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Immunotherapies are leading to improved outcomes for many cancers, including those with devastating
prognoses. As therapies like immune checkpoint inhibitors (ICI) become a mainstay in treatment
regimens, many concurrent challenges have arisen – for instance, delineating clinical responders from
non-responders. Predicting response has proven to be difficult given a lack of consistent and accurate
biomarkers, heterogeneity of the tumor microenvironment (TME), and a poor understanding of resistance
mechanisms. For the most part, imaging data have remained an untapped, yet abundant, resource to
address these challenges. In recent years, quantitative image analyses have highlighted the utility of
medical imaging in predicting tumor phenotypes, prognosis, and therapeutic response. These studies
have been fueled by an explosion of resources in high-throughput mining of image features (i.e. radio-
mics) and artificial intelligence. In this review, we highlight current progress in radiomics to understand
tumor immune biology and predict clinical responses to immunotherapies. We also discuss limitations in
these studies and future directions for the field, particularly if high-dimensional imaging data are to play
a larger role in precision medicine.
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Introduction

With improvements in high-throughput computing, tumor
imaging data are playing an increasingly important role in aiding
the comprehension of tumor biology [1] and guiding decision-
support for precision medicine [2–4]. Radiomics refers to the pro-
cess of quantifying patient-specific tissue characteristics from
images to produce high-dimensional minable features, or image
biomarkers. These features can span from simple descriptive quan-
titative information, such as geometry (morphologic properties
like sphericity) and intensity (descriptive statistics like mean and
variation), to complex higher order relationships like texture (e.g.
correlations between image voxels indicating properties like
heterogeneity) [3–6]. Such images are typically obtained from CT,
MRI, and PET, and can be further processed with filters or trans-
forms (e.g. Gabor, wavelet) prior to feature extraction. The under-
lying hypothesis is that certain aspects of tumor biology, such as
vascularization, degree of inflammation, spatial organization and
heterogeneity, define architectural features that can be captured
by high-resolution imaging and quantified mathematically.

Radiomic data can be powerful resources for clinical oncology
for several reasons. First, imaging studies are non-invasive. Second,
almost all cancer patients undergo imaging during their diagnosis
and treatment course, making these types of data more universally
available. Third, imaging studies can capture the full spatial orga-
nization of tumors, thereby overcoming the critical limitations of
sampling from biopsies. Last but not least, imaging data have the
potential to be used longitudinally to track and provide biomarkers
of treatment response and resistance phenotypes.

For more than a decade, studies have highlighted the potential
for imaging data to proxy molecular tumor phenotypes, a field that
has been commonly referred to as imaging genomics or radio-
genomics [4,7–8]. Some of the earliest work in the field focused
on gene expression correlates of semantic (i.e. clinician-defined)
tumor features like presence of edema and necrosis [9]. More
recently, advances in computing have enabled high throughput
as well as automated quantitative feature extraction. Rather than
being limited to a handful of features, radiogenomic correlations
can now be performed across hundreds of image characteristics
[3,10–12]. A larger array of features that define more complex
tumor architectures may bolster the analysis of complex and
heterogenous areas of tumor biology, such as the tumor immune
microenvironment, that have eluded our understanding thus far.

Understanding the tumor immune microenvironment is para-
mount given its critical role in determining tumor response to
anti-cancer therapies like immune checkpoint inhibitors (ICIs).
Inflammation of the tumor microenvironment (TME) can be pro-
tumor or anti-tumor depending on the immune context [13].
Chronic inflammation can promote tumor growth by enabling
autocrine signaling loops that drive cell proliferation, increased
angiogenesis, immune evasion, and metastasis [14]. Both innate
and adaptive immune cells interact with each other and the tumor
to regulate inflammation, ultimately dictating the course of tumor
progression. The balance of anti-tumor immune cells, such as cyto-
toxic T cells and NK cells, with cells that suppress the anti-tumor
immune response, particularly regulatory T cells (Tregs), myeloid
derived suppressor cells (MDSCs), and tumor associated
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macrophages (TAMs), also governs the extent to which cancers
respond to certain therapies. While immune-suppressive cells like
TAMs undesirably mitigate the response to chemotherapy [15] and
ICIs [16], tumor-infiltrating lymphocytes (TILs) are positive predic-
tors of treatment response following chemoradiation [17–19] and
ICIs [20–22]. The presence of certain surface markers and gene
expression profiles also determines the tumor immune state. For
instance, high expression of PD-L1 by cells in the TME associates
with better response to PD-1 blockade, whereas tumors without
expression of PD-L1 respond poorly [21–24].

Last but not least, tumor response to immunotherapy is also
complicated by incidences of partial increase in volume followed
by response, known as pseudoprogression. The prevalence of pseu-
doprogression may be as high as 20% [25], which can result in inap-
propriate discontinuation of therapy. Identifying biomarkers to
distinguish pseudoprogression from progression or necrosis is crit-
ical to providing proper care. As evidenced by these gaps in our
knowledge of how to effectively administer immunotherapy, find-
ing robust biomarkers that represent the tumor immune state is a
priority. Recent studies suggest that imaging informatics may be
poised to address these challenges.

Overview of radiogenomic studies on tumor immune biology
and immunotherapy response

Based on a comprehensive review of the literature (search
methodology in Fig. 1), we identified 54 studies in which imaging
features were associated with tumor immune phenotypes (Table 1
and Supplemental Table 1) or response to immunotherapy (Table 2
and Supplemental Table 2). The following types of cancers were
investigated: lung [3,26–44] (20), brain [45–54] (10), breast [55–
63] (9), liver [9,41,64–67] (6), skin [44,68–71] (5), head and neck
[41,72–74] (4), along with single studies focused on several other
cancer types [75–77]. The central questions collectively addressed
by these studies were 1) whether imaging features could consis-
tently and robustly represent underlying immune biology and 2)
whether radiomic biomarkers and radiogenomic models could pre-
dict immunotherapy response.

The most frequent radiogenomic associations involved gene or
pathway analysis, staining for immune cell surface markers, or
identification of tumor infiltrating lymphocytes (TILs). Identifying
imaging biomarkers of response to immunotherapy was an objec-
tive in 18 studies. All except one study (on dendritic cell therapy)
focused on immune checkpoint blockade. Tables 1 and 2 summa-
rize key findings, focusing on studies with cohort size �50 or that
included validation studies. Additional studies are detailed in
Supplemental Tables 1 and 2. Highlighted further are features
associated with immune phenotypes in more than one cancer type
or by more than one study within a cancer type based on MRI/CT
(Figs. 2 and 3) and PET (Fig. 4).

Lung cancer

Numerous immune phenotypes have been associated with radi-
ological features from PET and CT studies of lung cancer. These
phenotypes include pathway expression, histological assessment
of T cell infiltration and exhaustion (PD-1/PD-L1), as well as



Fig. 1. Search criteria for studies reporting radiogenomic associations or associations between imaging features and response to immunotherapy.
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response to immune checkpoint inhibition (ICI). In particular, both
pre-treatment and post-treatment predictors of ICI response were
identified in tumor metabolic studies.

Among tumor and TME related phenotypes, signaling pathways
like leukocyte antigen presentation and NF-kB have been shown to
associate with both CT radiomic and PET-FDG uptake features
[26,38]. PET and CT studies have also identified associations with
T cell infiltration. Notably, two key studies reported that heteroge-
neous texture features were positively associated with infiltration:
of non-exhausted T cells by Tang et al. [39] and type 2 helper T cells
by Yoon et al. [32], both of which were validated in external
cohorts. However, another large mixed cancer study (including
NSCLC) by Sun et al. found that homogeneous tumors with hetero-
geneous peripheries, rather, were positively associated with T cell
infiltration [41]. Given that lung cancers comprised only a quarter
of the tumors in this mixed analysis, the result suggests that tex-
ture heterogeneity associations may be dependent on cancer type.

Based on PET studies, high SUV features and total lesion glycol-
ysis (TLG) were consistently associated with higher T cell infiltra-
tion and PD1/PD-L1 expression [29–30,34,36–37,40]. Even
though PD1/PD-L1 are often considered signs of T cell exhaustion,
high uptake may not be an indicator of a broader immune-
inhibitory TME. For instance, high SUV features did not correlate
with CD68 (TAM) expression [37]. Overall, heterogeneity textures
on CT along with FDG-avidity may be useful for guiding ICI use
in lung cancer by predicting the presence of T cells as well as
PD-L1 status.

Pre-treatment image features have been associated with
response to ICI. At baseline, lower values of PET whole body
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SUVmax [29], MTV (metabolic tumor volume) [30,35], TLG [35],
and MMVR (metabolic to morphologic volume ratio) [28] were
associated with either better tumor response. Notably, Mu et al.
were the first to employ a multiparametric radiomic texture model
combining PET and CT features to predict tumor response and sur-
vival [31]. Along with others, they found low complexity CT fea-
tures that associated with better survival outcomes, including
greater tumor roundness (low convex hull density) and compact-
ness [31,33,44], as well as lower volume and entropy [33,44]. Tex-
ture features that associated with improved outcomes included
heterogeneity (short run low gray emphasis, short zone emphasis)
and irregularity (higher zone entropy and lower gray-level co-
occurrence matrix [GLCM] homogeneity) [31,44], which is concor-
dant with the association between heterogeneous textures and T
cell infiltration.

Restaging imaging features taken after ICI treatment were also
predictive of response in smaller prospective studies [34,42], in
which patients were re-imaged after single agent PD-1 inhibition.
Lower values for SUVmax, MTV, and TLG were associated with bet-
ter PFS when measured as early as 1 month after treatment [42].
Notably, TLG was independently associated with PFS and OS on
multivariate analysis in both studies, whereas histological
biomarkers like PD-L1, CD4, and CD8 did not associate with
response.

Highlighting the importance of interval feature analysis, Khor-
rami et al. recently were the first to show that a model built on
‘‘delta” radiomics features determined before and after 2–3 cycles
of anti-PD-1/PD-L1 was predictive of OS [43]. In particular, these
results suggest that changes in uptake features may be predictive



Table 1
Overview of key studies reporting radiogenomic associations with tumor immune phenotypes.

Reference Tumor
type

Modality Primary
study
(ortraining
set)

Validation Notable
immune
associations

Features and feature
classes assessed

Summary of findings Statistics

3 Lung
(NSCLC)

CT 89 0 Leukocyte
activation and
regulation of
immune
system process

440 radiomic features,
including intensity,
shape, texture and
wavelet features

Lymphocyte activation,
leukocyte activation,
and regulation of
immune system process
positively associated
with statistics total
energy. Lymphocyte
activation positively
associated with shape
compactness.

FDR < 0.2 and NES > 0
from GSEA of ranked
correlation of features
with GO gene sets

26 Lung
(NSCLC)

PET/CT 25 147
(63external
cohort, 84
validation)

Antigen
presentation
and processing,
immune
response, NFkB
signaling

14 features related to
SUV including intensity,
distribution, and spatial
metrics

Positive associations
include pSUV mean
with cell cycle and
immune response;
pSUV PCA2 with
antigen presentation
and processing; pSUV
max with NFkB on
network analysis;
Multivariate-pSUV with
cell/antigen processing,
immune response.

FDR < 0.05, enrichment
of gene sets from
GeneSigDb, DAVID,
MSigDb, and Reactome

32 Lung
(NSCLC)

CT 89 60 Type 2 helper
T-cell (Th2)
signature

239 radiomic features
used in machine learning
models to predict tumor
immune
microenvironment
(TIME)
signaturescomputed via
GSVA

Type 2 helper T-cell
(Th2) expression
signature positive
correlation with
skewness, kurtosis,
variance, and
informational measure
of correlation(IMC).

AUC 0.684 (test),
p = 0.027 for linear
discriminant model

35 Lung
(NSCLC)

PET/CT 57 0 PD-L1
expression by
IHC

SUVmax, MTV, TLG;
radiomic
featuresincluding size,
shape, first-order, and
second-order features

Low coarseness and
higher GLZLM_ZLNU
associated with PD-L1
(medium/high vs low).

p = 0.025 (coarseness),
p = 0.035
(GLZLM_ZLNU),
Kruskal-Wallis test

36 Lung
(NSCLC)

PET/CT 374 0 PD-L1 SUVmax, SUVmean,
primary (-P) and
combined (-C) MTV and
TLG

SUVmax positively
correlated with PD-L1
on multivariable
analysis; TLG-P and
TLG-C onunivariate
analysis.

p < 0.01 for TLG-P/C,
univariate logistic
regression; p < 0.001
for SUVmax,
multivariate logistic
regression

37 Lung
(NSCLC)

PET/CT 55 0 CD8, PD-1
TILexpression
by IHC

SUVmax, SUVmean SUVmax/mean
positively correlated
with CD8, PD- 1 (but
not PD-L1, CD68).

p = 0.027 (SUVmax/
mean) for CD8;
p = 0.017 (SUVmax),
p = 0.009 (SUVmean)
for PD-1

38 Lung
(NSCLC)

CT 262 89 Gene modules
enriched for
immune
pathways,
NFkB
activation

636 radiomic features,
bi-clustering used to
establish modules of
radiomic- pathway
coherency in training set,
which identified 13
modules in validation set

Three modules M2, M9,
M12 (quantified
textural entropy and
dispersion image
intensity values)
associated with overall
survival were enriched
for immune system. For
M10, shape
compactness and
sphericity predicts
NFkB activation.

AUC 0.66 (p = 0.003)
for M10 feature
prediction; FDR < 0.05
for all reported module
associations

39 Lung
(NSCLC)

CT 114 176 PD-L1 and
CD3expression
by IHC

490 features; final model
of 4 features (mean,
standard deviation, and
uniformity as primary
features;
GLCM_homogeneity as
secondary feature)
clustered based on PD-
L1/CD3 expression

Inferences of
associations based on
model clustering (but
not shown explicitly in
univariate analysis):
low PD-L1/high CD3
(Cluster D) associated
with low mean,
uniformity,
GLCM_homogeneity
and high SD.

Multinomial
regression (p = 0.01
training; p < 0.001
validation)
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Table 1 (continued)

Reference Tumor
type

Modality Primary
study
(ortraining
set)

Validation Notable
immune
associations

Features and feature
classes assessed

Summary of findings Statistics

40 Lung PET/CT 263 0 PD-L1
expression by
IHC

SUVmax SUVmax positively
associated with PD-L1.
SUVmax predicts PD-L1
positivity.

p < 0.001, Spearman
correlation; AUC 0.797,
p < 0.0001 for logistic
regression prediction
model

41 Mixed
(HNSCC,
NSCLC,
HCC, BLCA)

CT 135 219
(119TCGA,
100Gustave
Roussy)

TIL density by
IHC, CD8
expression
signature

84 imaging features for
machine-learning
trained on CD8
expression; final elastic-
net model included 5
features: (-) coefficient
for tumor min value,
tumor GLRLM_SRHGE;
(+) coefficient for ring
GLRLM_SRLGE, ring
GLRLM_LGRE, ring
GLRLM_LRLGE

Radiomics score
positively correlated
with TIL density and
predicts CD8 expression
signature.

AUC 0.74 (training),
0.67 (TCGA), and 0.76
(Gustave Roussy) for
score prediction of CD8
signaturep = 0.00022,
Spearman correlation
for score and TIL
density

45 Glioma
(GBM)

MRI 55 0 Module
comprised of
genes in IL4, T-
cell
differentiation
and
proliferation

79 features per ROI (3
ROIs), including:
necrotic edge sharpness,
minor axis length, radial
distance signal,
skewness, median,
mean, min

Module 20 (enriched for
IL4 and T cell
differentiation/
proliferation) positively
associated with blurry
(vs sharp) edge of
tumor necrosis.
Correlations between
several quantitative
features and pathways
in supplemental
heatmaps (see study).

FDR < 0.05,
correlations with
pathways from KEGG

47 Glioma
(GBM)

MRI 91 0 Inflammatory
and immune
response
pathways

Primary features:
contrast enhancement
(CE), edema (ED),
volume (TV), bulk (TB),
necrosis (NE)Feature
ratios: NE/TV, CE/TV, ED/
TV, TB/TV, NE/CE, CE/TB

64 pathways associated
with primary features
or tumor-volume
normalized features.
Tumor bulk and
necrosis anti-correlated
with immune system/
response. NE/CE anti-
correlated with
immune system and
NFkB. CE/TB correlated
with NFkB and immune
response.

FDR < 0.05, GSEA of
ranked correlations
with GO gene sets

48 Glioma
(GBM)

MRI 50 0 Module
enriched for
dendritic cell
biology and
adaptive
immunity

ADC mean, standard
deviation, skewness,
kurtosis, and entropy

Negative correlation
between mean ADC and
module 5 immune gene
module (including
genes related to
dendritic cell biology
and
adaptiveimmunity).

p = 0.001, Spearman
correlation

50 Glioma
(GBM)

MRI 35 34 (internal
cohort)

CD3 T cell
infiltration by
IHC

86 radiomic features; 6
used in model
(histogram kurtosis,
NGTDM contrast, GLSZM
small zone size
emphasis, GLSZM low
gray-level zone
emphasis, GLSZM high
gray-level zone
emphasis, GLSZM small
zone high gray
emphasis)

Best single predictor for
CD3 (T cells) was
GLSZM small zone high
gray emphasis (AUC
0.79); full 6- feature
model performed best.

AUC 0.847 (validation,
full model) p = 0.009,
Spearman correlation
(between
predictionand
calculated CD3)

51 Glioma
(anaplastic)

MRI 91 0 Inflammatory
andimmune
response
pathways

T1-weighted contrast
enhancement

Immunity-associated
pathways enriched in
contrast-enhanced
tumors, including
immune system, NFkB,
T cell activation.

FDR < 0.01 for listed
enrichments from GO
gene sets

(continued on next page)
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Table 1 (continued)

Reference Tumor
type

Modality Primary
study
(ortraining
set)

Validation Notable
immune
associations

Features and feature
classes assessed

Summary of findings Statistics

52 Glioma
(GBM)

MRI 60 0 Myeloid and
lymphoid cell
surface
markers from
RNA

13 features (variations of
ADC, nCBV, volume,
necrosis)

Tumor-associated
macrophages (CSF1R),
MDSCs (CD33), and
helper T cells (CD4)
positively correlated
with nCBV. MDSCs
(CD49d) and T cells
(CD3e) anti-correlated
with ADC mean.

p < 0.05, Pearson
correlation

53 Glioma
(low grade)

MRI 47 84 Inflammatory
and immune
response
pathways

431 radiomic features; 9
used in model: 1 first
order, 1 texture, 7
wavelet transform
features (see study for
model coefficients)

High-risk score
enriched for Antigen
processing/presentation
and NFkB. Specifically,
GLRLM run length
nonuniformity HHL,
GLRLM run percentage
HLH, and median HLH
positively associated
with immune response
and NFkB (and innate
immune) signaling.
GLRLM short run low
gray level emphasis LLL
positively associated
with antigen
processing/
presentation.

Ontology using DAVID
pathways on top 200
genes (p < 0.05,
Pearson correlation)
for each feature

55 Breast
(TNBC)

MRI 112 0 TIL level by
H&E

BI-RADS and computed
features including shape,
margin, internal
enhancement
characteristics, tumor
kinetics (initial and
delayed patterns), ADC,
and tumor roundness

Tumors in the high-TIL
group had a more round
shape (vs irregular),
circumscribed margin,
homogeneous
enhancement, and
absence of
multifocality.

p < 0.0001 (shape),
p < 0.0001 (margin),
p = 0.0003
(enhancement),
p = 0.023 (focality),
chi-squared test

56 Breast
(TNBC)

MRI 59 0 TIL level by
H&E

Kinetic enhancement
parameters: tumor diameter,
volume, peak enhancement
value, proportions of
persistent, plateau, and
washout-enhancing
components

The portion of persistent
enhancement of tumors was
negatively associated with the
TIL levels, where as washout
enhancement was positively
associated; persistent minus
washout value of the low-TIL
group was higher than that of
the high-TIL group.

p=0.003 (persistent), p=0.027
(washout), p=0.008 (persistent
minus washout), chi-squared
test

59 Breast MRI 216 126
(TCGAcohort 1),
879
(TCGAcohort 2)

Genes
upstream and
downstream
of TNF
signaling
pathway

10 features of tumor-adjacent
parenchyma (TAP) extracted
from signal enhancement ratio
(SER) maps: 3 vol features, 2
enhancing signal values, and 5
GLCM texture features

Module associated with
‘‘GLCM_IMC” feature enriched
for TNF signaling; TNF
signaling enriched in TCGA
tumor profile signature; TNF
signaling enrichment in TCGA
validation cohort.

p<0.0001 (discovery), p=0.007
(test 1), p=0.018 (test 2),
hypergeometric test for
enrichment of KEGG pathways

60 Breast MRI 231 0 TIL level by
H&E

110 radiomic features; 5 used
in model (tumor volume,
cluster shade of SER map,
mean SER of tumor
surrounding BPE, BPE volume,
and BPE proportion);
composite model built from
imaging signature and
cytolytic index to predict
prognosis

Positively correlated with
TILs: Tumor volume.
Negatively correlated with
TILs: Cluster shade of signal
enhancement ratio (SER),
mean SER of tumor
surrounding background
parenchymal enhancement
(BPE), and proportion of
BPE>20%. Composite model
using radiomic signature and
cytolytic score improved TIL
prediction.

FDR<0.2, Pearson correlation
for single features p<0.05 for
all pairwise (high, medium,
low)Wilcoxon tests for
imaging signaturep=9.7e-15,
Pearson correlation for
composite model

61 Breast MRI 125 0 TIL level by
H&E

ADC ADC positively associated with
TIL level.

p<0.0001, Student’s t-test

63 Breast MRI,
US

158 0 TIL level by
H&E

BI-RADS features for
ultrasound; size, shape,
margin, ADC, and internal
enhancement patterns for MRI

High TILs associated with
higher circumscribed margins,
round shape, heterogeneous
echogenicity, larger size, ADC
value, and homogeneous
enhancement (ADC most
significant parameter).

p<0.05, MWU and Kruskal-
Wallis test for ultrasound
associations; p<0.001, Pearson
correlation for ADC
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Table 1 (continued)

65 HCC MRI 150 57 Immunoscore
(based on CD3
and CD8
density by
IHC)

1044 radiomic features; 70
features selected for logistic
regression model, which was
assessed with 1) only tumor
features 2) combined tumor
and peritumor features 3)
radiomic features and clinical
variables

Homogeneity texture features
(no specific statistics reported)
and clinical-radiomic model
were best predictors for
immunoscore.

AUCs in validation set: 0.64
intratumoral model; 0.772
combined model; 0.934
clinical-radiomic model

66 HCC CT 100 42 CD8+ T cells
by H&E, PD-1/
PD-
L1expression
by IHC

385 radiomics features; 7
texture features used for CD8+
T cell elastic net model (‘‘Rad
score”) with (+) coefficient for
GLCM Entropy and GLRLM:
HGRE, LRHGE, SRE, SRHGE

Radiomic score trained on CD8
+ H&E data to predict high CD8
cell infiltration; higher Rad
score predictive of CD8+ TILs,
OS, and DFS. Score positively
associated with PD-1/PD-L1
expression.

AUC 0.705 (validation)
p<0.0001 (PD-1/PD-L1
immune cell expression),
Wilcoxon signed rank test

73 Head and
Neck
(HNSCC)

CT 126 0 Inflammatory
and immune
response
pathways

187 radiomic features with
correlations to molecular and
clinical features determined
by linear regression

Immune pathways negatively
associated with tumor size
features and non-uniform
texture (based on GLRLM
features); positively
associated with sphericity.
Additional associations for all
features classes (see study for
full association heatmaps).

FDR<0.05, GSEA of ranked
correlations with KEGG
pathways

75 GI
(stomach)

CT 90 75 (45internal,
30 external)

Treg
infiltration by
IHC

859 radiomic features; 6
features for Treg logistic
regression model: (+)
coefficient for GLCM MCC,
GLSZM gray level non
uniformity, Wavelet-LLL First
Order Max; (-) coefficient for
GLSZM gray level variance,
GLSZM small area high gray
emphasis, Wavelet- WLW
NGTDM complexity

Radiomic signature estimates
Treg signature well in all
cohorts and is an independent
risk factor of poor OS.

AUCs: 0.884 (training), 0.869
(internal validation),0.847
(external validation)

Legend: NSCLC: non-small cell lung cancer, HNSCC: head and neck squamous cell carcinoma, HCC: hepatocellular carcinoma, BLCA: bladder urothelial carcinoma, GBM:
glioblastoma, TNBC: triple- negative breast cancer, TCGA: the cancer genome atlas, TIL: tumor infiltration lymphocytes, IHC: immunohistochemistry, H&E: hematoxylin and
eosin, Treg: regulatory T cell, PD-L1: programmed death-ligand 1, CD: cluster of differentiation, MDSC: myeloid derived suppressor cell, NFkB: nuclear factor kappa B, TNF:
tumor necrosis factor, GSVA: gene set variation analysis, SUV: standardized uptake value, MTV: metabolic tumor volume, TLG: total lesion glycolysis, GLCM: gray level co-
occurrence matrix, GLRLM: gray level run length matrix, SRHGE: short run high gray-level
emphasis, SRLGE: short run low gray-level emphasis, LGRE: low gray-level run emphasis, LRLGE: long run low gray-level emphasis, ROI: region of interest, ADC: apparent
diffusion coefficient, NGTDM: neighborhood gray tone difference matrix, GLSZM: gray level size zone matrix, CBV: cerebral blood volume, BI-RADS: breast imaging-reporting
and data system, BPE: background parenchymal enhancement, HGRE: high gray-level run emphasis, LRHGE: long run high gray-level emphasis, SRE: short run emphasis,
MCC: maximum correlation coefficient, IMC: information measure of correlation, ZLNU: zone length non-uniformity, GSEA: gene set enrichment analysis, DAVID: database
for annotation, visualization, and integrated discovery, KEGG: Kyoto encyclopedia of genes and genomes, MWU: Mann-Whitney U
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of outcomes after ICI, possibly independent of baseline tumor
markers. Therefore, more effort should be made to conduct similar
prospective work.

Glioma

To date, immunotherapy clinical trials have indicated that the
majority of glioblastomas (GBM) respond poorly [78]. This is
unsurprising, as GBMs have less T cell infiltration compared to
most solid tumors [79], and their TME is generally immunosup-
pressive [78]. Therefore, there still exists a clinical demand for bet-
ter biomarkers of response and, in general, a better understanding
of the immune TME.

A variety of MRI modalities have been applied toward radio-
genomic immune associations. Associated features not only
included semantic, first order, and texture features, but also diffu-
sion, perfusion, and kinetic measurements. While the majority of
associations were isolated to single studies, there were some com-
monalities as well as discrepancies. Semantic high contrast
enhancement was noted to be positively associated with inflam-
matory signals from toll-like receptors in GBM and cytokines in
low grade glioma (LGG) [46,51]. In general, volume was negatively
associated with a variety of adaptive immune signals [49,52],
which is consistent with larger, more aggressive tumors harboring
immunosuppressive environments. Moreover, coarse and hetero-
geneous textures associated positively with adaptive immunity,
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including CD3 expression (by RNA and IHC) in GBM [50] and cyto-
kine and IFNy signaling in LGG [51]. However, certain features like
semantic necrosis had ambiguous associations. Necrosis was
reported to be both positively and negatively associated with
inflammatory immune signals from pathways involving cytokines
and NF-kB [38,46].

Significant radiogenomic immune associations have also been
determined via diffusion-weighted imaging (DWI) analysis. Mean
apparent diffusion coefficient (ADC) correlated negatively with
expression of a gene module in which the most enriched pathway
was ‘‘dendritic cell maturation” [48], as well as markers of both
myeloid and lymphoid immune cells [52]. Given that ADC corre-
lates inversely with cellularity in glioma [80], these results suggest
that multiple types of immune cells may contribute to the
observed hypercellularity in low-ADC tumors.

Changes in DWI parameters may also provide value in predict-
ing immunotherapy response. Recently, Cuccarini et al. found that
up to 4 months after immunotherapy via dendritic cell vaccine, an
increase in NK cell response was associated with a decrease in
normalized minimum ADC (rADCmin) [54]. Interestingly, higher
pre-vaccination rADCmin, which is consistent with higher baseline
permissiveness to immune cell infiltration, was associated with
better PFS and OS [54]. While increased baseline diffusion may
be prognostic, DADC appears to be the relevant interval biomarker
for predicting immunotherapy response. Overall, studies support
the conclusion that lower ADC and higher CBV values are associ-



Table 2
Overview of key studies of imaging and radiomic predictors of response to immunotherapies.

Reference Tumor type Modality Primary
study
(ortraining
set)

Validation Treatment Clinical endpoint Features and
feature classes
assessed

Individual feature
findings

Model findings
and statistics

27 Lung
(NSCLC)

CT 228 0 Single
agent anti-
PD-1/anti-
PD- L1
with/
without
anti-
CTLA4

Time to
progression or
hyperprogression
at 2 months

600 radiomic
features used to
develop TTP (time-
to-progression) and
HPD
(hyperprogressive
disease) models

Univariate analysis
showed Tumor 3D
laws E5L5E5
significant (p < 0.05)
in TTPmodel; tumor
border NGTDM
(Neighboring Gray
Tone Difference
Matrix) strength
significant (p < 0.01)
in HPD model.

TTP 4-feature
model: AUC 0.717
TTP clinical-
radiomic model:
AUC 0.804HPD 1-
feature model: AUC
0.674HPD clinical-
radiomic model:
AUC 0.865

30 Lung
(NSCLC)

PET/CT 109 0 Anti-PD-1/
PD- L1

Response based on
RECIST 1.1

SUVmax, TMTV High TMTV, but not
SUVmax, associated
with shorter OS and
absence of disease
clinical benefit on
multivariate Cox
analysis.

p = 0.004, OS;
p = 0.045, DCB

31 Lung
(NSCLC)

PET/CT 99 95 (47 test,
48
prospective)

Anti-PD-1/
PD- L1

Response based on
RECIST 1.1

790 radiomic
features (including
PET, CT, and KLD)
and filtered to
obtain set of 8
features in
multiparametric
radiomic signature
(mpRS)

Multiparametric
radiomic signature
(mpRS) predicts
PFS, OS, and DCB.
DCB predicted by
higher textural
heterogeneity and
convexity and
lower SUVmean and
HU.

mpRS for DCB: AUC
0.86 (training),
0.83 (test), 0.81
(prospective
validation)
mpRS for PFS/OS:
p < 0.01 for all
cohorts, log-rank
test

33 Lung
(NSCLC)

CT 35 24 (external
cohort)

Anti-PD-1 PFS and OS Radiomic features
consisting of
morphological,
histogram and
texture parameters
(GLCM) used to
develop
nomogram-based
texture score

High volume,
entropy, higher
GLCM-entropy,
higher GLCM-
dissimilarity, and
lower GLCM-
correlation all
associated with
worse
prognosis.

Texture score for
low vs high risk
predicts PFS
(p = 0.03) and OS
(p = 0.04) in
validation set, log-
rank test

35 Lung
(NSCLC)

PET/CT 57 0 Anti-PD-1/
PD- L1

Response based on
RECIST 1.1

SUVmax, MTV, TLG;
radiomic features
including size,
shape, first- order,
and second-order
features (see study
for specific
associations)

Higher MTV and
TLG associated with
stable/progressive
disease. High tumor
volume, TLG,
heterogeneity (e.g.
skewness and
kurtosis, and six
textural features)
associated with
progressive disease.

p < 0.05 for all
associations,
Kruskal- Wallis test
(see study for
specific p- values)

41 Mixed
(HNSCC,
NSCLC,
HCC, BLCA)

CT 135 137
(external
cohort)

Anti-PD-1/
PD- L1

Response based on
RECIST 1.1

84 imaging features
for machine-
learning trained on
CD8 expression; 8
variables were used
for the final elastic-
net model including
5 features: (-)
coefficient for tumor
min value, tumor
GLRLM_SRHGE; (+)
coefficient for ring
GLRLM_SRLGE, ring
GLRLM_LGRE, ring
GLRLM_LRLGE

High radiomics
score associated
with DCB and better
OS.

p = 0.013 (DCB) and
p = 0.0081 (OS)
byCox model;
p = 0.0022 on
multivariate
analysis

43 Lung
(NSCLC)

CT 50 89 (62
cohort 1,27

Anti-PD-1/
PD- L1

Response based on
RECIST 1.1

99 texture features
x5 statistics

All 8 top features in
DRS (DelRADx risk

DRS for response
prediction:
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Table 2 (continued)

Reference Tumor type Modality Primary
study
(ortraining
set)

Validation Treatment Clinical endpoint Features and
feature classes
assessed

Individual feature
findings

Model findings
and statistics

cohort 2) computed for
each + 24 shape
features; 8 most
stable and
discriminative
DelRADx (delta
radiomics) features
determined after 6–
8 weeks of ICI used
to train linear
discriminant
analysis (LDA)
classifier (see study
for model
coefficients)

score) model
associated with
response. High DRS
associated with
worse OS. High
intranodular mean
Haralick entropy
and skewness of
Haralick correlation
and high
perinodular
skewness of Laws
associated with
worse OS on
univariate analysis.

AUC0.88 (training),
0.85 (validation 1),
0.81 (validation 2)
Response
associations for
individual features
in DRS: p < 0.001,
Wilcoxon rank-sum
test
OS associations:
p < 0.05, Cox model

44 NSCLC,
Melanoma
(metastatic)

CT 133 70 (internal
cohort)

Anti-PD-1 Response based on
RECIST 1.1

5865 radiomic
features based on
image and
transforms; 10
features selected
using unsupervised
feature selection
and machine
learning (see study
for model
coefficients)

Radiomic
biomarker
performed well for
NSCLC and poorly
for melanoma at
predicting lesion
level response, but
better as aggregate
score for predicting
OS in both cancer
types. Responding
lesions had more
irregular patterns
(Wavelet HLH
GLSZM Zone
Entropy),
compactness,
sphericity (low
SVR). For
melanoma,
response was
positively
associated with
heterogeneity
(GLCM Difference
Entropy).

For lesion-level
response: p < 0.05,
Kenward–Roger
testFor lung mets:
AUC 0.83, p < 0.001,
MWU test
For nodal mets:
AUC 0.78, p < 0.001,
MWU test
Aggregate OS:
p < 0.01, MWU test

68 Melanoma
(brain
mets)

MRI 88 17 Anti-
CTLA4
with/
without
anti- PD-1/
anti-PD-
L1

RANO-BM criteria 21 radiomic
features, including
first and second
order texture
features, as well as
Gabor, Sobel, and
Laplacian of
Gaussian (LoG) edge
features; OS
analysis using
univariate Cox
regression

Higher LoG mean/
SD, GLCM entropy,
Gabor mean most
associated with
better OS on
univariate analysis.
LoG mean positively
associated with OS
in validation set.

p = 0.001
(univariate
analysis, training);
p = 0.003
(validation)

69 Melanoma
(metastatic)

PET/CT 112 0 Anti-PD-1
or dual
anti-PD- 1/
anti-
CTLA4

True progression vs
pseudoprogression
based on RECIST
1.1

172 radiomic
features per lesion
including shape,
intensity, and
texture; logistic
regression models
based on blood
LDH/S100, volume,
radiomics, and
Delta radiomics

Delta radiomics
models perform
better than single
time point models.
Blood-radiomics
model combining
LDH level at TP1 (3
mo) and relative
change of CT
coarseness between
TP1 and TP0
(baseline)
performed best;
higher LDH and
larger decrease in
CT coarseness
indicated lower
chance of
pseudoprogression.

AUCs: 0.68 (PET-
based), 0.69 (CT-
based), 0.79 (Delta
fractal dimension
model), 0.78 (Delta
coarseness model),
0.82 (blood-
radiomics model)

(continued on next page)
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Table 2 (continued)

Reference Tumor type Modality Primary
study
(ortraining
set)

Validation Treatment Clinical endpoint Features and
feature classes
assessed

Individual feature
findings

Model findings
and statistics

70 Melanoma
(mucosal
and
cutaneous)

PET/CT 56 0 Anti-
CTLA4
with/
without
anti- PD-1/
anti-PD-
L1

Response based on
RECIST 1.1

SUVmax/mean,
TMTV, TLG, BLR
(bone marrow-to-
liver ratio)

For Muc-M: high
SUVmax/mean
associated with
worse OS.For Cut-
M: TMTV, TLG and
BLR associated with
worse OS; TMTV
and BLR with worse
PFS and disease
control.

Muc-M: p = 0.02
(SUVmax), p = 0.03
(SUVmean),
univariate Cox Cut-
M OS: p = 0.009
(TMTV/TLG),
p = 0.04 (BLR),
multivariate Cox
Cut-M PFS:
p = 0.004 (TMTV),
p = 0.02
(BLR), multivariate
Cox

71 Melanoma PET/CT 90 110 Anti-PD-1,
Anti-
CTLA4, or
dual
therapy

Not discussed SUVmax, MTV, SLR
(spleen-liver- ratio)

SLR independently
associated with
survival (high SLR
with short OS) after
Ipilimumab (but
not anti-PD-1);
validated in
external cohort;
lowest MTV quintile
associated with
better OS.

SLR: p = 0.008 (PFS),
p = 0.0002 (OS),
Cox modelMTV:
p = 0.03 (OS, as
continuous
variable), Cox
model

76 Urothelial
(metastatic)

CT 42 21 Anti-PD-1/
PD- L1

Response based on
RECIST 1.1

49 radiomic
features; 5 features
in final logistic
regression model:
(+) coefficient for
SD, Entropy, Inverse
difference moment,
GLRLM_HGRE; (-)
coefficient for
Cluster tendency;
combined model
included visceral
organ involvement

Low signature value
associated with
improved disease
control and
survival; visceral
organ involvement
associated with
poor response;
combined model
performed best
(AUCs shown to the
right). Risk of
disease progression
based on combined
model associated
with worse PFS/OS.

AUCs (training):
0.87 (response),
0.77 (disease
control)AUCs
(validation): 0.87
(response),
0.88 (disease
control)
PFS (validation):
log-rank p = 0.044
OS (validation):
log-rank p = 0.035

Legend: NSCLC: non-small cell lung cancer, HNSCC: head and neck squamous cell carcinoma, HCC: hepatocellular carcinoma, BLCA: bladder urothelial carcinoma, PD-L1:
programmed death- ligand 1, PD-1: programmed cell death protein 1, CTLA4: cytotoxic T-lymphocyte-associated protein 4, RECIST: response evaluation criteria in solid
tumors, PFS: progression free survival, OS: overall survival, DCB: durable clinical benefit, RANO-BM: response assessment in neuro-oncology brain metastases, SUV:
standardized uptake value, (T)MTV: (total) metabolic tumor volume, KLD: Kullback-Leibler divergence, TLG: total lesion glycolysis, GLCM: gray level co-occurrence matrix,
GLRLM: gray level run length matrix, SRHGE: short run high gray-level emphasis, SRLGE: short run low gray-level emphasis, LGRE: low gray-level run emphasis, LRLGE: long
run low gray-level emphasis, LDH: lactate dehydrogenase, HGRE: high gray-level run emphasis, GLSZM: gray level size zone matrix, MWU: Mann-Whitney U.
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ated with immune cell infiltration but are not definitive of pro-
versus anti-tumor composition.
Breast cancer

Breast cancer has been a challenging arena for immunotherapy,
which has demonstrated limited efficacy in clinical trials to date
[81]. Only between 4 and 16% of breast tumors have been reported
as highly enriched for lymphocytes [81], which are associated with
improved prognosis [82]. Furthermore, the degree of immune infil-
tration differs significantly depending on breast cancer subtype
[83]. This emphasizes the need for adequate patient selection and
improved biomarkers that capture tumor immune heterogeneity.

To date, most of the radiogenomic immune associations in
breast cancer have been based on MRI features and histological
assessment of tumor infiltrating lymphocytes (TILs). Within triple
negative breast cancer (TNBC), Ku et al. found that tumors
with > 50% TILs by H&E tended to have rounder shapes, a circum-
scribed margin, and internal homogeneous contrast enhancement
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[55]. A later study by Celebi et al. confirmed the same shape and
enhancement associations [63]. While many of the first order
and morphology feature associations were consistent in both TNBC
and broader breast cancer cohorts, certain features may be subtype
specific. In contrast to the lack of ADC associations in TNBC [55], for
less aggressive breast cancer cohorts, mean ADC was positively
associated with TIL levels [61,63].

Breast cancer peritumoral features were also informative of
immune phenotypes. Wu et al. reported an association between
textural heterogeneity (higher GLCM information measure of
correlation) and tumor necrosis factor (TNF) signaling pathways,
a finding which they validated in TCGA cohorts, the sole validation
effort in breast cancer to date [59]. Peritumoral heterogeneity may
also provide valuable information about immune infiltration [58],
with TIL density associating with top peritumoral Gabor-filtered
features within 0–3 mm of HER2 + tumors [58].

Generally speaking, radiogenomic associations with TIL levels
appeared to be consistent across several studies. More importantly,
they may be independently valuable for predicting TIL infiltration.



Fig. 2. Heatmap depicting associations between lower order radiomic features on CT/MRI and either immune phenotypes or response to immunotherapy. Included features
were reported to have significant associations in > 1 study. Immune: NK: natural killer, TIL: tumor infiltrating lymphocyte, TLR: toll-like receptor, CTLA4: cytotoxic T-
lymphocyte-associated protein 4, IL: interleukin, MDSC: myeloid derived suppressor cell, CD: cluster of differentiation, NFKB: necrosis factor kappa B, PD-L1: programmed
death-ligand 1, ICI: immune checkpoint inhibitor; Features: ADC: apparent diffusion coefficient, SD: standard deviation.
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For example, the associated textural heterogeneity features
identified by Wu et al. were orthogonal to other verified TIL corre-
lates like cytolytic index (a metric of expression of perforin and
granzyme A) [60,84]. Inclusion of cytolytic index into a composite
model improved prediction of TIL density as well as prognosis in
TNBC cohorts [60].
107
Liver cancer

There have been a limited number of studies reporting radio-
genomic immune associations in liver cancer, with limited overlap
between associated features. In 2007, Kuo and colleagues were first
to identify associations between immune system and antigen pre-



Fig. 3. Heatmap depicting associations between higher order radiomic features on CT/MRI and either immune phenotypes or response to immunotherapy. Included features
were reported to have significant associations in > 1 study. Immune: TNF: tumor necrosis factor, NK: natural killer, TIL: tumor infiltrating lymphocyte, TLR: toll-like receptor,
TGFB: transforming growth factor beta, CTLA4: cytotoxic T-lymphocyte-associated protein 4, CD: cluster of differentiation, NFKB: necrosis factor kappa B, PD-L1:
programmed death-ligand 1, PD1: programmed cell death protein 1, ICI: immune checkpoint inhibitor; Features: CoLIAGe: co-occurrence of local anisotropic gradient
orientations, SD: standard deviation, GLCM: gray level co-occurrence matrix, IMC: information measure of correlation, GLRLM: gray level run length matrix, HGRE: high gray
level run emphasis, SRHGE: short run high gray level emphasis, GLSZM: gray level size zone matrix, NGTDM: neighborhood gray tone difference matrix.
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sentation pathways and semantic image features [9]. Liao et al. in
2019 were next to use CT radiomics to evaluate CD8 + T cell infil-
tration. Within their radiomic model, three GLCM entropy texture
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features (indicating randomness) and four gray level run features
(with both short and long runs) were positively associated with
CD8 + T cell infiltration [66], with a higher model score predicting



Fig. 4. Heatmap depicting associations between imaging features on PET and either immune phenotypes or response to immunotherapy. Included features were reported to
have significant associations in > 1 study. Immune: PD-L1: programmed death-ligand 1, PD1: programmed cell death protein 1, PFS: progression free survival, OS: overall
survival, CD: cluster of differentiation, ICI: immune checkpoint inhibitor; Features: MTV: metabolic tumor volume, SUV: standardized uptake value, TLG: total lesion
glycolysis.
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better survival. They further validated this model in an external
cohort. More recently, Chen et al. developed and validated a radio-
mic model of homogeneous texture features to evaluate tumor T
cell infiltration [65].

Given the high perfusion and oxygenation of the liver, studies
have also used multiparametric MRI (mpMRI) techniques to cap-
ture pharmacokinetic features. A prospective study identified sev-
eral parameters, including oxygenation, blood flow, and diffusion,
associated with immune markers [64]. In particular, the presence
of TAMs and T cells correlated with lower cellularity (high ADC)
and better tissue perfusion (lower relaxation rates), which is
consistent with more vascularized and edematous regions of
hepatic lesions allowing for increased immune infiltration. In a
more recent study, the same group incorporated texture features
into their analysis and found several features associated with gene
expression of CTLA4 and PD1 [67], though the biological signifi-
cance of mpMRI textures is understudied.

So far, no radiogenomic correlates of ICI response have been
identified for HCC.

Melanoma

Melanoma has been an exciting area of investigation for radio-
genomic predictors of response to ICIs, particularly given the suc-
cess of such therapies in the metastatic setting. FDG uptake
features have been consistently associated with ICI treatment out-
comes, as previously reviewed [85]. For instance, lower baseline
features, such as SUVmax and MTV, were associated with better
OS across different types of metastatic melanoma [70–71]. How-
ever, radiomic studies on this topic are a recent development. In
patients with brain metastases, less complex lesion borders on
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MRI (higher mean tumor edge values after Laplacian of Gaussian
transform) were associated with better OS [68]. Heterogeneous
textures on CT were also predictive of better response to treatment
for metastatic lesions [44]. Furthermore, changes at 3 months after
ICI to more homogeneous textures (higher delta CT coarseness and
lower delta CT fractal dimension) were associated with pseudopro-
gression [69]. This again emphasizes the importance of longitudi-
nal assessment of radiomic associations with tumor response and
underscores the need for prospective studies.

Head and neck cancer

Associations with immune phenotypes have been observed in
limited studies via both MR and CT imaging of head and neck can-
cers. ADC was negatively correlated with CD3 levels by IHC in a
small cohort study of oropharyngeal squamous cell carcinoma
[72]. Associations have also been reported for HNSCC based on
gene expression data. In the largest radiogenomic study to date,
Zhu et al. reported that CT features such as volume and textural
homogeneity were negatively associated with multiple innate
and adaptive immune pathways, whereas the same pathways were
positively associated with convexity, sphericity, and heteroge-
neous texture features [73]. In another recent PET radiomics study,
immune system pathways were associated with both shape and
texture features [74].

Developing a radiomic model for TILs has been challenging in
HNSCC. Sun et al. built a CT-based radiomic model on expression
of a CD8 signature in > 10 cancer types, with a predominance of
lung and head and neck cancers [41]. In a validation cohort of TCGA
tumors, this radiomic score correlated with TILs for several individ-
ual cancer types, but not for HNSCC, possibly due to their heteroge-
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neous immune status [41]. While checkpoint inhibition has shown
promising results in clinical trials to date [86,87], the diverse and
complicated immune landscape of HNSCC [88] may require larger
cohorts to stratify analyses by tumor subtypes when performing
predictive modeling of immunotherapy response.

Current challenges and future directions

In recent years, there has been enormous interest in radiomic
modeling of tumor immune biology and immunotherapy response.
Imaging features have been associated with similar immune
phenotypes across studies and cancer types (Figs. 2-4). These asso-
ciations not only involved first order, shape, and size features but
higher order texture features as well. For example, sphericity
(roundness) and sharper borders positively associated with
immune activity both at a gene expression level, and on histology
[55,63], and predicted response to ICI. Of note, while first-order
features recapitulated well across cancers (Fig. 2), texture feature
associations did not demonstrate similar consistency. For example,
measures of heterogeneity (GLCM information measure of correla-
tion 1, GLRLM run length nonuniformity, GLSZM gray level nonuni-
formity) associated negatively with expression of immune gene
signatures in head and neck cancer [73], whereas the opposite
association appeared to be true of breast cancer and glioma
[53,62] (Fig. 3). While this may be due to tumor type-specific bio-
logical differences when measuring more complex, textural quali-
ties of tumor images, it also raises concerns about the
reproducibility and biological relevance of the calculated textures
themselves. In general, PET features associations were consistent
between studies both within and between cancers (Fig. 4). FDG
uptake features like SUVmax associated positively with expression
Fig. 5. Size distributions of primary and validation cohorts for studies reporting radioge
response.
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of PD-L1 in esophageal [77] and lung cancer [29–30,34,36,40];
SUVmax, MTV and TLG associated with ICI response and survival
outcomes in melanoma [70–71] and lung cancer [30,34–35,42].
Furthermore, many of the radiomic features and models discussed
were independent predictive variables for response to
immunotherapy, and outperformed established biomarkers like
PD-L1 [42–43]. Overall, radiogenomics studies have yielded many
promising results. However, there are numerous issues that the
field faces. Whether radiogenomic models will be effective inde-
pendently or only as an adjunct to histology and genomic profiling
will depend on how these challenges, as discussed below, are met
in the future.

Tumor cohort size and validation

Among the major limiting factors for radiogenomic associations
and modeling are the size of tumor cohorts and the lack of valida-
tion. Only 11 of 42 studies of radiogenomic associations and 8 of 18
studies of imaging feature associations with immunotherapy
response had validation cohorts (Fig. 5). Median cohort sizes were
56 (IQR: 42.25–113.5) and 84 (IQR: 58.5–161.5) for primary and
validation cohorts respectively for radiogenomic studies. Median
cohort sizes were 56.5 (IQR: 36.75–106.5) and 79.5 (IQR: 23.25–
98.75) for primary and validation cohorts respectively for
immunotherapy response studies. Smaller study sizes and lack of
external validation increased the risk that many of the reported
associations were either false positives or relevant only to the
training cohort (poor generalizability). The lack of overlap between
most associations analyzed in these studies may be a consequence
not only of the limited number of studies specifically focused on
immune phenotypes but also the lack of effort to reproduce find-
nomic associations and associations between imaging features and immunotherapy
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ings of existing studies (both internally and by outside groups).
Issues of reproducibility may improve over time with better access
to data via shared resources like the Imaging Data Commons as
well as a community effort to make validation a standard part of
radiogenomic studies.

Biomarker selection

The types of immune phenotypes associated with radiomic
features should also be scrutinized carefully. While many of these
associations will help elucidate the biological basis for otherwise
complex imaging phenotypes, it is unclear how to interpret certain
associations. For instance, the outputs of several studies were
radiogenomic heatmaps, in which modules represented associa-
tions between subsets of features and genes. In these cases, it
was uncertain which modular features were most robust and driv-
ing the associations, hence more likely to be validated. Further-
more, not all immune phenotypes have a pre-defined clinical
significance in terms of prognosis and response prediction. Even
widely validated biomarkers like PD-L1 do not always predict
response to immune checkpoint inhibition [89]. Therefore, while
radiomic models can predict TIL status and expression of impor-
tant immune genes and proteins, they might be better used as
direct biomarkers [42]. Rather than being limited to use as proxies
of existing molecular markers, the future of radiogenomic model-
ing may lie in its longitudinal applications.

Currently, few biomarkers exist to measure the temporal
response of tumors to immunotherapy. Recent studies have
demonstrated the importance of radiomic measurements before
and after treatment in predicting response to immunotherapy,
specifically for checkpoint inhibition and dendritic cell therapy
[34,42–43,54]. Changes to FDG uptake features, rADCmin, and
perinodular Gabor were shown to be associated with response
and prognosis, and ought to be validated in future studies. Delta
radiomic features have also provided new insights into pseudopro-
gression [69]. Moreover, interval radiomic biomarkers have
unexplored utility for understanding therapeutic resistance. In
tumors that are recalcitrant to therapy, changes to the tumor and
surrounding TME may underlie potential mechanisms of resis-
tance. Few studies have captured the biology of these changes as
they are occurring, as this would typically entail repeated invasive
procedures like tumor biopsies. Non-invasive imaging taken
sequentially during the course of treatment may help identify
radiomic biomarkers of resistance early on, thereby allowing for
real-time decision support and changes to clinical management.

Feature reproducibility

Feature reproducibility has been an ongoing concern in
radiomics. For semantic features like ‘‘necrosis” and ‘‘edema,” vari-
ability of subjective assessment can result in opposing observa-
tions. For example in GBM, ‘‘necrosis” was reported to be both
positively [46] and negatively [38] correlated with expression of
immune pathways. The automation of radiomic feature extraction
bypasses concerns of clinician-reader bias but is not without
issues. Variation in imaging acquisition parameters, and pre-
processing techniques have shown a significant effect on imaging
feature calculations, not only affecting their reproducibility, but
also making the features inconsistent within a single dataset.
Where appropriate, methods for intensity standardization, such
as through referencing of healthy tissue, or more robust methods
based on statistical learning, should be considered [90].

Subsequently, after image acquisition and processing, there are
two major sources of bias that can lead to lack of uniform repro-
ducibility in radiomic feature extraction. The first is implementa-
tion of the mathematical feature definitions to quantify
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information within ROIs. Concerns have been raised regarding
the actual implementation even when the same feature definitions
were used [91], which has been evident amongst open source
frameworks [92–96]. Efforts like MITK Phenotyping [97] and the
Image Biomarker Standardization Initiative [91] have been devel-
oped to standardize test data and centralize these platforms, show-
ing promise for unified feature extraction. The second, and
arguably larger source of radiomic features bias, arises from the
manual tumor segmentations. While manual contours are often
performed by individuals with expert domain knowledge and are
often seen as gold-standards for radiomic analysis, they are
nonetheless prone to inter- and intra- observer variability [98].
Moreover, tumors can be notoriously difficult to contour due to
their unclear borders. This bias should be kept in consideration
during radiogenomic analysis interpretation [99,100]. Ongoing
efforts aim to auto-segment the tumor may alleviated these issues
[101], but there are concerns over the accuracy of these techniques.

Recently, there has been growing support for using deep learn-
ing approaches that mitigate many of the aforementioned biases
and reproducibility issues [102]. Deep learning allows the algo-
rithm to define its own features instead of relying on pre-defined
features, which can obviate the need for manual segmentation.
However, a major draw-back of these deep learning methods is
their need for copious training data. Additionally, the underlying
meaning behind these self-defined features derived from deep
learning algorithms are unclear and the subject of active investiga-
tion [103,104]. There have been several approaches that attempt to
bridge the gap between traditional radiomics and deep learning
[105], and these may be important studies for the future of radio-
genomic approaches that integrate deep learning algorithms into
their workflows.

Data analysis and modeling

Current use and integration of large scale ‘‘omics” data is
primarily retrospective and aimed at hypothesis generation. This
underscores the importance of taking a rigorous approach to
exploratory analysis and model generation. Some of the goals are
to reduce user bias and also to mitigate issues of multiple hypoth-
esis testing (including p-hacking) and overfitting. A study by
Chalkidou et al. demonstrated an alarming number of published
radiomic studies at the time had high type 1 error probabilities
and did not reach statistical significance [106]. Therefore, appropri-
ate statistical methodology, such as correcting for multiple com-
parisons, is crucial in radiomic analysis. Feature selection is also
a key issue for model generation, as radiomics often leads to the
creation of high-dimensional feature spaces that can lead to over-
fitting. Therefore, proper dimensionality reduction techniques
should be employed [107].

An increasing number of radiomic and radiogenomic studies are
utilizing machine learning in their workflows. While machine
learning avoids certain errors common to conventional statistics,
it is prone to its own pitfalls. This is particularly true when consid-
ering relatively small data sets, on the order of hundreds of training
samples or smaller, which forms the bulk of current imaging stud-
ies. Improper use of training datasets and data leakage from
training to evaluation datasets are factors that have led to overly
optimistic results in many studies. It is crucial to use hold-out data
sets for evaluation of models and to prevent any data set leakage.
Finally, it is highly encouraged to use validation sets of data that
are independent from the training set and ideally from multi-
institutional sources so as to maximize model generalizability.

As described previously, there is considerable optimism regard-
ing the advent of deep learning in quantitative imaging. Deep
learning has made significant strides in the field of genomics and
radiomics independently, so it is natural to believe an artificial



Table 3
Recommendations for conducting and reporting studies that investigate radiogenomic associations with tumor immune phenotypes.

Process Considerations Recommendations

Study design Study registration Pre-register studies in databases such as the Open Science Framework (OSF)
Cohort selection Focus on specific molecular subtypes or subclasses of cancers may enable more accurate

radiogenomic modelsMeta-analysis of multiple cohorts can be used to achieve more generalizable
models

Study design Prospective study design to enable longitudinal feature assessment may be ideal for generating
models to predict immunotherapy response and identify biomarkers of resistanceFor
retrospective study design, statistical and modeling approaches should be decided a priori

Evaluating molecular
data

Tumor and TME gene expression data
procurement and processing

RNA-seq for assessing gene expression, refer to Conesa et al. 2016 for a review of good data
practices [121]
RNA-seq may be eventually supplanted by single-cell RNA-seq, which can improve the ability to
distinguish tumor versus immune cell gene expression

Pathway and immune infiltration
analysis

Software like Gene Set Enrichment Analysis (GSEA), Ingenuity Pathway Analysis, DAVID,
Metascape are standard for pathway enrichment analysis
Approaches including single sample GSEA (ssGSEA), CIBERSORT, and Immunoscore useful for
more specific quantification of types of tumor immune cell infiltration

Cell markers by IHC Specific staining of cell surface markers remains the gold standard for quantifying immune cell
infiltration
To increase staining throughput, consider using tissue microarrays and multiplexed IHC

Quantifying TILs by H&E H&E allows for good quantitation of TILs, but is often subject to clinician-reader bias
Best clinical practices are outlined in Salgado et al. 2015 [122]

Image acquisition,
processing, and
extraction

Image acquisition parameters Use standardized acquisition parameters
Image pre-processing Normalize voxel intensities of images, particularly MRI, to more accurately and reproducibly

extract
radiomic features

Feature definition and extraction Use feature standardization platforms, such as MITK Phenotyping and the Image Biomarker
Standardization Initiative

Tumor segmentation Use multiple independent observers if segmenting manually or consider semi-automatic/
automatic
approaches to maximize reproducibility

Deep learning Utilize algorithm visualization methodology, such as saliency maps, to increase
interpretability/explainability/transparency

Modeling and data
analysis

Feature selection Reduce feature dimensionality such as through regression modeling (e.g. LASSO Cox, Elastic Net)
or using intra-class feature similarity measures (e.g. intra-class correlation coeffcient) to prevent
overfitting and improve feature reliability

Model design Best performing models for predicting prognosis and immunotherapy response are likely
achieved by combining radiogenomics models with other covariates into composite models
Correct for multiple hypothesis testing where appropriate

Machine learning Use hold-out data sets for evaluation of models and to prevent any data leakage from training to
evaluation sets
Validate on data that are independent from the training set and ideally from multi-institutional
sources

Data transparency and
reporting

Public data and code repositories Share code in open-source repositories like GitHub
Share imaging data in public repositories like the Imaging Data Commons (IDC)

Radiomics quality score (RQS) Report RQS score (out of 36) developed by Sanduleanu et al. 2018 [1]
Study reporting checklists Use of TRIPOD 22-item checklist for model development and validation [120]

Legend: DAVID: database for annotation, visualization, and integrated discovery, IHC: immunohistochemistry, TIL: tumor infiltrating lymphocyte, H&E: hematoxylin and
eosin, MITK: medical imaging interaction toolkit, LASSO: least absolute shrinkage and selection operator, TRIPOD: Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis.
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intelligence framework rooted in deep learning will play a consid-
erable role in radiogenomics as well. However, the key issues of
interpretability and overall model transparency have been at the
forefront of whether these techniques are suitable for clinical
implementation. Fortunately, the deep learning interpretability
issue is becoming an increasingly studied problem domain [108].
Solutions can include the analysis of the algorithm itself [109], as
well as utilization of novel algorithmic structures that inherently
lend themselves to higher levels of interpretability [110]. There-
fore, future radiogenomic studies that implement deep learning
in their analysis should keep these interpretability considerations
in mind.

Building composite models and data integration

One of the key takeaways from current radiogenomic studies is
the value of composite models, which combine radiomic models
with other covariates, such as clinical and molecular features. Cur-
rently, composite models utilizing imaging data are limited by data
completeness. Certain efforts have been directed at standardizing
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multi-omic and imaging data, including development of public
data repositories through the support of the NCI Moonshot pro-
gram. The Imaging Analysis Working Group has compiled high-
resolution hematoxylin and eosin (H&E) imaging to allow for quan-
tization of lymphocytic infiltration patterns across 13 of 33 cancer
types in TCGA [111]. Progress in machine learning in digital tumor
pathology are being accompanied by advances in multiplexed IHC
as well as immunostaining approaches like mass cytometry
(CyTOF), which provide in-depth spatial characterization of tumor
immune composition.

Building better composite models requires integrating the next
generation of multi-omic data. In areas where genomic and tran-
scriptomic data do not sufficiently capture tumor biology by link-
ing genotype to tumor phenotype, these next generation ‘‘omic”
approaches frequently provide better insight [112–115]. The inte-
gration of these large, disparate data sources will necessitate better
software and workflow management. Platforms like
MultiAssayExperiment have been developed with the express pur-
pose of providing data objects and structures for this type of inte-
grative analysis [116].
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Data transparency, reporting and best practices

To foster better study design and data transparency, there has
been a recent trend toward pre-registering studies in databases
such as the Open Science Framework (OSF) to promote data use
integrity and encourage standard practices [117]. Additionally,
the utilization of curated public repositories for open-sourcing of
computational analysis tools (e.g. GitHub) and datasets (e.g. NCI
Cancer Research Data Commons) [118] will further foster trans-
parency and reproducibility of radiogenomic studies.

Radiogenomics has much to gain in consolidating and standard-
izing methods of analysis in an effort to accurately compare stud-
ies, as has been previously described for quantitative imaging
biomarkers [119]. Success in this arena will depend on developing
good practice guidelines. Some of the factors that ought to be con-
sidered as part of good practices have been discussed previously
and agglomerated into a radiomics quality score (RQS) [1,4]. The
reporting of radiogenomic studies aimed at model development
and validation can benefit from broader guidelines, such as those
recommended by the TRIPOD group [120].

Moving forward, the utility of radiomic features and radio-
genomic models with regards to tumor immunology will continue
to be twofold: 1) predicting response to immunotherapy and 2)
comprehending and modeling immune biology. Based on these
considerations and the major challenges discussed above, our rec-
ommendations for best practice guidelines for future studies are
summarized in (Table 3) [1,120–122].
Conclusions

The goal of developing more robust prediction models from
radiomics and other tumor properties is to ultimately provide bet-
ter personalized care for patients. As more targeted therapies and
immunotherapies emerge from clinical trials, the need for strate-
gies to augment clinical decision-making will increase. Precision
medicine stands to benefit tremendously frommore accurate char-
acterization of the 3D tumor immune microenvironment,
identifying prognostic biomarkers for immunotherapy, and
providing clinical guidance in the setting of immunotherapy resis-
tance. Based on studies to date, there is growing evidence that
tumor immune states can be characterized by radiomic features
alone or in combination with other molecular and histological fea-
tures. More so, baseline imaging features as well as changes in fea-
tures appear to provide a new source of predictive power for
immunotherapy response. However, current radiomic findings
are generally not mature enough to serve as surrogate predictors
of immune biology, as few radiogenomic associations have been
thoroughly validated. Furthermore, while studies can recapitulate
immune associations with low complexity features, associations
with texture features are more equivocal. Overall, radiogenomic
modeling applied to tumor immune biology is at its nascent stages.
Development of clinically relevant radiogenomic models will need
to be accompanied by a roadmap for technical and biological vali-
dation, as well as thoughtful integration of other biological
(‘‘omic”) and clinical data to develop more accurate, composite
models.
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