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Abstract

Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor
for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major
causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression
and impaired conductance of the potassium ion channel Ky,7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain
or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with Ky/7.4 in outer hair cells,
Kyv7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells
and efferent fiber synapses, and Ky3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated
expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise
exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss
the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes,
proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under
challenging conditions as key for future therapies of ARHL.
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Introduction been recently suggested as a foremost modifying factor to lower

future dementia prevalence [7]. ARHL occurs in most mammals

Age-related hearing loss (ARHL), or presbycusis, is the most
prevalent sensory deficit in the elderly [1]. Although it is not life-
threatening, this condition is associated with significant psycho-
logical and medical morbidity, including social isolation, frailty,
depression, and cognitive decline [2—5]. As a major risk factor
for dementia [6], the prevention of hearing loss with age has

This article is part of the special issue on Aging Brain in Pfliigers
Archiv—FEuropean Journal of Physiology

>< Marlies Knipper
marlies.knipper @uni-tuebingen.de

Translational Hearing Research, Tiibingen Hearing Research Center,
Department of Otolaryngology, Head and Neck Surgery, University
of Tiibingen, 72076 Tiibingen, Germany

Molecular Physiology of Hearing, Ttibingen Hearing Research
Center, Department of Otolaryngology, Head and Neck Surgery,
University of Tlibingen, 72076 Tiibingen, Germany

with variations in the age of onset, rate of decline, and magni-
tude of degeneration in the cochlea and the auditory pathway
[8—11]. The affected cochlear structures include the stria
vascularis and its vasculature, spiral ligament, sensory hair cells,
and auditory neurons. Until recently, the dysfunction of the stria
vascularis resulting in a reduced endocochlear potential (EP)
was assumed to be a primary cause of ARHL [1, 12, 13].
However, new evidence from analyzing temporal bones of the
elderly challenges this long-held view, showing that hair cell
loss not only occurs in predominantly high-frequency regions
but also extends to low-frequency regions in ARHL preceding
stria vascularis degeneration [14]. Based on this observation,
lifetime acoustic noise exposure was suggested as a primary
cause of hearing loss with age, particularly due to outer hair cell
(OHC) damage after acoustic overexposure, which is suggested
to be the major contributor to ARHL [14]. Moreover, increasing
evidence suggests that even in the absence of detectable loss of
hearing sensitivity, neuronal degeneration of synaptic auditory
fibers or ascending auditory projections can precede hearing
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threshold loss and contribute as an additional hallmark of ARHL
to difficulties in speech discrimination with advancing age,
especially in noisy environments [15—17]. Thus, noise exposure
as a major cause of ARHL affects not only OHC over age [14]
but also age-related synaptopathies and neuropathies [8],
gradually leading to degeneration of spiral ganglion neurons
(SGNs) [16, 18] and central auditory processing deficits [19,
20]. Furthermore, independent of lifetime noise exposure being
linked to damaged hair cells and neurons, individuals with
cardiovascular risk factors, e.g., hypertension, diabetes,
smoking, or increased serum cholesterol, exhibit a high risk of
developing hearing impairment over age [21].

We hypothesize that any limits in metabolic supply, e.g.,
from oxidative stress after acoustic trauma or limitations dur-
ing ischemic insults, endanger particularly sensitive stages
that require high energy supply or exhibit vulnerability for
radical oxygen species (ROS) as the precursor of ARHL.
Indeed, ROS contribute through reduced mitochondrial activ-
ity and enhanced oxidative damage to aging processes in all
organs, and thus negatively affect hearing with advancing age
[22]. We postulate that select potassium ion (K*) channels in
the cochlea and ascending auditory pathway, which are
known to critically depend on continuous recycling processes
for proper surface expression, are vulnerable, early targets for
limitations in energy supply. K* channels show extreme ge-
netic heterogeneity and functional diversity unmatched by
other types of ion channels, which suggests them as one of
the primary targets of excess ROS. Moreover, strong evidence
exists that ROS-mediated oxidation of K* channels is a recur-
ring theme in the aging nervous system and is intrinsically
involved in certain neuropathies [23]. Here, we focus on func-
tionally relevant K* channels in the cochlea and auditory path-
way, which share common temporal expression during the
final differentiation stages of the organ of Corti prior to hear-
ing function in rodents, hypothesizing that late differentiation
stages are the ones affected early during aging, offering a
therapeutic window that could allow functional restoration
before cell death [24]. We discuss the following K* channels
with functional expression during or after hearing onset, that
is, around postnatal day (P) 12 in rodents, and around embry-
onic week (EW) 27 in humans (Fig. 1): (i) Ky7.4 (KCNQ4)
maintains OHC receptor potential [25-30]; (ii) Ky7.1
(KCNQ1) is expressed in marginal cells of the stria vascularis
[31-33]; (iii) calcium ion (Ca>*)-activated potassium channels
BK (KCNMA1) and SK2 (KCNN2) are involved in repolar-
ization of OHC and termination of Ca®* action potential (AP)
firing in medial olivocochlear (MOC) efferent fibers [34, 35];
and (iv) Ky3.1 (KCNC1) in SGNs and ascending auditory
circuits [36] are shown to be involved in temporal precision
of sound processing [37]. In this review, we first summarize
the expression profiles and physiological functions of these
K* channels, then discuss their individual roles in the context
of'age- and noise-dependent hearing loss, and the contribution
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of genetic predisposition to progressive hearing loss over age.
Finally, we address respective possibilities and advantages in
targeting K™ channels for therapeutic intervention against
ARHL.

K" channels in the auditory system
Ky7.4 (KCNQ4)

OHC provide the mammalian ear with fast electromechanical
amplification, which is required for the dynamic range and
speed of sound encoding by the cochlea [38]. A direct me-
chanical gating of mechanoelectrical transduction channels
modulates the input current at cochlear locations of sound
stimulus-specific frequencies. This influx of K* through apical
mechanosensitive channels depolarizes the membrane and
drives the contraction of OHC by the motor protein prestin
[39]. The speed of this action depends on the capacitance and
conductance of the OHC at resting membrane potential, which
in turn critically depend on determinants of OHC conductance
maintained through the efflux current Iy ;,, mediated by the
voltage-gated potassium channel subunit Ky,7.4 [40].

While Ky7.4 expression [41, 42] and its current I ,, [40]
are detected prior to hearing onset along the entire basolateral
membrane of OHC in mice (Fig. 1a), Ky/7.4 is redistributed
after the onset of hearing (P12-14), becoming restricted solely
to the basal pole (Fig. 1b) [43, 44]. This localization suggests
that Ky/7.4 serves to extrude K™ ions that enter OHC through
the apical mechanosensitive channels [28, 29, 45, 46]. Ky/7.4
is also detected in inner hair cells (IHCs) [25, 26], SGNs, and
several nuclei along the auditory pathway, e.g., cochlear nu-
clei and inferior colliculus [25, 29].

Impaired surface expression of Ky,7.4 in hair cells has been
shown to be a primary step of hearing loss [47-50]. In Kcng4
knock-out mice, Carignano et al. [49] showed that the number
of OHC slowly decreased at a young age with increasing cell
loss up to complete degeneration at oldest ages. Degeneration
of THCs was also observed, but only in the adult stage. The
loss of this important K* channel in OHC results in a chronic
depolarization, possibly increasing Ca®* influx through
voltage-gated Ca®* channels and causing their subsequent de-
generation due to chronic cellular stress [51].

Ky7.1 (KCNQT1)

The sensory cells of the inner ear are in contact with the fluids
in the scala media which is filled with endolymph, the extra-
cellular fluid with high K* concentration. K* is the major
charge carrier for sensory transduction and its proper circula-
tion is of great importance for the process of hearing. K* ions
are secreted into the endolymph by the stria vascularis, enter
the hair cells through apical mechanosensitive non-selective
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cation channels, and exit these cells via their basolateral mem-
brane, then migrate through supporting cells and fibrocytes
towards the stria vascularis using a network of gap junctions
where they are reabsorbed by strial marginal cells and released
into the endolymph [52, 53]. Ky7.1 (KCNQ1) and its (3-
subunit KCNEI form a channel complex that is expressed in
the mature organ of Corti in the apical membrane of marginal
cells of the stria vascularis where it mediates the slow delayed
rectifier current Iy ¢ [31-33, 54]. As components of K*
circulation, Ky/7.1 and KCNE1 are responsible for the
secretion of potassium to the endolymph [55, 56], gen-
erating the EP [57, 58].

Fig. 1 K" expression along the ascending auditory pathway before and
after hearing onset. a Before the onset of hearing, potassium ion (K*)
channels are mainly expressed in the organ of Corti. In the outer hair
cells (OHC), Ky7.4 (KCNQ4, green) is found along the entire
basolateral membrane, while the inner hair cells (IHCs) express the
calcium-activated potassium channel SK2 (KCNN2, purple) before
postnatal day (P) 12 in mice, corresponding to embryonic week (EW)
27 in humans. For reference, afferent (gray) and efferent (black) neural
projections are shown. b In the mature organ of Corti, the endolymph of
the scala media contains a high concentration of K*, which is mediated by
Ky7.1 (KCNQI, orange) channels in the apical marginal cells of the stria
vascularis (SV). During auditory stimulation, endolymphatic K* enter the
OHC at the basolateral membrane, and leave the cell via Ky7.4, BK

hearing onset

v

Ky7.1 is expressed throughout the body including the liver,
lung, heart, and cochlea [31-33]. The homomeric form of
Ky7.1 gives rise to a slowly activating and deactivating
voltage-dependent potassium current [33]. However, in the
inner ear, Ky7.1 modulates the kinetics by assembling to
KCNEI to form a heteromeric channel [32]. This results in a
drastic slowdown in channel activation, a positive shift in
voltage activation threshold, and an absence of inactivation
[31]. During cochlear development, Ky/7.1 was not detected
at several embryonic stages in mice (Fig. 1a), indicating that
its expression is first established during the postnatal stages
(Fig. 1b) [59].

EW27 [
P12 [

(KCNMALI, blue), and SK2 channels. In the IHC, K* exits the cell
through Ky7.4 and BK channels. The expression of BK channels was
identified at the lateral wall of IHC as well as in the cell bodies of spiral
ganglion neurons (SGNs). The auditory signal is then transmitted from
the cochlea to the cochlear nucleus (CN) via rapidly firing neurons
containing Ky3.1 (KCNCI, red arrows) channels. From here,
parvalbumin-positive interneurons project onto the lateral and medial
superior olive (LSO and MSO, respectively) and the medial nucleus of
the trapezoid body (MNTB), whose fibers also express Ky3.1. The
inferior colliculus (IC) receives input from the contralateral (not shown)
and ipsilateral superior olivary complex. The fibers from the IC project to
the medial genicular body (MGB) and the signals are then transmitted to
the auditory cortex (AC) via rapid firing, Ky3.1 expressing neurons
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Loss of functional Ky,7.1 or KCNEI leads to Jervell and
Lange-Nielsen syndrome which is characterized by cardiac
arrthythmia [60—63] and associated with congenital deafness
in humans [32, 62, 64, 65]. Potassium secretion into the
endolymph is consequently disturbed causing a defect of
endolymph production and a collapse of the Reissner
membrane [66].

BK (KCNMA1) and SK2 (KCNN2)

Calcium-activated potassium channels are divided into two
broad categories, small conductance calcium-activated SK
channels and large conductance, voltage-gated, and calcium-
sensitive BK channels [67]. SK channels have high Ca** af-
finity and long open times, while BK channels are distin-
guished by significant differences in voltage sensitivity,
single-channel conductance, Ca** affinity, and gating kinetics
[68]. These channels share the common functional role of
coupling the increase in intracellular Ca** concentration to
hyperpolarization of membrane potential, thus playing an im-
portant role in cellular excitability and maintaining K* homeo-
stasis [69].

Calcium-activated K* conductance has been described in
both OHC and IHCs [45, 70]. BK decreases membrane time
constants and enables the fast repolarization of hair cell recep-
tor potentials [46] and efferent fibers [71]. BK channels in hair
cells appear to show tonotopic gradients of increasing expres-
sion from apical (low frequency) to basal (high frequency)
regions [34, 35, 72]. The stronger expression in high-
frequency regions suggests a contribution of BK channels to
high-frequency hearing in mammals. Furthermore, applica-
tion of acetylcholine, a major efferent neurotransmitter, has
been shown to exclusively activate BK currents in high-
frequency OHC as opposed to SK currents in the lower-
frequency OHC [35], and has been shown to modify efferent
inhibitory synaptic responses in high-frequency OHC [73].

In the developing mouse, SK2 channel expression in IHCs
was demonstrated during the first two postnatal weeks with a
peak around P9 (Fig. 1a), disappearing during hearing onset
with decline of cholinergic axosomatic efferent IHC innerva-
tions (Fig. 1b) [74]. BK channel expression has been identi-
fied in the cell bodies of SGN as well as in inner and outer
sensory hair cells at the onset of hearing around P12 (Fig. 1b)
[75, 76]. The appearance of the fast BK current, I g in IHCs
has been shown to coincide with the disappearance of spon-
taneous action potentials, transforming mature mammalian
IHCs into high-frequency signal transducers [77, 78].
During the first four postnatal weeks, BK~ mice surpris-
ingly did not show any obvious hearing deficits [51]. High-
frequency hearing loss developed in BKoc "~ mice only from
approximately 8 weeks postnatally onward and was accompa-
nied by a lack of distortion product otoacoustic emissions,
suggesting OHC dysfunction.

@ Springer

Ky3.1 (KCNC1)

The Kenel gene yields two Ky/3.1 subtypes (a and b) through
alternative splicing [79], but Ky3.1b has been shown to pre-
dominate in the adult rodent brain [80, 81]. Apart from the
medial nucleus of the trapezoid body (MNTB) and
anteroventral cochlear nucleus (AVCN), Ky3.1 is also
expressed in neurons of the reticular thalamic nucleus and
parvalbumin-positive (PV+) interneurons of the cortex and
hypothalamus [81, 82]. Ky3.1 belongs to the delayed rectifier
channel family and is located on presynaptic terminals
[83—85]. Its high activation threshold and rapid activation
and deactivation in response to voltage changes reduce the
AP duration while simultaneously maximizing firing frequen-
cy [86]. This special characteristic of Ky3.1 for maximizing
firing frequencies is related to its distinct expression profile in
fast spiking interneurons [81, 82] and the important role it
plays in the auditory system.

During auditory pathway maturation, Ky/3.1 levels increase
in SGNs between P4 and P8, reducing AP latencies and dura-
tion after hearing onset [87, 88]. The expression level of
Kv3.1 rises dramatically near the onset of hearing along with
the maturation of fast auditory processing as shown in the
brainstem [89-91] and the inferior colliculus (Fig. 1b) [92,
93]. This expression profile in fast PV+ interneurons makes
Ky3.1 a key contributor to the lowered threshold and short-
ened latency of cortical auditory responses, which can be
measured after the sharpening of cortical receptive fields
[94] at the end of the critical period after hearing onset.
Thus, receptive field maturation coincides with the maturation
of a network of fast-spiking GABAergic PV+ interneurons
[95-98], predicted to mature in the auditory pathway with fast
auditory processing after hearing onset [99]. Accordingly,
given the optimal design of Ky3.1 for high-rate repetitive
firing [100, 101], it has been identified as critical for fast-
spiking PV+ interneurons [102]. Also, the key components
in the auditory pathway required for auditory discrimination,
the MNTB and AVCN, contain neurons that fire at very rapid
rates, requiring the expression of Ky3.1 for rapid repolariza-
tion of AP during sound-induced activity [103—-105]. MNTB
neurons of Ky3.1 deficient mice were incapable of following
high-rate stimulation or sustaining high-rate firing AP [37],
demonstrating that Ky/3.1 is essential for the rapid firing pat-
terns. Given that hearing impairment can lead to a decline in
Ky3.1 expression in the MNTB [36, 106], it is likely that the
lack of Ky/3.1 channels is a key contributor to deficits in fast
auditory discrimination over age [107].

Noise exposure linked to ARHL

The driving mechanisms of hearing loss over age remain
largely unclear. Already in rodent animal species that are
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widely used as models for human hearing, the age-related loss
of cochlear function is highly variable; different mouse lines
display hearing loss as early as 5 weeks after birth, determined
partly by species, strain, and animal history, but also partly by
lifetime auditory exposure determined by noise intensity level,
duration, predictability, exposure context, and other character-
istics of the sound [108]. In healthy-aged Mongolian gerbils,
auditory-evoked potentials show a decrease of responses be-
fore the loss of auditory sensitivity, which is attributed to age-
related pathologies in the auditory periphery [109, 110].
Studies in quiet-aged gerbils suggest that loss of synapses is
the earliest age-related degenerative event (reviewed in [111]),
preceding strial dysfunction and other cochlear pathologies
[112]. Functional studies on aging rats have confirmed this
[113] and extended the functional consequences of the loss
of synapses beyond hearing sensitivity towards the loss of
central compensatory action of the brain to make use of the
few remaining auditory signals. In the cochlea, aging in ger-
bils and rats is characterized by threshold increase and con-
current loss of normal OHC phenotype from the second third
of their lifespan onwards, which is related to a reduced brain-
derived neurotrophic factor (BDNF) expression levels in the
auditory nerve [114].

In CD-1 mice, often used as a model for human hearing, the
EP is already lost at the age of 9 months, and the sensory organ
is completely degenerated [115]. CBA/Cal mice are described
to have normal EP and excellent hearing for a large portion of
their lifespan. Nevertheless, they display a remarkable accel-
eration of ARHL when repeatedly exposed to “benign” noise
during their lifespan [116, 117]. By contrast, 129/SvEv mice
are exceptionally resistant to noise-induced hearing loss [118],
but preexisting anomalies in substrains of 129/Sv] mice pre-
dispose the ear to degenerate prematurely when interacting
with K* channel deletion [118]. Finally, ROS-induced activa-
tion of DNA damage in senescence-accelerated mouse-prone
8 (SAMPS) mice are discussed as the driver for ARHL [119].
ROS can be induced in the ear by exposure to moderate,
nevertheless harmful, acoustic noise [120, 121] causing an
accumulation of toxic noise events throughout lifetime
(reviewed in [122]). We have to assume that even the early
loss of synaptic contacts between sensory hair cells and SGNs
or synaptopathy [17] can be traced back to cumulative
excitotoxic injury events [123], the largest source of which
is likely to be noise exposure [124, 125].

One of the earliest events following metabolic limitations
during noise exposure is the impairment of membrane surface
expression of distinct K™ channels in the cochlea, a process
that is here suggested to have a pivotal role in ARHL. Both
Ky7.4 (KCNQ4) and BK (KCNMA) channels are required
for normal hearing and have been suggested to protect OHC in
cochlear regions that register high frequencies from Ca®*
overload [47, 72]. Functional loss in OHC has been linked
to the loss of Ky/7.4 in the membrane of the OHC, preceding

their degeneration in the middle- and high-frequency coding
cochlear compartments [51, 126]. The loss of BK« led to a
similar phenotype as by pharmacological blockage of K\/7.4
channels, suggesting that a loss of the BK gene increases sus-
ceptibility for progressive ARHL, similar to KCNQ4 mutation
[26,47, 51, 78]. Consistent with that assumption, exposure to
a low-frequency, non-traumatic sound has been found to not
affect hearing sensitivity of wild-type mice, but mice with
BKa gene deletion experienced a dramatic loss of hearing
sensitivity within the stimulated low-frequency hearing range
[72]. 1t is important to note that the affected low-frequency
range was not part of the hearing range affected by accelerated
ARHL in the young unexposed BKo deficient mice, thus
confirming that the low-frequency cochlear compartments
are rendered susceptible by the absence of BK. The low-
frequency noise exposure extended the loss of KCNQ4 from
OHC towards the low-frequency cochlear compartments af-
fected by the noise exposure, confirming that the hearing loss
resulted from the absence of KCNQ4 from hair cell plasma
membrane [72]. The metabolic balance due to the fast repo-
larization of the receptor potential is a requirement for the
healthy homeostasis of hair cells. Thus, the maintenance of
KCNQ4 and BK in the OHC membrane is most critical to
counteracta Ca’" overload of hair cells, irrespective of wheth-
er induced through excitotoxic, ototoxic, or noise exposure
events, all of which are challenges that accumulate over ad-
vancing age. The activity in MOC efferent fibers contacting
OHC plays an important role to activate BK and SK2 channels
through acetylcholine release. Therefore, any reduction in
MOC efferent fibers, which were previously shown to decline
with advancing age [127], is expected to increase susceptibil-
ity to noise-induced hearing loss over age, due to reduced
potential to rapidly remove K* from OHC, as can be predicted
from various studies [34, 51, 72, 128, 129].

Furthermore, the protective role of BK channels is not lim-
ited to the hearing organ. In the mammalian central nervous
system, BK is expressed in the neuron soma, processes, and
presynaptic terminals, where it drives the membrane potential
towards the potassium equilibrium potential to re- and hyper-
polarize the neuron [130]. To study the importance of central
BK deletion in the brain, normal hearing mice are required.
Fortunately, the F1 generation of a hybrid sv129/C547/Bl6
background of mice with genetic deletion of the BK channel
has documented good hearing up to the age of 15 weeks [131],
which again confirms the multifactorial nature of BK gene
deletion-related progression of hearing disorder. Most strik-
ingly, these mice nevertheless display slower learning capac-
ity and no improvement of pre-pulse inhibition of the acoustic
startle response over days [131]. This strongly suggests that
besides the protective role of cochlear BK channels [51, 72],
they further contribute to the integrity of central neuronal cir-
cuits that are essential to process environmental auditory in-
formation. Because the top-down modulation of cochlear hair
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cells’ excitability is assumed to play a critical role in adapta-
tion to and avoiding damaging influences of environmental
changes [132-134], the centrifugal control of neuronal excit-
ability may be a major factor of K* channel-related ARHL.

SK2 (KCNN2) is expressed in OHC as a postsynaptic
marker apposing synapses of MOC efferent fibers and re-
quired for Ca®*-activated SK2 channel activation through
MOC'’s cholinergic function [135]. The number of SK2-
positive foci is remarkably reduced in mouse strains that ex-
hibit fast progression of ARHL, such as the C57BL/6J [136],
thus representing a general trait in the pathophysiological pro-
gression of ARHL. The protective role of MOC efferent fibers
during aging and noise only recently received support through
the discovery that loss of MOC efferent fibers is an early event
of ARHL [127]. We may thus conclude that loss of BK, SK2,
and KCNQA4 is likely to be early contributors to ARHL, with
their dysfunction discussed as a primary event of OHC loss
over age.

Ky7.1 (KCNQ1) is a major component of the K* circula-
tion by the stria vascularis and is responsible for the secretion
of potassium to the endolymph and maintaining the EP, to
assist motility in OHC, perform synaptic activity, and main-
tain the spontaneous and evoked activity of SGNs. The cells
of the stria vascularis contain high numbers of mitochondria
[137, 138] and Na*/K*ATPase [139, 140]. In quict-aged ger-
bils, the stria vascularis and spiral ligament showed a decrease
in Na*/K*ATPase activity in these tissues [141], as well as
degeneration of strial capillaries at both ends of the cochlear
spiral [142] and decreased blood flow [143]. In aged CBA/
CalJ mice, Na*/K*ATPase expression was largely reduced,
and the stria vascularis was found to be atrophied [139].
Howeyver, it remains difficult to determine whether the lack
of blood flow or the cellular dysfunction leads to the strial
atrophy. As such, most of these studies did not specifically
analyze membrane expression patterns of KCNQ1 during stria
vascularis degeneration over age. Interestingly, 12-month-old
C57BL/6 mice displayed notable hearing loss and morpholog-
ical examination showed a significant OHC loss in the cochle-
ar basal turn accompanied by atrophy of the stria vascularis,
with immunohistochemical analysis revealing dramatically
decreased KCNJ10 and KCNQI1 expression [144]. While
these studies observed a conservation of the EP in these aging
C57BL/6 mice, and suggested that the stria vascularis can
generate a new balance for potassium influx and efflux at
relatively low turnover [144], other studies found a clear re-
quirement of adequate KCNQI recycling in marginal stria
vascularis membranes for hearing and OHC cell survival
[145]. On the whole, age-dependent decline of KCNQI1 from
the marginal surface of the stria vascularis should be urgently
reconsidered with regard to ARHL.

The expression of Ky3.1 (KCNC1) subtype b, which is
predominant in the adult rodent brain [80, 81], has been
shown to decrease in neurons of the MOC efferent system
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by middle age in CBA/CaJ mice, and these changes appeared
to correlate with functional declines in efferent activity in both
middle-aged CBA/Cal mice and Ky;3.1b knockout mice [106,
146], suggesting age-dependent decline of Ky,3.1b as a possi-
ble cause of MOC efferent decline over age [127]. Also,
C57BL/6 mice have been shown to lose sensory basal hair
cells during early adulthood progressing towards the apex
with age [147], which was linked to a concurrent decrease in
levels of Ky3.1b in brainstem neurons [106]. In Sprague-
Dawley rats, both the intensity of Ky3.1 immunostaining
and number of Ky,3.1-positive neurons have been shown to
decline with age in the cochlear nucleus [148]. Age-dependent
Kyv3.1 modifications are expected to contribute to age-
dependent temporal discrimination deficits [149]. This is par-
ticularly important when considering the special role Ky/3.1
activity displays as a modulator for fast-spiking inhibitory
PV+ interneurons, which control feedforward and feedback
inhibitory modalities [150], suggested to be essential for fast
auditory processing circuits [99]. Reduced PV expression
levels have also been found in the auditory cortex in aged
animal models [151], which implies a potential relation be-
tween the decline of Ky3.1 expression over age and PV-
mediated processing deficits in ARHL.

Based on evidence from different animal models and from
human temporal bones, it seems likely that aging or senes-
cence alone is not necessarily a major risk factor for hearing
impairment over advancing age. Convincing evidence that
aging per se is not necessarily the main cause for ARHL
comes from geriatric cats that have normal hearing sensitivity
and auditory brainstem functions over the whole frequency
range of hearing, developing ARHL only late in their lifespan
[152]. The current evidence suggests that an accumulation of
noise events may most likely be the origin of ARHL in
humans (Fig. 2a), with excessive noise able to overstimulate
sensory hair cells and requires fast and effective K* recycling
within the inner ear. This suggests that ARHL may rather be
an accumulation of damage from minor toxic events instead of
an inevitable progressing loss of cells, structures, and the abil-
ity for regeneration.

Genetic predisposition to ARHL

The human genome contains roughly 70 K* channel-encoding
genes [153]. Many of these genes play essential roles in nor-
mal physiological processes, including those involved in hear-
ing, as evidenced by the clinical appearance of syndromic and/
or non-syndromic hearing loss with genetic variation. As
ARHL has a delayed onset and progressive nature, it is plau-
sible to hypothesize that genetic variation may directly con-
tribute to an inter-individual variability and susceptibility to
ARHL or to other indirect processes of aging such as meta-
bolic status. One way to test this is to perform statistical
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Fig. 2 a In the challenged auditory system leading to age-related hearing
loss (ARHL), the key causing factors are postulated to be lifetime noise
exposure, hereditary predisposition, and the accumulation of reactive
oxygen species (ROS). b In a healthy outer hair cell (OHC), potassium
ions (K™) enter the cell through apical mechanosensitive channels and are
then transported to the supporting cells through Ky, 7.4 (KCNQ4, green)
channels on the basolateral membrane of OHC. However, in the
challenged system, the expression of Ky7.4 is reduced, resulting in a
poor K* efflux. This state can be influenced by the addition of K*

analyses in the form of association testing to identify genetic
regions or variants, in either genes of interest or across the
entire genome, to identify associations with ARHL. This type
of analysis has not been performed for all of the genes
encoding the channels discussed in this review. However, in
the following section, we summarize the current body of ge-
netics knowledge for our selected K™ channels and make con-
nections to ARHL.

The KCNQ4 gene encodes the potassium voltage-gated
channel subfamily Q member 4 protein (Ky/7.4). Deleterious
variants in KCNQ4 cause autosomal dominant non-syndromic
hearing loss (MIM* 603537) [30]. A significant association
between KCNQ4 and ARHL has been identified by Van
Eyken et al. [154] in two independent populations.
However, except for one single nucleotide polymorphism
(SNP), i.e., SNP12 (rs2149034), different SNP spanning a
13-kb region of KCNQ4 were positively associated in both
populations. KCNQ4 was regarded by the authors as a strong
susceptibility gene for ARHL; however, replication studies
have not reproduced this observation. KCNQ4 expression in-
creases with age, supporting a hypothesis that an increased
defective protein load may lead to progressive cellular dys-
function [154, 155]. Van Laer et al. [156] also found signifi-
cant differences between individuals susceptible and resistant
to noise exposure for the allele, genotype, and haplotype fre-
quencies for a KCNQO4 SNP (rs34287852). A genome-wide
association study (GWAS) meta-analysis from the Cohorts for
Heart and Aging Research in Genomic Epidemiology or
CHARGE Consortium was performed with the aim to identify
genetic factors associated with overall mortality and healthy
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channel modulators (green circle) in a way where cell surface
expression remains stable but the efflux rate can be increased. ¢ In fast-
spiking, parvalbumin-positive interneurons, Ky3.1 (KCNCI, red) is
required for the high-frequency repetitive firing. A decline in Ky;3.1 cell
surface expression leads to an incapacity of neurons to maintain
high-frequency firing action potentials. Modulators that bind to Ky3.1
(red circle) may lower action potential latencies and duration and increase
the firing pattern of these neurons

longevity [157]. This study identified 14 independent SNP
that predicted risk of death and eight that predicted healthy
longevity. Several of these SNP were located either in or near
genes that are involved in neurological processes. A KCNQ4
SNP (1s2769255) was significantly associated with both mor-
tality and healthy longevity and is located approximately
4.4 kb upstream from the gene. The enrichment of SNP, either
in or adjacent to genes involved in neurological processes,
suggests the importance of these genes in regulating healthy
aging and longevity.

The KCNQI gene encodes the potassium voltage-gated
channel subfamily Q member 1 protein (Ky/7.1). KCNQ]I var-
iants have been associated with long QT syndrome, short QT
syndrome, atrial fibrillation, and Jarvell and Lange-Nielsen
syndrome (MIM* 607542) [158]. The same study by Van
Laer et al. [156] also found one significant difference between
noise susceptible and resistant individuals in one KCNQ!
SNP (rs163171). The most interesting literature linking
KCNQI to ARHL comes from the diabetes field, which con-
stitutes a risk factor for ARHL [21]. With respect to a broader
biological context, KCNQI 1is also expressed in the heart,
stomach, intestine, liver, kidney, and insulin-producing cells
[159, 160]. Several GWAS have uncovered many indepen-
dent intronic regions in KCNQ! that harbor type 2 diabetes
mellitus risk alleles (rs231362, rs2283228, rs2237892,
rs2237895, and rs2237897) in Europeans, East Asians, and
Native Americans [161-164]. It is unclear if the SNP exert a
functional effect and whether this would involve KCNQ! or
the neighboring genes, KCNQIOTI, or CDKNIC, a known
regulator of pancreatic beta-cell development [163]. Neither
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Kcngl null mice nor patients with deleterious variants show
impaired hyperglycemia or glucose intolerance; therefore, it is
thought that an increase in expression in pancreatic beta-cells
may be linked to the development of type 2 diabetes [163].
Interestingly, KCNQ! resides on chromosome 11p15.5, a ma-
ternally imprinted region [161]. This means that maternally
inherited variants in this imprinted region confer disease risk.
There is compelling evidence that diabetes risk at the KCNQ1
locus is medicated through a gene with imprinted gene expres-
sion that may be mediated by KCNQ! or neighboring genes
(KCNQI1OTI or CDKNIC) [165]. The confirmation of so-
called parent-of-origin effects that have been identified in ev-
ery organ system of the human body so far except the auditory
system would fundamentally re-shape the way the genomics
field views genetic contributors of ARHL [166].

The KCNMA1 (BK), KCNN2 (SK2), and KCNCI (Ky3.1)
genes presently do not have compelling evidence linking them
to ARHL, but several already have gene-disease associations.
The KCNMA1 gene encodes the potassium calcium-activated
channel subfamily M alpha 1 protein (BK). Deleterious
KCNMA1 variants are associated with paroxysmal
nonkinesigenic dyskinesia with or without generalized epilep-
sy, Liang-Wang syndrome and cerebellar atrophy (MIM*
600150). Although no current genetic-based studies linking
KCNMA1 SNP to presbycusis and aging exist, BK channels
appear to be sensitive to oxidative stress [167]. The KCNN2
gene encodes the potassium calcium-activated channel sub-
family N member 2 protein (SK2) and is currently not associ-
ated with any human phenotypes. The SK channel has been
linked to neuroprotection in the form of mitochondrial resil-
ience against neuronal death [168]. SK channels may involve
attenuation of mitochondrial calcium uptake upon SK channel
activation. Mitochondrial activation calcium uptake across the
mitochondrial membrane is essential for the numerous
calcium-sensitive processes required for mitochondrial metab-
olism and respiration [169]. Oxidative stress in neurons leads
to a series of detrimental effects such as intracellular calcium
overload that induces changes in mitochondrial metabolism
such as alterations in ATP synthesis and NADP(H) oxidation
that lead to an increase in ROS [168, 170]. Finally, the
KCNCI gene encodes the potassium voltage-gated channel
subfamily C member 1 protein (Ky/3.1). It has been associated
with autosomal-dominant progressive myoclonic epilepsy
(MIM* 176258) [171] and intellectual disability without sei-
zure or epilepsy [172].

On the whole, the current literature lacks conclusive human
genetic evidence to link ARHL and KCNQI (Ky7.1),
KCNMA1 (BK), KCNN2 (SK2), and KCNC! (Ky3.1), but
contains limited information to link it to KCNQO4 (Ky/7.4).
These genes are still intriguing due to possible gene-
environment interactions in processes such as aging and me-
tabolism that are presently unknown (Fig. 2a). ARHL is a
complex disorder with environmental, e.g., noise exposure,
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and genetic factors. Twin studies for ARHL have estimated
the heritability of ARHL, or importance of a genetic compo-
nent in a disease [154] and found that twin similarity of mono-
zygotic twins decreased with age and dizygotic twins in-
creased with age [173]. This suggests that environmental fac-
tors may become more prominent with age. Of note, SNP in
K* channel genes have not been noted with significance in the
more recent large-scale genomics studies [174, 175].
However, if K* channel genetic targets are identified with
future ongoing studies, they have the potential to make excel-
lent therapeutic targets.

K" channels as therapeutic targets
against ARHL

Having given a comprehensive view about the role select po-
tassium channels play in the cochlea and the ascending audi-
tory pathway for ARHL in the context of noise exposure and
genetic predispositions, we may next illuminate therapeutic
intervention strategies with a potential to prevent or repair
hearing dysfunction as future ARHL therapies. Provided that
noise exposure, age-related synaptopathies and neuropathies,
and cardiovascular risk factors are major contributors of
ARHL [8, 14, 21], substantial evidence points to oxygen me-
tabolism as one of the main culprits for K* channel dysfunc-
tions with aging given that these dysfunctions are not only
based on channel mutations. Numerous studies evidenced that
ROS increases with age [176] and by statistical probability
alone preferentially affects K™ channels (Fig. 2a). The extreme
genetic heterogeneity and functional diversity of K* channels
are unparalleled to that of other types of channels [23]. ROS
can indirectly modulate K* channel function by acting on
cellular pathways that regulate gene transcription, trafficking,
turnover, and proteasomal degradation [177]. On the other
hand, direct age-related oxidation of particular voltage-
dependent K* channels that include the aforementioned Ky,7
channels, Ca**-activated BK and SK2, and Ky3.1 underlie a
specific type of neuronal aging [23]. In the auditory system,
several lines of evidence hint to the importance of these chan-
nels with respect to ARHL as discussed above.

KCNQ genes have a considerable physiological impact in
many cell types. This reliance upon K,7 channels for normal
cellular function is evident by hereditary disorders caused by
mutations in KCNQ genes, meaning that pharmacological
targeting of these channels has broad appeal. Consequently,
a plethora of chemical entities that modulate K7 channel
activity has been developed. Moreover, Ky/7 channels are in-
fluenced by many disparate intracellular mediators and traf-
ficking processes, making upstream targeting an appealing
prospect for therapeutic development to overcome deficits
related to these channels [178]. Until now, however, modula-
tion of Ky7 channels has been recognized mainly as a
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potential to prevent neurodegenerative disorders linked to ep-
ilepsy and cognitive deficits [179]. Although efforts have not
reached ARHL, pharmacological approaches in trials
targeting Ky,7.2 to Ky/7.5 channels with the novel antiepileptic
drug retigabine (or ezogabine) have been used to overcome
hearing loss [180, 181]. Retigabine increases the proba-
bility of opening these Ky7 channels upon causing a
negative 15-mV leftward shift in the voltage-
dependence of activation and a decrease in the rate of
deactivation (Fig. 2b) [178, 182—184].

Given a hereditary origin of progressive hearing loss
through KCNQ4 dysfunction, as it occurs in DFNA2 non-
syndromic autosomal-dominant progressive high-frequency
hearing loss [155, 157], genetic therapeutic approaches have
been envisioned, e.g., those following heterologic expression
of wild-type channels that could be combined with Ky,7 chan-
nel openers such as retigabine [181]. Correspondingly,
retigabine has already proven successful to rescue hearing
deficits in Korean families with co-segregating KCNQ4 path-
ogenic variants [180]. Also, a combination of zinc pyrithione
plus retigabine has been used in Chinese hamster ovary cells
either transfected with wild-type Kcng4 sequences or ones
containing variants that encode mutated channels, evidencing
a restoration of channel function that was dependent on the
location of the DFNA2 mutation within the gene [185]. This
further provides an interesting approach to rescue progressive
ARHL linked with mutations of KCNQ genes on the person-
alized medicine level.

Undoubtedly, Ky7.1 (KCNQ1) expression decreases with
advancing age in the stria vascularis [144], but, as previously
highlighted, it may only contribute to ARHL in a secondary
manner [14]. Hormone changes may be considered as contrib-
utors to the decline of Ky/7.1 surface expression loss in the
stria vascularis with age. Thus, throughout the lifespan, the
steroid hormone estrogen (173-oestradiol, E2) declines with
age in females [186]. Estrogen decline has been suggested to
induce Ky/7.1 dysfunction through changes in estrogen-
dependent control of its internalization from the plasma mem-
brane by a clathrin-mediated endocytosis process [187].
Estrogen has been shown to modulate the association between
Ky7.1 and the clathrin adaptor AP-2, required for endocytosis,
rather than degrading the ion channel, and a biphasic
recycling mechanism involving Rab4 and Rabll is in-
volved in this process, as shown in colon epithelium
[187]. Modulators of Ky/7.1 may thus contribute to
overcome postmenopausal-related hearing loss reported
to occur with aging [188].

Within this context, it may be interesting to note that a
spatio-temporal correlation of the loss of KCNQI1 and
KCNEI1 surface expression and loss of hearing thresholds
has been reported following loss of proteins involved in
KCNQI1 recycling, such as SCARB2 [145]. Human
SCARB2 is a key regulator of lysosome integrity, motility,

and dynamics, and its loss has been shown to cause rupture of
lysosome membranes and significantly shortened lifespan
[189]. This may suggest any disturbance of proper
membrane recycling or insufficient targeting of
KCNQI1 and KCNE!1 in the stria vascularis, might be
a possible rationale for ARHL [190], and renders lyso-
somal enzymes that stimulate trafficking as potential
candidates for targeting ARHL [191].

The Ca’*-activated channels BK (KCNMA1) and SK2
(KCNN2) play an important role in noise-induced ARHL,
counteracting noise-induced hyperpolarization of OHC.
These may be particularly sensitive for age-dependent ROS
damage, being both susceptible to redox modifications [23,
192]. The noise-induced rise in Ca** in OHC (i.e., Ca®* over-
load) is expected to induce slow cellular after-
hyperpolarizations for SK2 and fast ones for BK channels,
both possibly contributing to the prevention of noise damage
to OHC [34]. Within this context, the specific role of BK in
IHCs, shown to rapidly and robustly shape IHC receptor po-
tential [193], needs to be considered. An oligonucleotide an-
tisense against SK channels was shown to compensate an age-
related memory decline in mice, resulting from ROS-induced
modification of SK channel function [194, 195], providing
viral-mediated expression of SK2 channel as a potential
means to target its deficits with advancing age. For BK chan-
nels, specific blockers have been shown to counteract the neg-
ative redox effects in the brain, indicating that ROS-signaling
on BK channels leads more to active, rather than inactive,
channels [196]. This would expectedly lead to reduced neu-
ronal excitability of hair cells, through upregulation of K*
channel activities as a hallmark of the aging process. This
hypothesis for the aging cochlea awaits further studies and
requires reflection in the context of age-dependent deficits of
fast auditory processing [197, 198].

A-type voltage-gated potassium (Ky) channels, to which
the Ky3.1 (KCNCI1) channel belongs, are sensitive for age-
dependent ROS changes [199], resulting through oxidation of
channels in slowed inactivation and increased open channel
currents, modifications that would dampen neuronal excitabil-
ity as shown for the hippocampus [200, 201]. Ky;3.1 has not
only been shown as important for sustained temporally accu-
rate firing, being susceptible to deprivation, but also to its
deficits partially restored in animals by the compound
AUTO00063 (Fig. 2¢) [197]. AUT00063 has also been shown
to improve auditory synchronization and support more accu-
rate decoding of temporal sound features in the inferior
colliculus and auditory cortex in adult mice with a near-
complete loss of auditory nerve afferent synapses in the con-
tralateral ear [197], rendering Ky,3.1 modulators an attractive
candidate for pharmaceutical targeting against fast auditory
processing deficits due to ARHL. Furthermore, antidepres-
sants, such as p11, have been shown to control Ky/3.1 expres-
sion level and intracellular localization in PV+ interneurons of
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the hippocampus [202]. With reduced Ky3.1 levels, the ca-
pacity of PV+ interneurons to adapt to high-frequency firing is
abolished [202], underscoring the crucial role that sustained
expression levels of Ky3.1 may have over age for preserving
temporal auditory processing and speech discrimination.
Importantly, the high metabolic vulnerability of particular
PV+ interneuron synapses [203] should be reconsidered in
the context of required sustained Kv/3.1 channels for its proper
function in the ascending auditory pathway. Ky3.1 channel
modulators have recently been shown to enable faster activat-
ing kinetics and increase firing frequency in fast-spiking
GABAergic interneurons [204, 205]. This renders these mod-
ulators as promising candidate pharmaceutical drugs to over-
come ARHL, with a potential to improve speech in
noise deficits, especially with regard to the reconsidered
role that maintained PV+ interneuron-mediated
feedforward and feedback circuits have in fast auditory
processing [99].

Outlook

In humans, the classification of various presbycusis profiles
over age is manifold, but despite profound heterogeneity,
most of the presbycusis profiles are characterized by a domi-
nant loss of sensitivity to high-frequency tones [206].
Therefore, loss of auditory sensory function with age must
be classified by the probable excessive noise exposure as a
main contributor [14]. The current review suggests that noise-
induced overstimulation of sensory hair cells and neurons
most critically depends on fast and effective K* recycling in
the cochlea, including sustained fast auditory processing that
may be required for Ky/3.1-driven, fast PV+ interneuron func-
tion over age. Pharmaceutical targeting of K* channels to
enable fast recycling through stimulators, modulators, or acti-
vators has future potential to arrest or even prevent ARHL
before the inevitable progression of loss of cells, structures,
and degeneration.

An important caveat to consider with respect to different
functional consequences of oxidation for the reviewed K*
channels is the rationale against considering therapies based
on generic anti-oxidants for the treatment of ARHL. Modes of
interventions aimed at targeting more specific channel pro-
teins or distinctly responsible ROS species, which is not a
simple task, may be more likely to succeed. The ability to
pharmacologically separate the impact of individual K* chan-
nel subunits needs further refinement, beginning with existing
compounds and reinforcement with molecular interference
techniques.

Although many clinicians inform patients that ARHL can-
not be prevented, animal model studies provide insight and
future prospects for clinical trials and even clinical interven-
tions to prevent or slow the progression of ARHL.
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