Skip to main content
. 2021 Apr 26;11:8886. doi: 10.1038/s41598-021-88257-w

Table 2.

Performance of machine-learning based risk prediction models in the test set of the pooled cohort equation cohort.

Predicted 5-year ASCVD risk Overall Discrimination Calibration Clinical usefulness
Brier Brierscaled C-statistic (95% CI) P value Hosmer–Lemeshow χ2 P value Net benefit at threshold of 3.75% Net benefit at threshold of 5%
Pooled cohort equation (African) 0.032 35.0% 0.726 (0.716‒0.737) 0.004 506.0  < 0.001 0.0086 0.0049
Pooled cohort equation (white) 0.031 7.3% 0.738 (0.727‒0.749) 171.1  < 0.001 0.0106 0.0072
Logistic regression 0.030 4.6% 0.749 (0.738‒0.759)  < 0.001 15.3 0.053 0.0109 0.0079
Random forest 0.031 2.7% 0.720 (0.709‒0.731)  < 0.001 805.8  < 0.001 0.0094 0.0064
TreeBag 0.032 5.9% 0.674 (0.662‒0.685)  < 0.001 403.0  < 0.001 0.0067 0.0038
AdaBoost 0.031 3.9% 0.740 (0.729‒0.751) 0.434 19.9 0.011 0.0107 0.0074
Neural network (16 variables) 0.031 4.4% 0.751 (0.740‒0.761)  < 0.001 86.1  < 0.001 0.0108 0.0078
Neural network (8 variables) 0.031 4.2% 0.748 (0.738‒0.759)  < 0.001 91.2  < 0.001 0.0105 0.0077

ASCVD atherosclerotic cardiovascular disease, CI confidence interval.