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Abstract

Osteosarcoma is an aggressive tumor of the bone that primarily affects young adults 

and adolescents. Osteosarcoma is characterized by genomic chaos and heterogeneity. While 

inactivation of tumor protein p53 (TP53) is nearly universal other high frequency mutations or 

structural variations have not been identified. Despite this genomic heterogeneity, key conserved 

transcriptional programs associated with survival have been identified across human, canine and 

induced murine osteosarcoma. The epigenomic landscape, including DNA methylation, plays 

a key role in establishing transcriptional programs in all cell types. The role of epigenetic 

dysregulation has been studied in a variety of cancers but has yet to be explored at scale in 

osteosarcoma. Here we examined genome-wide DNA methylation patterns in 24 human and 44 

canine osteosarcoma samples identifying groups of highly correlated DNA methylation marks in 

human and canine osteosarcoma samples. We also link specific DNA methylation patterns to key 

transcriptional programs in both human and canine osteosarcoma. Building on previous work, we 

built a DNA methylation-based measure for the presence and abundance of various immune cell 

types in osteosarcoma. Finally, we determined that the underlying state of the tumor, and not 

changes in cell composition, were the main driver of differences in DNA methylation across the 

human and canine samples.

Significance: Genome wide comparison of DNA methylation patterns in osteosarcoma across 

two species lays the ground work for the exploration of DNA methylation programs that help 

establish conserved transcriptional programs in the context of varied mutational landscapes.
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Introduction

Osteosarcoma is a rare disease, there are fewer than 1,000 cases diagnosed in the U.S. each 

year, mostly in children and adolescents1. However, these numbers fail to convey the impact 

that the disease has on patients, their families, caregivers, and the extended community due 

to its significant morbidity and years of life lost. Recent work is starting to increase our 

fundamental understanding of osteosarcoma2 but more than half of patients still relapse and 

die from metastatic disease within 10 years1,3. Osteosarcoma has been reported in every 

vertebrate species4. It is as rare in most animals as it is in humans, and when it occurs, 

it is most common in the axial skeleton4. Dogs are a notable exception. Osteosarcoma is 

extremely common in large and giant dogs, and similar to children the disease occurs most 

frequently in the appendicular skeleton4,5

Many studies have evaluated the genomic landscape of osteosarcoma in humans and in 

animal models. The heterogeneity of this disease is remarkable, both within and among 

species5-10. Loss of function of the TP53 gene seems to be a nearly universal event in 

spontaneous osteosarcoma, thus it might be causally related to the chaotic genomes that 
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are characteristic of this condition7. Aside from TP53 loss of function mutations, recurrent 

genomic aberrations are rare within species and even more infrequent between species. 

But unlike its highly heterogeneous mutational landscape, the transcriptional programs that 

characterize human and canine osteosarcoma are highly conserved8,11. More specifically, 

one key transcriptional program defined subsets with higher (or lower) rates of tumor cell 

proliferation and turnover, inferred from the expression of gene clusters associated with 

cell cycle progression, mitosis, DNA damage repair, and chromosomal instability8,11,12. We 

created a method to quantify this expression using a gene cluster expression summary score 

(GCESS)8 and showed that this GCESS was inversely associated with overall survival in 

both dogs and humans. The other salient conserved transcriptional programs defined subsets 

associated with abundance of immune and inflammatory cells in the microenvironment, 

inferred from the expression of genes uniquely or predominantly expressed by cells of the 

innate and adaptive immune system8. Curiously, the immune GCESS were only predictive of 

survival time and metastasis in human patients but not in dogs.

The discrepancy between the highly heterogeneous mutational landscape of human and 

canine osteosarcomas with diverse putative genetic drives and their relatively homogeneous 

transcriptional landscape indicates these two sets of events are probably unrelated in both 

species. In other words, these tumors do not seem to be caused by driver events that activate 

or repress specific transcription. Instead, it is most likely that osteosarcomas in humans 

and in dogs are convergent entities where epigenetic controls of gene expression driven 

by selection ultimately give rise to the limited molecular pathways that achieve the tissue 

organization required to form osteosarcoma tumors. One such epigenetic control is DNA 

methylation, which in turn is a major determinant of chromatin accessibility.

For this study, we sought to determine the role of DNA methylation in establishing the 

conserved transcriptional programs observed in human and canine osteosarcoma. Our data 

show that, indeed, there are conserved modules of methylation in human and canine 

osteosarcomas. In spite of the apparent species differences, such conserved processes 

must reflect pathogenetically significant events that contribute to risk, progression, and 

therapeutic failure, and understanding their mechanisms will aid the development of better 

methods to identify risk and prognosticate progression, and ultimately more effective 

strategies for treatment, control, and eventually prevention.

Results

Genome wide DNA methylation patterns in human and canine osteosarcoma

Our objective was to establish mechanisms that control conserved transcriptional programs 

in human and canine osteosarcoma tissues. Targeted bisulfite sequencing was used to 

measure genome wide DNA methylation levels in 24 samples of human osteosarcoma 

and 44 samples of canine osteosarcoma. In order to focus the comparisons on conserved 

mechanisms that underlie the cellular and molecular organization of osteosarcoma, we 

only considered methylation measurements from homologous regions of the two genomes 

(54K human and 58K canine genomic regions, 19% and 33% of total measured regions 

respectively, Figure 1A). Weighted gene correlation network analysis (WGCNA)13,14 

clustering was applied to the DNA methylation data to reduce complexity by identifying 
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genomic regions with highly correlated DNA methylation profiles across the osteosarcoma 

samples in both species. WGCNA generates large clusters of genomic regions with highly 

correlated DNA methylation measurements across samples and produces a summary 

value for each cluster. Clusters were constructed using the same parameters for the 

human and canine samples and the same correlation cut off value was used to establish 

cluster membership. We thus condensed 12,165 unique methylation measurements from 

the human osteosarcoma samples into 43 clusters containing between 16 and 2,529 

individual methylation measurements (Figure 1A). Five modules contained less than 100 

measurements and 6 modules contained more than 1,000. Similarly, we condensed 6,099 

unique methylation measurements from the canine osteosarcoma samples into 12 clusters 

containing between 139 and 2,532 individual methylation measurements (Figure 1A). 

The representative methylation value for each cluster, equivalent to the first principal 

component eigenvalue, is given in the heatmaps in Figure 1B and 1C. For both the 

human and canine clusters, methylation measurements from multiple chromosomes are 

clustered together indicating larger methylation programs that extend beyond methylation 

measurements in local genomic regions. While only methylation measurements from 

homologous genomic regions were used for clustering, the human and canine samples 

were clustered independently because we were interested in identifying methylation clusters 

that contain homologous genomic regions in the two species. The highest levels of region 

overlap were seen between human cluster ME1 and canine clusters ME1 (31.75%) and 

ME10 (33.26%), between human cluster ME5 and canine cluster ME3 (33.33%), and 

between human cluster ME7 and canine cluster ME8 (33.61%) (supp table). K-means 

clustering using the Euclidean distance of the summarized methylation values for each 

cluster was used to identify clusters that showed similar patterns across either the human 

or canine osteosarcoma samples, as indicated by the colored toe bars at the bottom of 

Figures 1B and 1C. The color scheme in Figures 1B and 1C is maintained throughout 

the rest of the manuscript and used as a reference for clusters. Some of the clusters share 

genomic regions across both species, as indicated by shared colors in the toe bars (blue, 

green, orange), while other clusters are species specific (red, light orange, yellow, purple, 

and black, Figures 1B, 1C, and 1D). We assigned the nearest gene (≤1,000 bp) to each 

methylation measurement and performed pathway analysis using the Reactome database 

for each methylation cluster. Not all methylation clusters resulted in significant pathway 

enrichment, but with the exception of the black group, all others had 1 or more individual 

groups of methylation marks with enriched functional pathways (Figure 1D and supp table). 

Predictably13,14, genes in the Reactome pathways “Transcriptional Regulation by TP53: 

(R-HSA-3700989), along with other pathways associated with signal transduction, were 

enriched in modules in the blue group, and genes in the “Transcriptional regulation by 

RUNX2” and “Transcriptional regulation of pluripotent stem cells” pathways were enriched 

in modules in the green group in samples from both species.

Association between methylation clusters and osteosarcoma transcriptional programs

Previously, we identified shared transcriptional programs in human and canine osteosarcoma 

tissues that were associated with proliferation (cell cycle), presumably of the tumor cells that 

were inversely associated with overall survival in both species8. We also showed that the 

presence of immune cells (immune1 and immune2) in the microenvironment was directly 
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associated with overall survival and time to metastasis, but only in human patients8. A subset 

of the samples used to identify those transcriptional programs were included in this study 

(human n = 16, canine n = 9). We calculated correlations between DNA methylation clusters 

and the summarized gene expression values for the expression groups from Scott et. al 

(2018) using the summarized methylation values for each cluster identified with WGCNA 

(Figure 2). In addition, we correlated DNA methylation to the age at diagnosis and overall 

survival time for the canine samples (Figure 2B). Figure 2 shows that the methylation 

clusters not only behave similarly when looking at the global DNA methylation patterns, 

but also when they are compared to downstream transcriptional programs. Specifically, the 

methylation clusters in the green group are positively correlated with cell cycle expression 

and inversely correlated with immune expression in both the dog and the human samples. In 

contrast the methylation clusters in the orange group, in both species, and the red group, in 

the human samples, show the opposite behavior and are inversely correlated with expression 

of cell cycle-associated genes and positively correlated with expression of immune-related 

genes.

Immune cell abundance across osteosarcoma samples

The presence or absence of specific immune cell infiltrates is an important predictor of 

survival in many solid tumors15 including human osteosarcoma8. DNA methylation data, 

from 450K arrays, has been shown to be more effective at predicting the abundance of 

specific cell types in gold standard mixtures than expression data from RNA-seq16. Building 

on these previous methods, we obtained whole genome bisulfite sequencing data for 12 

pure human cell populations from the BLUEPRINT project17. Whole genome bisulfite 

sequencing (WGBS) data were summarized to the same human/canine homologous regions 

used as input for WGCNA analysis. Cell populations of interest included 10 immune cell 

populations as well as osteoclasts and mesenchymal stromal cells (MSC), which were 

used as surrogates for tumor cells as WGBS data for osteoblasts is not available in the 

public domain. We performed differential methylation tests between all pairs of pure cell 

populations, and the top 100 genomic regions with the largest differences in methylation 

levels were selected from each test and combined (1,312 unique regions) to generate a 

custom signature file in CIBERSORT (SFigure 1). Once generated, this custom signature 

file accurately predicted the cell type in computationally generated mixtures based on 

methylation levels (SFigure 2). WGBS data from known mixtures of canine cells were not 

available to further test predictions from this method, so we relied on the approach used 

to identify homologous genomic regions to convert canine methylation measurements to 

their human genome equivalents. We then applied the same signature file to both species 

and, as expected, MSCs had the highest signal across all samples (Figure 3A & 3B). The 

data also suggests that all other stromal and immune cell types that we interrogated were 

infrequent (low abundance) in human osteosarcoma samples (Figure 3A), while suggesting 

that monocytes, CD8+ T-cells, and osteoclasts were relatively more abundant in canine 

osteosarcoma samples (Figure 3B). It has been previously shown that higher levels of CD8+ 

T-cells in the blood18 or tumor samples19 of dogs with OS is a positive prognostic factor 

for survival. The presence of CD3+ T-cells has been seen in human OS tumors but overall 

immune infiltrate levels of OS have been estimated to be intermediate when compared to the 
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tumors in TCGA, and lower than other soft tissue sarcomas as well as melanoma and lung 

cancer where immune checkpoint blockade has clinical benefits20.

Associations between global DNA methylation modules and predicted immune cell 
abundance

Global DNA methylation patterns are highly specific to cell type, though obtained through 

separate analysis, it is possible that the DNA methylation clusters identified via WGCNA 

were a result of the differences in the abundance of different cell types in the osteosarcoma 

samples. Though generated from the same starting regions (Figure 1A), there was a small 

overlap between the regions included in the WGCNA methylation clusters and the custom 

signature file used with CIBERSORT (352/12,165 from the human data and 147/6,099 from 

the canine data). To understand if any of our discovered methylation clusters were indirectly 

measuring immune cell abundance or the state of the tumor tissue, we calculated correlations 

between the summarized methylation values for each methylation cluster and predicted 

immune cell abundance scores (Figure 4). In both species, similar to the relationships 

between the methylation scores and transcription measures (Figure 2), methylation clusters 

of the same color tend to have similar relationships to the cell abundance measures (Figure 

4). In the human data most of the methylation clusters showed similar, positive, correlations 

to MSC while they displayed a more varied behavior overall (Figure 1A) and against 

key transcriptional patterns (Figure 2A). Interestingly, the orange and green clusters both 

have positive correlations to MSC abundance while they have opposite correlations, from 

each other, with the immune and cell cycle expression measures (Figure 2). In the canine 

data strong positive and negative correlations are seen between MSC, CD8+ T-cells and 

inflammatory macrophages. Also, in the canine data the opposite correlations are seen 

between the green and orange/light orange groups mirroring what is seen when compared to 

the transcriptional patterns (Figure 2B). In the human data, immune cell abundance is very 

low and the strongest correlations are seen between the methylation modules and the MSC 

abundance measures. While a few of the methylation clusters may reflect the abundance of 

immune cells, many more seem to reflect the underlying states of the tumor itself. In the 

canine data, immune cell abundance is higher and more varied, and the same modules show 

strong correlations to both transcriptional measures of immune cell infiltration (Figure 2B) 

and methylation-based measures (Figure 4B), so more of the original methylation clusters 

(green clusters) may be reflective of cell abundance. But many clusters do not show a 

strong correlation to any cell abundance measure and most likely reflect other aspects of the 

underlying tumor state.

Discussion

The molecular basis of osteosarcoma has received considerable attention during the last 

decade21-29. Several genetic mutations including TP53, RB, MYC, and RUNX2 have been 

strongly implicated in the development of osteosarcoma7,27,30-41 but our understanding of 

osteosarcoma epigenome is still limited8-43. The clinical outcomes continue to be dismal 

and have landed this disease among the “most wanted” for development of new, effective 

therapies. Elements of our failure to understand osteosarcoma pathobiology and treatment 

include tumor heterogeneity, a lack of robust prognostic factors, and the fact that current 
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therapies fail to prevent relapse and/or metastasis for many human patients and most 

canine patients. These challenges are also compounded by the orphan disease status of 

osteosarcoma.

Recently, we showed that transcriptional programs in human and canine osteosarcoma 

defined the proliferation and immune signature in the tumor microenvironment that are 

associated with aggressiveness and outcomes in osteosarcoma. Notably, our studies and 

other genomic studies have failed to identify recurrent translocation or mutational profiles 

associated with the transcriptional programs in human and canine osteosarcoma. In the 

absence of recurrent mutations the aberrant expression of pro-survival and metastatic genes 

noticed in osteosarcoma may be in part due to deregulation of microRNAs42,43. In addition 

to microRNAs the transcriptional programs may be regulated by epigenetic alterations44-46. 

Using genome-wide methylation profiles of human and canine osteosarcoma, here we show 

that transcriptional programs associated with cell proliferation and immune signature are 

associated with methylation patterns in both the species. Specifically, DNA methylation 

across the blue, green and orange clusters (Figure 1) encompassing 1,773 genomic locations 

behave similarly between human and canine while other regions are species specific. 

Correlative analysis of genome-wide methylation patterns and corresponding transcriptional 

profiles in human and canine osteosarcoma revealed strong correlations between key 

transcriptional patterns and DNA methylation measurements. For example, conserved green 

methylation clusters were positively correlated with cell cycle expression programs in 

both species while conserved orange methylation clusters were negatively correlated again 

in both species. These same methylation clusters displayed the opposite behavior when 

compared to the immune expression profiles highlighting the tradeoff between tumors with 

high proliferation and those with higher immune components also seen in Scott et. al. 2018. 

These findings have implication for developing potential biomarkers or other predictive 

measures for identifying tumors that might be more aggressive due to higher rates of 

proliferation or to track very low levels of immune cell infiltration that is often missed using 

standard pathology methods.

Next, we generated a new algorithm based on CIBERSORT and past use of Illumina 

450K methylation profiles16 to predict immune cell abundances from whole genome 

bisulfite sequencing data. Our analysis shows a well-defined difference between immune 

cell profiles among human and canine osteosarcoma samples. Canine osteosarcoma shows 

much higher presence of immune cells across the samples analyzed, average absolute 

abundance measures were higher for 6 out of 10 immune cells in the canine samples as 

well as for osteoclasts and MSC. Notably, we observed increased CD8+ T cell signature in 

canines (mean absolute abundance 0.44) that are relatively less abundant in human samples 

(mean absolute abundance 0.01). This observation is intriguing because even with higher 

immune cell infiltration in canine samples, this did not translate to increased survival in 

canines. Even though canine tumors are primarily driven by the proliferation signatures that 

are correlated with methylation patterns, we speculate that progression in canine tumors 

is predominantly driven by cell proliferation with immune cells potentially having less 

influence in the absence of immunomodulatory therapies.
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We also observed high correlations between the global methylation patterns and immune 

cell abundance in both human and canine osteosarcoma. Strong correlations between single 

cell types, or cell types with correlated abundances, and methylation modules were not 

observed leading us to believe that global methylation patterns do not seem to be driven 

only by the abundance of immune cells in the microenvironment, but most likely reflect the 

proliferative and pro-survival status of the tumor cells. Inhibiting pro-survival pathways 

linked to osteosarcoma progression has therapeutic relevance. Conventional therapies—

including the DNA-intercalating drugs doxorubicin and cisplatin47 and methotrexate, an 

anti-metabolite in combination with leucovorin—have very serious side effects, including 

decreased production of blood cells that leads to infection and damage to the bladder 

and kidney. Platinum-containing drugs often cause hearing loss. New drugs such as 

muramyl tripeptide48, rapamycin inhibitor49, and Trastuzumab50, show only marginal 

increases in overall survival, leaving survival rates still distressingly low. The dysregulated 

transcriptional programs that are coupled with methylation patterns can be restored by 

DNA- and chromatin-modifying drugs 5-Aza (5-Aza-2′-deoxycytidine (5-Aza or decitabine, 

a hypomethylating agent) and SAHA (Suberanilohydroxamic acid or vorinostat, a histone 

deacetylase inhibitor). Recently we showed that 5-AZA and SAHA treatment alter the 

transcriptional landscape of osteosarcoma cells towards one resembling RB expression45. 

Preclinical and early clinical studies combining 5-Aza with chemotherapies, peptide 

vaccines and immune checkpoint therapies found evidence that this treatment increases 

tumor suppressor expression and chemosensitivity. Numerous clinical studies have also 

reported that 5-aza improves the efficacy of antigen-directed immunotherapy in pediatric 

sarcomas48. Moreover, treating osteosarcoma cell lines with a combination 5-AZA and 

SAHA induced apoptosis, even in aggressive cell lines (MG63, HOS and 143B) that are 

typically more resistant to treatment51.

In summary, we have used genome-wide methylation patterns to reveal association 

between methylation clusters and conserved transcriptional programs of human and canine 

osteosarcoma. This first large-scale genome-wide DNA methylation study in both human 

and canine osteosarcoma revealed specific DNA methylation programs that are highly 

correlated to gene expression programs important to disease progression and survival in both 

human and canine osteosarcoma. Further, exploring the global DNA methylation patterns 

between different cell types we found that the stromal and immune cell types were in low 

abundance in human osteosarcomas while canine osteosarcoma samples showed relatively 

greater abundance of monocytes, T cells, and osteoclasts. Genome wide DNA methylation 

profiling of osteosarcoma samples is rare in both human and canine disease and obtaining 

DNA from these samples is notoriously difficult. Also, while DNA methylation profiles exist 

for a large number of human immune cells and subtypes the same data is not available 

for dogs. These comparative studies on mechanisms that regulate conserved transcriptional 

programs in both human and canine osteosarcoma are critical to develop biomarkers52 and 

therapeutic targets and motives further large scale collection of osteosarcoma samples to 

include DNA methylation profiling.
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Methods

Biospecimen collection and processing

Tumor tissue biospecimens were collected from newly diagnosed human patients or dogs 

with a confirmed diagnosis of appendicular osteosarcoma prior to treatment with cytotoxic 

chemotherapy drugs8,11.

Human specimens(n=24) were obtained from the University of Minnesota Biological 

Materials Procurement Network (UMN BioNet) under oversight of the University of 

Minnesota’s Institutional Review Board (IRB) with an Exemption-4 category, or from the 

Cooperative Human Tissue Network (CHTN), also with an IRB Exemption-4. Samples 

were de-identified and only a limited amount of patient information was provided. Sample 

collection was done using standardized protocols with a portion of the diagnostic biopsy, 

obtained as part of a medically necessary procedure flash frozen immediately in liquid 

nitrogen and stored at −86°C until they were assigned to the project.

Canine specimens (n=44) were obtained from dogs with naturally occurring primary 

appendicular tumors, recruited between 1999 and 2016. Tumor tissue samples were obtained 

from tissue biopsy or amputation surgeries that were part of standard treatment protocols 

and with owner consent under supervision by the appropriate Institutional Animal Care and 

Use Committees (University of Minnesota protocol numbers 0802A27363, 1101A94713, 

131231131A) or the University of Colorado Institutional Review Board or Institutional 

Animal Care and Use Committee (AMC 635040202, AMC 200201jm, AMC 2002141jm, 

02905603(01)1F, COMIRB 06-1008). Some of these canine tumor samples were flash 

frozen immediately in liquid nitrogen and stored at −86°C until they were assigned to the 

project; others were immediately placed in complete, sterile cell culture media consisting 

of Dulbecco’s Modified Eagle Media supplemented with 10% fetal bovine serum, 10 

mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 100 μg/mL Primocin 

and transported to the lab by overnight courier at 4°C, and flash frozen at −86°C after 

examination and processing upon arrival. Transport did not have a meaningful effect on 

tumor viability based on gross examination and on the functional capability to establish 

viable, immortalized osteosarcoma cell lines from the samples.

After collection, human and canine tumor tissues were removed from −86°C and sectioned 

to avoid areas of necrosis. Thirty mg of tissue were placed in 80 μL of phosphate buffered 

saline (PBS) solution and pulverized in a tissue homogenizer. Isolation of genomic DNA 

was done according to the manufacturer’s protocol using the QIAamp DNA Mini Kit from 

Qiagen.

Bisulfite conversion, library preparation and target region capture

Illumina library preparation, bisulfite conversion and bead capture was performed as 

specified in the Roche SeqCap Epi protocol outlined in Li et al53. Probes for the 

canine version of the SeqCap Epi were designed for canFam3.1 CpG islands as specified 

by the UCSC genome browser and CpG islands identified using EMBOSS cpgreport 

(http://www.bioinformatics.nl/cgi-bin/emboss/cpgreport) that were homologous to hg19. An 
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average of 48 and 46 million 2X125 paired end Illumina reads were generated for the human 

and canine samples.

Bisulfite-seq data analysis

Illumina specific adapter sequences and low quality sequences were removed from raw 

sequencing data using Trimmomatic54. Reads were aligned to a bisulfite converted human 

(hg19) or canine (canfam3.1) genome using WALT55. Duplicate sequences were removed 

from alignment data using MethPipe56 duplicate-remover and bisulfite conversion rates were 

estimated for each sample using bsrate. All samples had conversion efficiencies > 99%. 

Sequencing depths for each sample were such that an average of 88.3% and 81.3% of 

targeted CpGs were sequenced at a 10X depth or higher. MethPipe methcounts was used 

to calculate methylation levels and read coverage at individual CpGs in each sample. A 

custom perl script was used to isolate CpGs with a read depth of 10 or greater and MethPipe 

roimethstats was used to summarize methylation levels in 500 bp windows, generated by 

BEDtools57 windowBed, along the capture targets in each genome. CpG methylation levels 

were expressed as a value between 0 and 1.

Identification of homologous genomic regions and region to gene mapping

University of California Santa Cruz (UCSC) utility liftOver with the appropriate genome 

wide alignment file was used to convert the canine genomic coordinates for each 500bp 

window from CanFam3.1 to hg19. and the human genomic coordinates for each 500bp 

window to GRCh38. Converting both sets of coordinates to GRCh38 resulted in the highest 

number of 500bp windows being conserved between the two species. Genomic regions were 

considered homologs if the converted GRCh38 coordinates were within 1,000bp of each 

other as calculated by BEDtools closest.

Identification of highly correlated DNA methylation patterns with WGCNA, cluster 
membership and correlation analysis

WGCNA analysis was carried out via a custom R script. Methylation levels for homologous 

genomic regions were the starting input for WGCNA in each species. All homologous 

genomic regions with a variance greater than 0 were included in the WGCNA analysis. 

Soft thresholding power was calculated for each species separately using pickSoftThreshold 

(human power = 10, canine power = 14, sup figure). Clusters (aka modules) were generated 

using blockwiseModules with the following parameters for both species and the species-

specific power value.

blockwiseModules(<inputMethmatrix>,

                    maxBlockSize = 1500,

                    power = 14∣10,

                    TOMType = “signed”,

                    corType = “bicor”,

                    minModuleSize = 20,

                    mergeCutHeight = 0.25,

                    verbose = 3,
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                    numericLabels = T,

                    saveTOMs=T,

                    saveTOMFileBase=<name>)

Summary methylation values for each cluster were obtained from the MEs element of 

the output from blockwiseModules. The correlation between the methylation level at 

each genomic region to every methylation cluster summary value was calculated using 

signedKME and a genomic region was determined to be a member of a specific cluster 

if the signed module eigengene based connectivity measure (KME) was >= 0.7. This 

classification allows individual genomic regions to be assigned to multiple clusters. Pearson 

correlations between summary methylation values for each cluster and other phenotypic 

measures (gene expression, age, survival time, immune cell abundances) were calculated 

using the WGCNA function cor and Student asymptotic p-values were calculated for each 

correlation value using corPvalueStudent and the number of samples for the multiple sample 

correction. Survival was defined as time to death (humans) or time to death or euthanasia 

(dogs). Identical WGCNA analysis performed on a randomized human dataset resulted in 

the generation of 6 clusters that contained 113 DNA methylation regions and randomized 

canine data did not produce any clusters.

Generation of custom signature file for CIBERSORT

BigWig files containing genome wide methylation levels from WGBS data for multiple 

replicates of 12 cell types were downloaded from the BLUEPRINT epigenome project. 

BigWig files were converted to bedGraph using the UCSC utility bigWigToBedGraph, 

sorted using BEDtools sort and mean methylation levels were calculated for the same 

500bp windows used for the WGCNA analysis using BEDtools map -c 4 -o mean. These 

summarized methylation levels were used as the input for pairwise differential methylation 

tests between every cell type, 66 tests in all. Differential tests were performed using the 

limma58 package in R. The top 100 most differentially methylated regions, based on 

adjusted p-value, from all differential tests were isolated and the raw methylation values 

for each cell type for these regions were combined and used as input to CIBERSORT to 

generate the custom signature file. Raw methylation values for these same regions for all 

osteosarcoma samples were used as the mixture file input for CIBERSORT. Absolute Mode 

was used to quantify cell abundance to try and account for cell types that may be missing 

from our model but are in the tumor.

Relevant Gene Names

TP53 – Tumor Protein 53

RUNX2 – Runt-related transcription factor 2

RB1 – RB Transcriptional Corepressor 1

MYC – MYC Proto-Oncogene, BHLH Transcription Factor

Mills et al. Page 11

Bone. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data Access and Sharing

All raw sequencing data, DNA methylation measurements, cluster membership and DNA 

methylation summary values have been submitted to GEO GSE149679

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Genome wide profiling of 24 human and 44 canine osteosarcoma samples

• Several shared DNA methylation profiles between human and canine tumors

• Shared DNA methylation profiles align with shared transcriptional profiles

• New method to quantify immune cell infiltration using genome wide DNA 

methylation profiles

• Study lays ground work for further exploration of DNA methylation role 

in establishing conserved transcriptional profiles in the context of varied 

mutational landscapes seen in osteosarcoma
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Figure 1: 
Genome wide DNA methylation patterns in canine and human osteosarcoma samples. 

Summary of analysis and the number of genomic regions included in each step (A). 

DNA methylation values were calculated at homologous genomic regions in canine (B, 

n=44) and human (C, n=24) primary osteosarcoma tumor samples. Genomic regions were 

clustered based on correlation in each species resulting in 12 canine clusters and 43 human 

clusters containing genomic regions that have highly correlated methylation values across all 

osteosarcoma samples. Heatmaps represent the weighted average DNA methylation value 

for the cluster in each sample. Red is a high methylation value and blue is a lower 
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methylation value. Pathway analysis was performed using Reactome on the gene nearest 

(<=1,000bp) the underlying genomic region in each DNA methylation cluster. Clusters that 

share many of the same pathways are color coded the same in B and C and a summary of 

the pathways is given for each colored block in D. The unknown cluster did not have any 

significantly enriched pathways.
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Figure 2: 
Correlation between methylation clusters and important expression programs in 

osteosarcoma. Correlations between methylation summary values for each DNA methylation 

cluster and previously described expression programs were calculated for canine (A, n=9) 

and human (B, n=16) samples where methylation and expression data was available. 

Correlations were also calculated for additional phenotypic data for canine samples. 

Heatmaps indicate Pearson correlation values between each DNA methylation cluster and 

phenotype where red is strong positive correlation and blue is strong negative correlation. 
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Color bars next to module names indicate pathway analysis results and are the same as in the 

previous figure. HG = human GCESS, CG = canine GCESS from Scott et al 20188.
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Figure 3: 
Immune cell abundance across osteosarcoma samples. WGBS data from pure human 

immune cell populations and mesenchymal stromal cells were obtained from the 

BLUEPRINT project. DNA methylation values were summarized to match those measured 

in our osteosarcoma samples and used to build a model to distinguish between each cell 

type. This model was used with CIBERSORT to measure the absolute cell abundances for 

each cell type in all of our osteosarcoma samples. Heatmap color and value in each cell 

indicate the abundance of each cell type in each sample for canine (A) and human (B) 
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osteosarcoma tumors. Absolute mode was used to generate cell abundance scores and are 

not relative so columns will not sum to 1 (100%).
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Figure 4: 
Correlation between methylation clusters and cell type abundances in OS. Correlations 

between methylation summary values for each DNA methylation cluster and CIBERSORT 

absolute cell type abundances were calculated for canine (A, n = 44) and human (B, n 

= 24) samples. Heatmaps indicate Pearson correlation values between DNA methylation 

cluster and cell type abundance where red is a strong positive correlation and blue is a 

strong negative correlation. Values in each cell are the Student asymptotic p-value of the 
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given correlation based on the number of samples. Color bars next to module names indicate 

pathway analysis results and are the same as in the previous figures.
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