the upper bounds of tractography performance and to explore new priors to better 

condition the tractography problem.

While we believe microCT is a valuable tool for dMRI validation, it also presents some 

limitations. Fiber orientation estimation can be biased by ring artifacts in the reconstructed 

data, caused by drifting fluctuations in the synchrotron beam which lead to inaccurate 

intensity normalization. Several successful algorithms exist to mitigate this artifact (51–53). 

Implementation of these approaches was outside the scope of this work but will be important 

for future future studies.

MicroCT is also limited by the achievable field of view and resolution. The narrow beam 

width necessitates the use of mosaic tomography for imaging large volumes. The 

computational challenge of precise sinogram registration currently limits achievable voxel 

sizes to around one micron, biasing orientation estimates towards fibers of this length scale. 

With limitations on feasible stain penetration depth, whole mouse brains represent an upper 

limit of volumes that can be imaged with this method. This prohibits the use of microCT for 

whole-brain studies of larger species, though smaller brain volumes from these species can 

still deliver valuable information.

5 Conclusion

A processing pipeline was developed for dMRI validation with synchrotron microCT. 

MicroCT provides isotropic resolution across whole mouse brains with no physical 

sectioning, addressing limitations in optical-based dMRI validation methods. Fiber 

orientations were estimated, processed into fODFs, and spatially registered to dMRI data 

from the same specimen. Comparisons between modalities show good agreement in the 

represention of local fiber geometries and the mapping of long-range fiber trajectories, 

movitating the use of microCT for future dMRI validation studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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1. 
Multi-modal spatial registration pipeline. Downsampled microCT data were registered to 

EPSI peak-height data using affine and symmetric diffeomorphic (SyN) transforms. EPSI 

data were registered to the b0 template using affine transforms. The concatenated transforms 

were then applied to the microCT fODFs calculated at dMRI resolution. Scale bars are 1 

mm.
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2. 
Visualization of microCT data and fODFs across two axial slices. Structure tensor-derived 

fODFs are visualized as 3D glyphs overlaying ROIs of raw microCT data. Each fODF was 

calculated from microCT data contained in a 150 μm3 volume indicated by the black lines. 

RGB color in the fODFs represents orientation, with red encoding left–right, green encoding 

anterior–posterior, and blue encoding the superior–inferior direction. Color borders around 

the ROIs indicate the position of each inset within the whole slices. Scale bars are 1 mm.
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3. 
Fiber density measure derived from microCT fODFS. (a-c) Representative FD slices 

showing contrast between gray and white matter. Scale bars are 1 mm. (d-f) Examples of 

microCT data from 150 μm3 cubic regions calculated as having (d) high (FD = 0.41), (e) 

medium (FD = 0.32), and (f) low (FD = 0.20) fiber density. Arrows in (f) indicate an 

example of a partial volume effect, where a small region with high fiber density (lower right) 

is present with a larger region with low fiber density (upper left), resulting in an overall low 

FD value.
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4. 
Multi-modal spatial registration. fODFs from both modalities are represented as 3D glyphs 

overlaying EPSI peak-height data and downsampled microCT data, both spatially aligned to 

the b0 of the dMRI dataset. The inset shows the correspondence in fODF shapes along 

visible fiber tracts. fODFs have been normalized to a maximum value of 1 for visualization. 

Note that the sharpness of the angular profile of the fODFs differs between the two 

modalities, resulting from the fact that they have different angular bandlimits (lmax = 4 and 

lmax = 8 for dMRI and microCT, respectively). Scale bars are 1 mm.
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5. 
Deterministic tractography results, visualized as streamlines (a) across the whole brain and 

(b) overlaying five coronal slices of registered dMRI and microCT data, on the top and 

bottom rows, respectively. Slice numbers in (b) correspond to numbered lines crossing 

whole-brain results in (a).
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