Skip to main content
. 2021 Apr 26;11:8991. doi: 10.1038/s41598-021-88596-8

Table 2.

Performance of machine learning in predicting hourly PM10.

Time Random Forest RNN
R RMSE R RMSE
Beijing, BTH
2015.1 0.85 56.3 0.86 58.6
2016.1 0.91 60.2 0.92 41.0
2017.1 0.86 77.4 0.88 82.9
2018.1 0.74 34.5 0.75 34.8
2019.1 0.85 35.9 0.85 35.8
Tianjin, BTH
2015.1 0.87 57.9 0.92 51.2
2016.1 0.89 50.5 0.89 50.3
2017.1 0.88 51.9 0.88 51.9
2018.1 0.78 26.4 0.82 23.5
2019.1 0.79 36.8 0.81 42.9
Shanghai, YRD
2015.1 0.86 42.7 0.91 44.2
2016.1 0.83 30.3 0.88 27.4
2017.1 0.79 25.6 0.79 22.6
2018.1 0.86 27.8 0.88 28.7
2019.1 0.85 34.0 0.87 31.9
Nanjing, YRD
2015.1 0.81 59.9 0.84 69.9
2016.1 0.69 48.4 0.84 70.2
2017.1 0.81 32.6 0.97 29.1
2018.1 0.80 53.2 0.81 55.6
2019.1 0.83 44.5 0.83 50.1
Hangzhou, YRD
2015.1 0.89 39.2 0.90 39.7
2016.1 0.84 34.8 0.87 30.9
2017.1 0.80 34.2 0.84 32.4
2018.1 0.82 30.0 0.87 28.3
2019.1 0.61 45.9 0.61 49.7
Guangzhou, PRD
2015.1 0.86 23.5 0.930 16.2
2016.1 0.86 17.5 0.882 16.4
2017.1 0.88 27.9 0.895 29.9
2018.1 0.90 33.5 0.921 32.9
2019.1 0.89 27.9 0.87 38.4
Shenzhen, PRD
2015.1 0.80 23.7 0.79 28.3
2016.1 0.73 16.4 0.75 16.0
2017.1 0.79 12.2 0.80 13.8
2018.1 0.89 17.7 0.90 18.3
2019.1 0.81 25.3 0.81 27.7
Chengdu, SCB
2015.1 0.84 78.1 0.86 77.4
2016.1 0.84 31.5 0.79 36.7
2017.1 0.70 96.7 0.69 107.7
2018.1 0.78 37.6 0.86 31.3
2019.1 0.57 34.9 0.68 36.8
Chongqing, SCB
2015.1 0.82 69.7 0.81 75.1
2016.1 0.60 37.2 0.63 34.8
2017.1 0.79 41.2 0.85 38.6
2018.1 0.80 35.3 0.89 26.6
2019.1 0.64 49.2 0.69 48.6