Received: 6 October 2020 Revised: 25 March 2021 Accepted: 6 April 2021

DOI: 10.1002/jev2.12086

SISEV

SHORT COMMUNICATION

Ciliary extracellular vesicles are distinct from the cytosolic
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of the differently sourced EVs (cilia vs cytosol). Here, we isolated EVs from ciliated
wild-type (WT) and non-ciliated IFT88 knockout (KO) mouse endothelial cells using
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ied using liquid chromatography with tandem mass spectrometry (LC-MS-MS) and
proteomic comparative analysis, which allowed us to classify proteins between ciliary
EVs and cytosolic EVs derived from WT and KO, respectively. A total of 79 proteins
were exclusively expressed in WT EVs, 145 solely in KO EVs, and 524 in both EVs.
Our bioinformatics analyses revealed 29% distinct protein classes and 75% distinct
signalling pathways between WT and KO EVs. Based on our statistical analyses and in
vitro studies, we identified NADPH-cytochrome P450 reductase (POR), and CD166
antigen (CD166) as potential biomarkers for ciliary and cytosolic EVs, respectively.
Our protein-protein interaction network analysis revealed that POR, but not CD166,
interacted with either established or strong ciliopathy gene candidates. This report
shows the unique differences between EV's secreted from cilia and the cytosol. These
results will be important in advancing our understanding of human genetic diseases.
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1 | INTRODUCTION

Cell-derived extracellular vesicles (EV's) were initially deemed as a selective process to remove unwanted cellular components
and proteins. Since then, EVs have been associated with various physiological and pathological processes (Aboualaiwi et al., 2009;
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Arasu et al., 2020). EVs are composed of lipid bilayer that encapsulates proteins and nucleic acids. EV's play important roles in
many cellular biological processes, including intercellular communication, making them ideal biomarkers for different signalling
pathways (Aspera-Werz et al., 2019; Atay et al., 2011). EVs are categorized mainly based on their size, function, and protein content.
With different morphology, size, protein composition, biogenesis pathway and release mechanism, the heterogeneity of EVs is
still loosely defined. However, the present study classifies EVs based on the cellular types or origins, i.e., ciliated (WT) and non-
ciliated (KO) endothelial cells.

Primary cilia protrude upward from almost all mammalian cell types (Bazzi & Anderson, 2014; Becker et al., 2016). Cilia play
central roles in human health, coordinating signal transduction and development (Bellmunt et al., 2019; Bonser et al., 2015). Cilia
house many receptors, ion channels, transporters, and other sensory proteins critical to their function. Since disruption of ciliary
function causes a wide range of diseases, called ciliopathies, many studies have focused on investigating the complexity of ciliary
proteomes (Boulanger et al., 2017; Carnino et al., 2019). The trafficking of these functional proteins is regulated by the trafficking
adaptor and transition zone barrier mechanisms, which prevent the passage of all non-ciliary proteins into the cilioplasm during
ciliogenesis (Chen et al.,, 2018, 2019). The machinery that regulates or maintains ciliogenesis is called intraflagellar transport
(IFT), which has bidirectional motility along the ciliary shaft. IFT functions as a cargo to transport materials to maintain and
support primary cilia formation. In Chlamydomonas, some IFTs have functions particular to the cilia and do not significantly
affect cell growth or division, indicating that IFT proteins are not involved in any essential processes other than cilia formation
and maintenance (Colombo et al., 2014; Das & Storey, 2014). Importantly, the IFT88 mutants completely fail to assemble cilia,
whereas some other IFT mutants assemble very short cilia. Similarly, a mutation in IFT88 or its homologue completely ablates
primary cilia formation in worms (Deane et al., 2001), mouse kidneys (Das & Storey, 2014), and mouse vascular endothelia
(Delling et al., 2013; Edvardson et al., 2010). Compared to control cells bearing primary cilia, these IFT88 knockout cells have an
impaired ciliary assembly (Greening et al., 2015; Haycraft et al., 2007) and potentially lack ciliary vesicles. Therefore, the IFT88
knockout cells are an important tool in differentiating EV types and to analyze the physiological relevance of primary cilia in
mammalian cells.

Structurally, primary cilia consist of multiple subdomains, including the appendages, centrioles, transition zones, and axoneme
compartments. Each subdomain is associated with distinctive functions and unique ciliary proteins. Recent studies have emerged
associating primary cilia with cilia-derived vesicle proteins. Interestingly, EVs released from cilia have been suggested to regulate
ciliogenesis (Farrer etal., 2009). In addition, the bioactive cilia-derived vesicles released from the flagella of Chlamydomonas have
been associated with proteolytic enzymes that degrade the mother cell wall to release daughter cells (Ferland et al., 2004). Some
EVs released from cilia have been suggested to reduce and transport back to the photoreceptor to regenerate functional opsins
(Galdzicka et al., 2002). Another proteomic study has associated EV’s, isolated from urine, with vital ciliary proteins that have
been implicated in human cystic disease and Bardet-Biedl syndrome (Garcia-Gonzalo et al., 2011). Other studies have examined
the mechanism of ciliary vesicle release and compared the protein compositions between ciliary vesicles and cellular membranes
(Gencer et al., 2017; Gould & Raposo, 2013). Despite the significance of these studies, the proteome within this shedding vesicle
remains largely unidentified. To better understand the properties and functions of EVs and cilia in human genetic diseases, we
investigated the proteome of EVs isolated from ciliated wild-type (WT) and non-ciliated IFT88 knockout (KO) mice endothelial
cells. Our study showed that ciliary-derived EVs are distinct from cytosolic EVs. This distinction is highly significant and will
advance our knowledge of the biology of EVs, cilia, and human genetic diseases.

2 | RESULTS

To examine the size and protein profiles of ciliary and cytosolic EVs, we isolated EVs from WT and KO endothelial cells. EV's
were isolated using a standard conventional method using a fluid-shear flow to induce ciliary vesicle release in control cells, as
previously described (Farrer et al., 2009) (See Method; Figure 1a). The size of the isolated EVs was examined using a scanning
electron microscope (Figure 1b). We observed that EV's isolated from WT ranged between 30 and 164 nm, and KO between 30
and 175 nm, consistent with previous reports (Hogan et al., 2009; Jana et al., 2018). For more robust quantitative analyses, we
studied the mean sizes of WT and KO EVs using dynamic light scattering (Figure Sla,b). There was a significant difference in
the mean sizes between WT (144.3 + 0.5 nm) and KO EVs (148.2 + 1.1 nm). The number of EVs was significantly decreased in
KO compared to WT during shear flow (Figure Slc).

2.1 | Proteomic analysis of ciliated WT and non-ciliated KO EV's

Proteins extracted from EVs were further analyzed using tandem LC-MS-MS. Comparative proteomics analysis was used to dif-
ferentiate the WT EV proteome from KO EV proteome. Thus, differences in protein expression could potentially be denoted as
ciliary EVs derived from ciliated cells (WT) or cytosolic EVs derived from non-ciliated cells (KO). The analysis of protein frac-
tions detected a total of 3444 proteins, and only 748 proteins had a significant protein abundance (or spectral count) (Figure 1c,d;
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Proteomic analysis of extracellular vesicles (EVs). (A) Overview scheme of EV isolation from ciliated (wild-type; WT) and non-ciliated

(IFT88; KO) cells.(B) Scanning electron microscope (SEM) analysis and quantification of isolated EV size (Figure S1). N = 6 in each group. (C) Cluster analysis
of total protein expressions of 3444 proteins between WT and KO cell-derived EVs. (Table S1).(D) Cluster analysis of differential expressions of 748 proteins
between WT and KO cell-derived EV's (P < 0.05) (Table S2). Dataset for cluster analysis were normalized via log transformation. Scale bar indicate protein

abundance (0 =

low, red; 3 or 6 = high, blue). (E-G) Three different Gene Ontology (GO) analyses describe the enrichment of the isolated EVs. The ratios of

each gene expression within three different GO are described elsewhere (Figure S2). (E) The biological process pie chart describes the biological objectives to
which the gene product contributes. (F) The cellular component pie chart describes the localization in the cell where the gene exerts its activity. (G) The

molecular function pie chart describes the biochemical activity of each gene product
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Table S1 and S2). Clustering analysis revealed the relative protein abundance of each protein group. The clustered representative
proteins exhibited differences in protein expression between WT and KO EVs. To further understand the overall complex rela-
tionship between these large datasets of EVs and cellular biology, gene ontology (GO) analysis was used to illustrate the biological
processes, cellular components, and molecular functions of the proteomes (Figure le-g, S2) (Jones et al., 2012). Notably, the cel-
lular biosynthetic process, which is defined as any process that modulates the frequency, rate or extent of the chemical reactions
and pathways resulting in the formation of substances, comprised the highest percentage among all the biological processes. Not
surprisingly, most of the cellular components are part of the EV organelles.

2.2 | Comparative analysis of proteomes between ciliated WT and non-ciliated KO EVs

Because of the differences in protein abundance, we further examined whether proteins were exclusively expressed in WT and
KO EVs. Among the significant abundant proteins in WT and KO EVs, we identified 79 proteins exclusively expressed in WT
EVs, 145 proteins exclusively expressed in KO EVs, and 524 proteins found in both EVs (Figure 2a-c, Table $3-S5). Although some
proteins were found in both EVs, the difference in abundance was very noticeable, revealing a unique distinction between the
two EV types (Figure 2d). To evaluate these findings with already known EV biomarkers, we compared the top hundred known
EV biomarkers with our dataset (Table S6). Ninety-seven of the known EV biomarkers were matched with proteins expressed
in both WT and KO EVs, confirming the EV presence in our analyzed proteomes. The remaining three known EV biomarkers
were found among proteins that expressed exclusively in KO EVs (Figure 2e,f). Most EVs have been suggested to play a specific
role in a signalling pathways (Kowal et al., 2016-Lotvall et al., 2014). Therefore, we designed GO analyses more targeted towards
protein function (protein classes) and signalling pathways that were exclusively involved in EV's (Figure 2g-j). Within the protein
classes, 29% of the proteins were differentially expressed in WT and KO EVs. Within the signalling pathway, 75% of the distinct
pathways were identified between the WT and KO EVs. Additional GO analyses were also performed to show that the identified
KO EVs had unique biological processes, cellular components, and molecular functions (Figure S3).

2.3 | Targeting ciliated WT and non-ciliated KO vesicle biomarkers

Based on the statistical analyses of proteins expressed exclusively in WT and KO EVs, we selected POR and CD166 as potential
biomarkers for WT and KO EVs, respectively (Figure 3a, S4). To validate the specificity of these biomarkers for WT and KO
EVs, we performed immunofluorescence studies (Figure 3b). We confirmed the localization of the POR biomarker in WT EVs.
On the other hand, CD166 was only localized in the cytosol and not in the cilia. Hsp70 and Golgi-97 were used as positive and
negative controls for EV biomarkers (Luxmi et al., 2019; Marino et al.,, 2019). Because POR as a WT vesicle biomarker was also
seen in the cytosol, we directly examined POR from WT and KO EV pools for further confirmation (Figure 3c-e¢). Transmission
electron microscopy (TEM) also confirmed the localization of anti-POR immunogold-nanoparticles in EVs isolated from W'T;
EVs isolated from KO cells were used as a negative control. Furthermore, the immunoblot analysis validated POR expression
only in WT vesicle lysate and not in KO vesicle lysate. CD166 was exclusively expressed in KO vesicle lysates but not in WT
vesicle lysates. This confirmed the hypotheses that WT cells predominantly released ciliary EVs, while KO cells released only
cytosolic EVs. Because this was the first time that POR was reported as a ciliary protein, we examined a protein-protein interaction
network to understand the interaction between POR and known ciliary proteins (Figure 3f,g and S5). When we extended the
network interaction studies to include CD166, we found that only POR, but not CD166, interacted with the ciliary transition
zone, centriole, and appendage proteins. This further indicates the relevance of isolated WT EV's to primary cilia.

3 | DISCUSSION

Proteomic comparative analyses revealed two distinct EV pools with significantly different sizes and biomarkers. We identified
748 EV proteins, of which 79 were exclusively expressed in WT EVs, 145 were exclusively expressed in KO EVs, and 524 were
shared between both EVs. Even for the proteins shared between WT and KO EVs, we noticed a clear shift in protein abundance
between the two EV types (Figure 2d, S4d). Previously, the focus on EV proteins revealed massive information about the protein
composition and crucial roles of EVs (Masyuk et al., 2010-Mohieldin et al., 2015). However, the overlapping size distributions,
protein compositions and structural morphologies have challenged all efforts to pinpoint the differences in signalling pathways,
physiological functions, and nomenclatures for EVs (Mohieldin et al., 2016, 2020). In addition, all these efforts are merely based
on the conventional method of isolating cytosolic EVs (Nauli et al., 2008). Here, we have shown a new classification of EVs as
cytosolic and ciliary EVs.

Although ciliary EV's have been previously observed along the ciliary shaft, no comparative analysis has been performed to
examine biomarkers specific to these EVs (Ferland et al., 2004; Nozaki et al., 2018; Pazour et al., 2000). The GO comparative
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exclusively expressed in WT vesicles (Table S3). (C) Cluster analysis of 145 proteins exclusively expressed in KO vesicles (Table S4). (D) Cluster analysis of 524
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analysis revealed the unique expression of protein classes and signalling pathways in each EV type (Figure 2g-j). Even though the
GO categories are too broad to indicate the source of EVs, a more involved analyses might provide insight into their functions.
Comparing the differences between the two EV types, we found unique protein classes and signalling pathways in each of them.
This may indicate the unique physiological role of each EV type. For example, an isomerase protein class is present in WT but not
in KO EVs (Figure 2g,h). This exclusive presence of the isomerase class may be significant because isomerases regulate ciliary
beat frequency in airway cells (Phua et al., 2017). Given the diverse roles of cilia, many of the signalling pathways from GO
seem to fit with their physiological roles (Figure 2i). For example, the signalling pathways of cholesterol biosynthesis, vitamin
D metabolism, TGF-f3, Rho GTPase, and P53 that appear only in WT EVs have all been reported to be associated with primary
cilia functions (Popovici et al., 1999; Shaheen et al., 2011). However, the observed associations of DNA replication and pentose
phosphate signalling pathways with ciliary function are yet to be investigated.

We selected two biomarkers out of 79 or 145 proteins that were exclusively expressed in WT or KO EV's based on their high
abundance and statistical significance (Figure 2a, 3a). Thus, POR and CD166 biomarkers were selected for WT and KO EVs,
respectively. Because the immunofluorescence analysis showed the localization of POR on the ciliated WT EVs, as well as in the
cytosol of the cell, we further examined its expression by TEM and immunoblotting (Figure 2b-e). These analyses showed a high
specificity of each biomarker for the two EV types, independently. Advantageously, using these specific biomarkers independently
would for the first time allow investigators to differentiate between ciliary and cytosolic EVs. More importantly, these biomarkers
might help in closing the knowledge gap regarding the difference in cytosolic EV protein abundance and exclusively expressed
proteins between WT and KO EVs. EV formation, trafficking and secretion are likely regulated through different pathways,
especially in the absence of primary cilia.

The WT vesicle biomarker network analysis revealed POR interactions with the ciliary transition zone, centriole, and
appendage proteins. Noticeably, all ciliary genes described in the network are either established candidates or strong ciliopathy
candidate genes. The established ciliopathy genes are AHII, JBTS9, MKS9, MKS10, TECT3, TECT2, BBS13, EVC2, TMEM216
and TCTN], while genes that are candidates for ciliopathy include DCTNI1 and FOP (Stewart et al., 2016; Young & Bok, 1969).
These findings further substantiate the association of the WT EV biomarker (POR) with primary cilia proteins. Further, compre-
hensive network analyses revealed a cross-talk among proteins that were exclusively expressed in ciliary WT EVs (Figure S6a),
as well as with several shared proteins between WT and KO EVs (Figure S6b). This might further suggest a strong relationship
between these proteins and their involvement in more synchronized biological processes.

We have extensively crosschecked our results with earlier studies investigating the link between primary cilia and EVs. Recently,
exocyst-containing vesicles, which localize at the tip and sides of primary cilia (Zuo et al., 2009), have been shown to be associated
with the biogenesis of EVs in mammalian renal cells (Zuo et al., 2019). We found that an extended list of EV proteins in our
proteomic data overlaps with the earlier proteomic data of these exocyst-containing vesicles. A list of 106 EV proteins matched
our data (Table S7). Because the EV proteome isolated from cilia has been shown to exhibit ciliary membrane protein markers
(Boulanger et al., 2017), we further investigated these bona fide cilia proteins in our proteome. Not surprisingly, we found that
37.9 % of the exclusively expressed EV proteomes in ciliated WT EV's were previously reported as bona fide ciliary proteins (Table
§8). This high turnout of bona fide ciliary proteins in our proteome further supports our studies on isolating ciliary EVs.

In summary, we have shown in this report two distinctive EV types with unique biomarkers. Overall, we reported 79 proteins
exclusively expressed in WT EVs, 145 proteins exclusively expressed in KO EVs, and 524 proteins in both EVs. The GO anal-
ysis suggests that each vesicle has its unique protein classes and signalling pathways. The results of this study will serve as the
fundamentals on which our understanding of the biology of EVs, especially ciliary EVs, will advance.

ACKNOWLEDGEMENTS
This work was supported in part by the American Heart Association 19TPLOI34730020, NTH HL147311 and Chapman University.
James J. Moresco and John R. Yates were supported by the National Institute of General Medical Sciences (8 P41 GM103533).

CONFLICTS OF INTEREST
No competing interests declared.

controls for EV, respectively. Acetylated-a-tubulin (green) and dapi (blue) were used as ciliary and nuclear markers. High-resolution differential interference
contrast images are shown to confirm the presence of primary cilia and ciliary vesicles. N>10 for each group. (C) TEM images show numerous anti-POR
immunogold-nanoparticles (5 nm) localization in WT but not in KO vesicles. (D) A western blot analysis shows POR and CD166 protein expressions in cell
lysate and isolated EV's. Hsp70 and Golgi-97 were used as positive and negative controls for EVs, respectively. The coomassie blue staining shows equal loading
of EV lysate. (E) Bar graph shows quantitation of POR and CD166 in WT and KO. N = 4 in each group. (F) A network interaction analysis showing POR
interacts with sub-ciliary compartments proteins (beige, transition zone; red, centriole; blue, appendages; white, POR). (G) A primary cilium sketch showing
each sub-ciliary compartment with its given colour in the network interaction. A complete network interaction analysis showing the interactions between POR
and CD166 and other sub-ciliary compartments proteins is shown in (Figure S5)
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