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Abstract

Rationale and Objectives—Multiple diagnostic tests are often available for a disease. Their 

diagnostic accuracy may depend on the characteristics of testing subjects. This paper proposed a 

new tree-structured data-mining method that identifies subgroups and their corresponding 

diagnostic tests to achieve the maximum area under the receiver operating characteristic curves 

(AUC).

Materials and Methods—The Osteoporosis and Ultrasound Study (OPUS) is a prospectively 

designed population-based European multicenter observational study to evaluate state-of-the-art 

diagnostic methods for assessing osteoporosis. A total 2837 female participants had dual X-ray 

absorptiometry (DXA) and quantitative ultrasound (QUS) measured. Prevalent vertebral fractures 

were determined by a centralized radiology laboratory based on radiographs. Our data mining 

algorithm includes three steps: defining the criteria for node splitting and selection of the best 

diagnostic test based on AUC; using a random-forest to estimate the probability of DXA being the 
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preferred diagnosis for each participant; and building a single regression tree to describe 

subgroups for whom either DXA or QUS is more accurate test or for whom the two tests are 

equivalent.

Results—For participants with weight equal or below 54.5kg, QUS had higher AUC in 

identifying prevalent vertebral fracture. For participants whose weight is above 58.5kg but height 

equal or below 167.5cm, DXA scan was better; and for the remaining participants, DXA and QUS 

had comparable accuracy and could be used interchangeably.

Conclusion—The proposed tree-structured subgroup analysis successfully defines subgroups 

and their best diagnostic tests. The method can be used to develop optimal diagnostic strategies in 

personalized medicine.

Keywords

Receiver operating characteristic curve; random forest; classification and regression tree; subgroup 
analysis; personalized medicine

Introduction

Multiple diagnostic tests are commonly available for the same disease. Their diagnostic 

accuracy may depend on the characteristics of the testing subjects. For example, bone 

mineral density (BMD) measured by dual X-ray absorptiometry (DXA) scanners and speed 

of sound (SOS) by quantitative ultrasound (QUS) devices are continuous diagnostic markers 

for osteoporosis. Compared to DXA, QUS has the advantages of low cost, portability and 

absence of radiation exposure but it may be less accurate. A recent prospective multicenter 

epidemiological study (Schott et al., 2004) [1] pointed that age may influence the choice of 

quantitative bone assessment techniques in elderly women. In the era of personalized 

medicine, proper methods are needed to find subgroups with their corresponding optimal 

diagnostic strategy.

The area under a receiver operating characteristic (ROC) curve (AUC) is a measure of 

diagnostic accuracy (Metz 1978; Samuelson et al. 2011)[2,3]. A higher AUC reflects higher 

diagnostic accuracy. Differences between AUCs not only depend on the tests themselves but 

also the population tested. Recent regression approach of ROC analysis (Pepe 1998)[4] 

detects the interactions between the diagnostic performance and covariates and assess 

diagnostic utility after adjusting for covariate effects. Because of possible complex 

interactions, in particular when the number of covariates is large, modeling based on 

regression approaches may be difficult to answer the question who should take what test. 

Ciampi ea al. (1995) [5] proposed a tree-structured subgroup analysis for survival data based 

on a Cox model with interaction terms in order to find subgroups of patients for which one 

treatment is preferable to the other. Negassa et al. (2005) [6] investigated a model selection 

in tree structured subgroup analysis based on Ciampi et al. (1995)[5]. These tree-based 

methods demonstrated efficiency to handle large number of covariates and identify 

operational subgroups of patients.

In this paper, we extend tree-based methods to development of evidence based decision rules 

to choose the most accurate diagnostic test according to easily collected covariates of a 
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subject and apply this new approach to BMD and QUS in diagnosis of prevalent 

osteoporotic fractures.

Materials and Methods

Description of the Study Data

The Osteoporosis and Ultrasound Study (OPUS) (Glüer et al. 2004)[7] is a population-based 

European multicenter prospectively designed observational study to evaluate state-of-the-art 

diagnostic methods for assessing osteoporosis. Population based random samples were 

selected from five participating study centers in the United Kingdom, France, and Germany. 

All investigations were conducted in accordance with the Declaration of Helsinki and were 

approved by the appropriate institutional human research committee at each participating 

center. Of 2837 women participating, 463 (16%) were 20–39 years old, and 2374 (84%) 

were 55–79 years old. Techniques evaluated in this study included spine and hip BMD by 

dual x-ray absorptiometry (DXA) using bone densitometers manufactured by GE Lunar 

(Madison, WI, USA) and Hologic (Bedford, MA, USA), broadband ultrasound attenuation 

(BUA) and speed of sound (SOS) measured by DTU–one (OSI/Osteometer Meditech, 

Hawthorne, CA, USA) and UBIS 5000 (Diagnostic Medical Systems, Montpellier, France). 

Baseline x-ray films were taken from all the study participants and used to evaluate prevalent 

vertebral fractures at a centralized radiology laboratory. Women with 20% or more height 

reduction from the young population mean height were considered fractured.

In our particular application, the gold standard of clinical event is the prevalent vertebral 

fracture defined by the baseline radiographs. The diagnostic tests to be compared are the 

baseline DXA measurement hip BMD (test 1, T1) and QUS measurement speed of sound 

(SOS) measured by DTU (test 2, T2). Of 2322 elderly participants with complete hip BMD 

and DTU-SOS information, 371 (16%) had prevalent vertebral fractures, whereas 1951 

(84%) had no fractures. The characteristic variables for subgroup construction include age, 

height, weight, body mass index (BMI). Table 1 summarizes the data.

Description of Recursive Partitioning Tree Algorithm and Random Forest

A recursive partitioning tree algorithm, also known as classification and regression tree 

(CART) (Breiman et al. 1984)[8], consists of a sequence of splits of a group of subjects into 

two subgroups according to values of covariates. These splits form branches to generate a 

tree. Subjects before a split form a parent node. The resulted subgroups are its daughter 

nodes. Because there are many ways to split a node into two daughter nodes, a utility 

function needs to be defined for selecting the best split among all the possible binary splits. 

Typically, subjects in a study are divided randomly into the training and validation data. A 

tree grows based on the training data such that the utility is homogenous within nodes but 

maximally different between nodes. The splitting step grows a large tree. Using a cost-

complex function of CART (Breiman et al. 1984)[8], a nested sequence of sub-trees

Tr0 ≻ Tr1 ≻ Tr2 ≻ ⋯ ≻ Tr1 = Root (1)
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is identified that represents the optimal choices of trees at different size. Here, Tr0 is the 

largest tree, and Trl is the smallest tree that has everyone in it. The validation data is used to 

determine which one of these subtrees has the best utility value in an independently 

collected data set. The use of validation data is to assure that the final tree does not overly fit 

the training data because the splitting step is data dependent.

An alternative method to consider sampling variation is the random forest approach (also 

known as bootstrap aggregating, or bagging) proposed by Breiman (1996)[9]. In this 

approach, m bootstrap samples are generated from original data as new training sets and m 
trees are fully grown based on the bootstrap samples. Thus there are m trees generated to 

form a random forest. Such a forest accounts the effect of sampling variations in tree 

constructions. As a result, different trees may have different decision rules that choose 

different diagnostic tests as the best one for the same subject. Note that a random forest is a 

“committee of experts”. Because trees in the forest have different decision rules, there is not 

a simple way to explain the underlying rationale driving the combined predictions. Rather, a 

forest predicts the best decision for each individual.

Description of Subgroup Analysis Algorithm

We used both a classification tree algorithm and a random forest to develop our subgroup 

analysis algorithm. First we defined the splitting criterion for decision tree growth and 

selection of the best diagnostic test for the subgroups based on AUCs of ROC curves 

(Appendix A). Second, we use a random-forest to estimate the probability of DXA being the 

preferred diagnosis for each participant (Appendix B). To explain the black-box-like 

relationship between the preference score and predictors, we built a single regression tree as 

a super-expert to substitute the “expertise” from the forest that achieves the maximum 

agreement in decision while maintaining a clear explanation of decision rationales. Our last 

step of a single regression tree described subgroups for whom either DXA or QUS is more 

accurate test or for whom the two tests are equivalent (Appendix C).

In the AUC-based tree growth procedure, AUCs and their covariance matrix can be 

estimated parametrically (Metz, 1986; Metz,et al., 1998, ROCFIT)[10,11,12], 

semiparametrically (Pesce et al. 2011)[13] or non-parametrically (Delong et al. 1982)[14]. 

In this paper, we developed R programs based on the non-parametric AUC and covariance 

estimates of [14].

Selection of Non-inferiority Margin

DXA is the most completely developed, reliable and popular bone densitometry technique in 

use, the “gold standard” and the “reference standard”. Quantitative ultrasonometry of bone is 

a safe, simple, free of radiation, portable, cost-effective and therefore QUS may be preferred 

when its performance is comparable. Thus, we may choose QUS if its AUC is non-inferior 

to that of BMD, i.e, θ̂1 − θ̂2 ≤ δθ, where δθ is a pre-specified positive non-inferiority margin, 

θ̂1 and θ̂2 are estimated AUCs for T1 and T2 respectively. If no preference between the two 

tests is observed, δθ can be set as 0. Based on Jin and Lu [15], we selected an inferiority 
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margin of δ = 0.1 after Fisher transformations of AUCs, and the AUC inferiority margin δθ 

is determined by δ and θ1, the AUC of standard test, δθ = θ1 −
1 + θ1 − (1 − θ1)eδ

1 + θ1 + (1 − θ1)eδ .

Results

The overall AUCs for hip BMD and SOS were 0.653 and 0.623 respectively, which 

difference was greater than δθ = 0.029. Thus, DXA was a better test for the entire data set. 

So for the root node with 1951 (84%) non-fractured and 371 (16%) fractured study 

participants, the decision d = T1 and the corresponding AUC was 0.653. The tree growing 

began with the split of a root node into two daughter nodes. After searching among all 

covariates and cut-off values, the combination of variable “Weight” and its cut-off value 58.5 

kg provided the largest standardized AUC gain and thus it was selected as the best split. 

According to “Weight ≤ 58.5kg” or “Weight > 58.5kg”, participants in the root node were 

separated into two daughter nodes with the best test of T2 (QUS) and T1 (DXA), 

respectively. Then the two daughter nodes were split recursively in the same way, and so on. 

We stopped splitting when the number of fractured or non-fractured in the node was less 

than 20 or no further improvement by splitting the nodes could be achieved.

We generated a random forest of 100 fully grown decision trees from 100 bootstrap samples. 

A preference score was obtained for each subject. Taking preference score as the outcome or 

response variable, and the covariates age, height, weight and BMI as predictors, a usual 

regression tree was generated by CART to construct subgroups. The fully grown regression 

tree (Tr0) for original overall data had 18 terminal nodes. There were 15 nested subtrees 

{Trk, k = 1, ···, 15} from usual cost-complexity pruning step.

Figure 1 displays the correlation coefficients between the preference score v from the 

random forest with the standardized non-inferiority AUC differences (st), i.e., cor(v, st|Trk), 

and the mean prevalence score v̂, i.e, cor(v, v̂|Trk), for the fully grown tree and all 15 nested 

subtrees (k = 0, 1, ···,15). As it shows, the fully grown regression tree Tr0 with size 18 had 

the highest correlation cor (v, v̂|Trk) of 0.955, but was not the best tree for cor(v, st|Trk), 

which was 0.684. Instead, the subtree Tr13 with size 4 provided the maximal correlation 

between preference score and AUC difference (cor(v, st|Tr13) =0.849) and reasonably high 

correlation between the observed and predicted preference scores (cor (v, v̂|Tr13) = 0.865). 

So the subtree Tr13 with size 4 was selected as the final tree and displayed by Figure 2.

In Figure 2, internal nodes are shown in oval, and the terminal nodes are shown in 

rectangular. The subgroups formed are shown in hexagon. The top numbers in each node are 

the number of non-fractured and number of fractured participants. AUC or preference score 

values shown in subgroups are corresponding weighted values if the subgroup contains 2 or 

more nodes.

Figure 3 gives the diagnostic accuracy and the preference score level in four terminal nodes 

of the final tree. Node 1 had 254 (11%) women, of whom 220 (87%) non-fractured and 34 

(13%) fractured, with a preference score level 0.286 and an AUC difference −0.089 

(Standard Error (SE)=0.057). So participants belonging to this node were better to undergo 
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QUS examinations. Node 4 had 1507 (65%) women, of whom 1262 (84%) non-fractured 

and 245 (16%) fractured, with a preference score 0.748 and an AUC difference 0.064 

(SE=0.021), and therefore participants belonging to this group were better to undergo DXA 

examinations. The remaining 2 nodes had 561 (24%) women in total, of whom 469 (84%) 

non-fractured and 92 (16%) fractured, with preference scores 0.456 and 0.532, respectively 

for nodes 2 and 3. Their AUC differences were −0.022 (SE=0.042) and −0.008(SE=0.043), 

respectively. Therefore these nodes were combined as one decision group without any 

preference to either DXA or QUS, with combined AUC difference of −0.015 (SE=0.030).

As a consequence of the aforementioned findings, we proposed a decision rule as follows: 

for women with weight equal or below 54.5kg SOS by QUS is more accurate; for women 

whose weight is above 58.5kg but height at most 167.5cm, BMD assessment by DXA has a 

better accuracy; and the remaining women can take either of the examination since they have 

comparable accuracy.

Table 2 summaries the information of 4 terminal nodes and combined decision groups. For 

the QUS preferred subgroup, the AUCs of DXA and QUS were 0.637 and 0.726, 

respectively, with a non-inferiority test statistic st= −2.037 and a p value of 0.021 to reject 

H0: Δλ ≥ δ. For the DXA preferred subgroup, the AUCs of DXA and QUS were 0.664 and 

0.600, respectively. The test statistic st was 1.699 and, thus, rejected H0: Δλ ≤ δ with at p 
value of 0.045. For the combined no preference subgroup, the weighted AUCs of DXA and 

QUS were 0.624 and 0.639, respectively, and an insignificant test statistic st = −1.484.

Figure 4 graphically illustrates the decisions by plotting the weighted ROC curves for 

decision subgroups. We can see that the ROC curve for DXA was always higher than that for 

QUS within the DXA preferred subgroup, especially in reasonably high specificity in (50%, 

100%). However, within the QUS preferred subgroup, two ROC curves were mixed together 

for specificity within 90% to 100% and then the QUS ROC curve showed a higher 

sensitivity then that for DXA for specificities ranging between 0% to 90%. Within the no 

preference subgroup, the empirical weighted ROC curves were mixed together.

In addition, we use data from the Study of Osteoporotic Fractures (SOF, http://sof.ucsf.edu/

Interface/) [16,17] to cross-validate our results. SOF is a multicenter observational study of 

10,000 elderly white women in US. At SOF Visit 4, the surviving white women aged 69 

years or older total hip BMD by DXA scanners and SOS by QUS were measured. Instead of 

prevalent vertebral fracture, we compared the two tests for their ability to predict hip fracture 

in the subsequent 5 year follow-up. The overall dataset contains 246 (5%) woman who had 

hip fracture and 4917 (95%) women who didn’t. The AUCs for BMD and SOS were 0.748 

and 0.638, respectively, with the difference 0.110 (SE=0.018) for the complete data set. The 

QUS preferred subgroup defined by OPUS had 714 (92%) non-fractured and 66 (8%) 

fractured participants with AUC 0.741 and 0.700, respectively, for DXA and QUS. The AUC 

difference was 0.041 (SE=0.032), much lower than that of the complete data set. The DXA 

preferred subgroup had 3277 (96%) non-fractured and 138 (4%) fractured participants with 

AUC 0.740 and 0.588, respectively, for DXA and QUS. The difference was 0.152 

(SE=0.026), much higher than the overall difference. The no-preference subgroup had 887 

(96%) non-fractured and 40 (4%) fractured participants with AUCs of 0.707 and 0.624, 
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respectively, for DXA and QUS. The difference was 0.082 (SE=0.048), a little bit lower than 

the overall difference. This suggests that our decision rule works in consistent directions in a 

very different population for a completely different endpoint.

Discussion

A tree method can show complex interactions of covariates that may be difficult or 

impossible to discover using traditional regression techniques. In addition, no assumptions 

are made regarding the underlying distribution of variables and linearity relationship. 

Borrowing the idea “the split provides a gain in invariability or purity” from CART, we have 

developed an AUC gain function as our splitting criterion.

Because tree based algorithm perform exhaustive search to develop the model, it depends on 

the selected training samples. To account for the impact of sample variation, we use a 

random-forest to account for sampling variations in tree constructions. The preference score 

from the generated votes gives an empirical estimate of the probability that the DXA method 

is the preferred diagnosis for each subject.

One important note is that our method separates study participants according to their best 

diagnostic strategies not their risk of fractures. The QUS preferred subgroup (11% of study 

participants), no preference subgroup (24%) and DXA preferred subgroup (65%) had 

fracture risk of 13%, 16%, and 16% respectively, with a p-value of 0.4884. This is different 

from most of the tree algorithm with the goal to find subgroups with different risks or 

disease severities (Lu et al. 2003; Jin et al. 2004; Jin et al. 2004)[18,19,20] and other 

machine learning or decision algorithm in previous radiology literature for construction of 

the optimal diagnosis (Liu et al. 2011; Paquerault et al. 2010)[21,22].

The proposed tree-structured subgroup analysis successfully defines subgroups of 

participants with different preferred diagnostic tests. Our findings are in agreement with 

several other studies [23, 24] that suggest body weight have a significant effect on QUS 

measurements. Body weight modifies the relationships between QUS and DXA 

measurements of the hip and calcaneus. Higher weight may influence bone and soft tissue 

properties and this may have a greater effect on SOS. Accuracy as well as precision of QUS 

measurements is decreased by anatomically inconsistent placement and by variability in 

bone width, soft tissue thickness and marrow composition of the measurement region (Glüer 

1997) [25]. In addition, DXA is a two-dimensional measurement technique to evaluate a 

three-dimensional structure that is affected by soft tissue composition. QUS is also a two-

dimensional technique but the impact of body composition is different, for technical reasons 

and because one is measuring a different site. Thus differences in performance between the 

techniques depending on body composition are plausible and in agreement with observations 

in clinical practice.

However, the decision rule and exact cutoff points to decide individualized optimal 

diagnostic test were empirically developed based on our algorithm and the OPUS data. From 

a physics point of view body weight or height will influence QUS and DXA results in 

different ways, providing room for optimized selection criteria. However, the specific cutoff-
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values derived have not yet been validated either through clinical practice or studies. In this 

paper, we performed an ad hoc examination based on a different dataset and a different 

endpoint. The resulted AUC differences between decision groups were consistent with the 

directions proposed in the paper, supporting likely external validity of our findings. The 

most rigorous validation of our decision model would be a prospectively designed and well 

controlled imaging diagnostic trial, which should be performed in future follow-up research.

The method described here can be used to develop optimal diagnostic strategy in 

personalized medicine for other similar clinical problems. Although we only considered two 

tests in our application, our method also works for multiple diagnostic tests by comparing 

the AUCs across multiple tests to select the best splits and diagnostic tests. If the 

performance restricted in a high specificity range is of interests, the partial AUC can be used 

to develop utility functions in our subgroup analysis algorithm.
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Appendix A: Criterion for Splitting and Diagnostic Test Selection

Let n0 be the number of non-diseased and n1 be the diseased subjects in training data with 

data form Y i
(1), Y i

(2), Di, Zi , i =1, 2, …, n. Here the subscript i indicates the ith subject; Y i
(1)

and Y i
(2) are her test results of Test 1 and Test 2; Di is the disease status with 1 for diseased 

and 0 otherwise; Zi = (Z1i, Z2i,· · ·, Zpi) is a vector of p covariates; and n = n0 + n1. The 

covariates can be continuous, ordinal or nominal, and may have missing values for some 

subjects. The overall AUCs can be estimated parametrically (Metz, 1986; Metz,et al., 1998)
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[10,11] or non-parametrically (Delong, Delong and Clark-Pearson, 1982)[12] for T1 and T2, 

denoted as θk̂ for k=1, 2.

For each node, there are two decision options to choose: either to use T1 (BMD) if T2 (SOS) 

is inferior to T1, i.e., θ̂1 − θ̂2 > δθ, or to use T2 (SOS) if it is non-inferior to T1 (BMD). i.e., 

θ̂1 − θ̂2 ≤ δθ, where δθ is a pre-specified positive non-inferiority margin. So the decision 

made at node h is

d(ℎ) = T1I θ1 − θ2 > δθ + T2I θ1 − θ2 ≤ δθ , (A1)

where I(E) is the binary indication function of the event E.

In a splitting step, subjects in a node are separated into two daughter nodes according to 

either “≤” or “>” of a potential cutoff value for a continuous or ordinal covariate, or 

according to whether they are “in” or “out” of an observed category for a nominal variable. 

We first consider a possible splitting s for node h. Node h contains a subsample with n(h) 

subjects. For a split s, the data at node h are divided into left (“L”) and right (“R”) daughter 

nodes ℎs
(L) and ℎs

(R), with n(ℎs
(L)) = n0(ℎs

(L)) + n1(ℎs
(L)) and n(ℎs

(R)) = n0(ℎs
(R)) + n1(ℎs

(R))
subjects respectively. We can calculate AUCs for these daughter nodes based on different 

tests, denoted as θk(ℎs
(L)) and θk(ℎs

(R)) in ℎs
(L) and ℎs

(R) for test k (k=1, 2), respectively. We 

define an AUC gain due to splitting as

g(s, ℎ ∣ δθ) = w(ℎs
(L))[θd(ℎs(L))(ℎs

(L)) − θd(ℎ)(ℎs
(L))] + w(ℎs

(R))[θd(ℎs(R))(ℎs
(R)) − θd(ℎ)(ℎs

(R))]

+w(ℎs
(L))[I(d(ℎs

(L)) = T2) − I(d(ℎ) = T2)]δθ + w(ℎs
(R))[I(d(ℎs

(R)) = T2) − I(d(ℎ) = T2)]δθ,
(A2)

where w(ℎs
(L)) and w(ℎs

(R)) are weights on daughter nodes ℎs
(L) and ℎs

(R) is given by

w(ℎs(L)) =
n0(ℎs(L))n1(ℎs(L))

n0(ℎs(L))n1(ℎs(L)) + n0(ℎs(R))n1(ℎs(R))
and w(ℎs(R)) =

n0(ℎs(R))n1(ℎs(R))

n0(ℎs(L))n1(ℎs(L)) + n0(ℎs(R))n1(ℎs(R))
.

It is easy to see by its definition that g (s, h |δθ) ≥ 0 and g (s, h |δθ) = 0 if and only if d(h) = 

d(h(L)) = d(h(R)).

The optimal split sh is selected from all possible splits at node h such that it maximizes the 

standardized AUC gain

sℎ = arg max
s

{ g(s, ℎ ∣ δθ)
var(g(s, ℎ ∣ δθ) ∣ g(s, ℎ ∣ δθ) > 0} (A3)

vâr(g(s, h|δθ) can be derived by the covariance matrix of AUC estimators from ROCFIT [12] 

for binormal models or Delong’s non-parametric estimates [14].
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Appendix B: Construction of the Random Forest

The tree growing begins with the split of a root node into two daughter nodes. Then the two 

daughter nodes are split recursively in the same way, and so on. We’ll stop splitting the node 

when the case or control size in the node is small (less than a pre-specified number, e.g. 20) 

or the gain function is zero for all splits.

Using the criterion of diagnostic test selection in Equation (A1) and the criterion for splitting 

in Equation (A3), we can generate a large tree for which the terminal nodes form patient 

subgroups with their best diagnostic test determined by Equation (A1). Using a random 

forest approach, we generate m trees. For a subject i, different trees may assign different 

optimal diagnostic tests. Let Vi trees vote T1 as the best diagnostic test 0 ≤ Vi ≤ m), the 

proportion vi = Vi/m is the preference score that measures the subject i’s preference of T1 

over T2.

The simplest way to determine the best diagnostic test for an individual is based on vi. If vi 

>0.5, then T1 is the preferred diagnostic test. If vi = 0.5, two tests are exchangeable. 

Otherwise, T2 is preferable. However, this approach doesn’t reveal why and when T1 is a 

better choice than T2 nor when the difference is strong enough to warrant avoiding the 

unfavorable test.

Appendix C: Construction of Final Regression Decision Tree

To answer the above questions and reveal the decision rationale, we further perform a 

regression tree analysis of the preference score v. Using the standard CART algorithm, we 

can derive the nested sequence of optimal trees as specified in Equation (1). Because the 

preference score v is generated by the random forest algorithm and represents the best 

individual choices, we want to select a final tree in the sequence whose terminal nodes 

recommend diagnostic tests in a high agreement with those by v‘s. In addition, we want the 

tree terminal nodes be stable enough so that the AUC differences between the recommended 

and alternative diagnostic tests in its terminal nodes also have the highest correlation with v.

We use the statistic st = (λ1 − λ2 − δ)/ var(λ1 − λ2) (Jin and Lu, 2008)[15] to measure AUC 

improvement in each terminal node. All subjects in a terminal node will use the st value of 

the terminal as individual measure of AUC differences. Here λ̂
k = ln[(1 + θ̂k)/(1 − θ̂k)] for 

k=1, 2, the variance of λ̂
1 − λ̂

2 is estimated from the covariance matrix of (θ̂1, θ̂2) by the 

delta method, and δ is an inferiority margin after Fisher transformation. The Fisher 

transformation of AUC improves the normality overall and, in particular, when the AUC is 

close to 1.

For each terminal node in a given subtree Trk, we can get the preference score v and the non-

inferiority statistic st value for individual subjects. We select the optimal subtree that 

maximizes {cor(v, st|Trk), k 0,1, 2, · · ·, l}, the correlations of preference score and st. The 

regression tree can then replace the “committee of experts” by a super-expert if it preserves 

the agreement cor (v, st) well.
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The terminal nodes with a significantly higher preference score can be combined to the “test 

1 preferred subgroup.” Those with a significantly lower preference score level can be 

combined to the “test 2 preferred subgroup.” Those with preference scores levels around 0.5 

can be combined to the “no preference group”. We use weighted measurements 

θ1
∗, θ2

∗, ROC1
∗, ROC2

∗, and v̂* to summarize and compare the diagnostic accuracies of the tests 

for the subgroup formed with J terminal nodes h1, h2, ··· hj, with the weights 

wj(ℎj) =
n0(ℎj)n1(ℎj)

∑
j = 1

J
n0(ℎj)n1(ℎj)

.
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Figure 1. 
Correlations between the preference score v and the predicted preference score (v̂) (dashed 

line) or the inferiority statistic st (solid line) for the OPUS data
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Figure 2. 
The selected regression tree for preference score prediction
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Figure 3. 
The AUC differences, standard error (SE) and predicted preference score in 4 terminal nodes 

of the final tree. The center coordinates of the box for node h are (v̂,Δθ̂) in h, the height and 

width are proportional to n0 (h) and n1 (h), the area of the box is weight in weighted 

stratified AUC calculation; the vertical line cross the box is the interval (Δθ̂ − SE, Δθ̂ +SE).
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Figure 4. 
Weighted ROC curves for three decision subgroups.
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Table 1

Summary statistics of diagnostic measurements and covariates

Non-fractured Subjects (n0=1951) Fractured Subjects (n1=371)

Diagnostic tests Mean ± SD§ Mean ± SD

 Hip BMD (DXA) 878.85 ± 140.03 802.11 ± 149.59

 SOS (QUS) 1546.33 ± 10.53 1541.98 ± 10.29

Continuous covariates

 age 66.42 ± 6.86 69.18 ± 7.10

 Height(cm) 160.64 ± 6.31 159.61 ± 6.30

 Weight(kg) 68.71 ± 12.38 67.72 ± 12.41

 BMI 26.61 ± 4.51 26.56 ± 4.42

§
SD=Standard Deviation
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