Skip to main content
. 2021 Mar 23;9(3):e16306. doi: 10.2196/16306

Table 4.

Performance of the candidate models and baseline models on the validation set. The best-performing parameters are indicated in italic text.

Model Optimal cutoff Specificity Precision Recall F1 measure AUCa
Logistic regression 0.157 0.642 0.857 0.729 0.773 0.741
Naïve Bayes 0.220 0.666 0.855 0.685 0.740 0.720
Alternating decision tree 0.298 0.662 0.857 0.705 0.755 0.732
Random forest 0.122 0.747 0.862 0.611 0.680 0.726
XGBoostb 0.175 0.611 0.856 0.759 0.794 0.743
Neural network 0.125 0.686 0.858 0.681 0.737 0.735
HOSPITAL score 4 0.564 0.838 0.694 0.745 0.688
LACE index 11 0.469 0.830 0.745 0.779 0.675
LACE-rt index 7 0.542 0.833 0.688 0.740 0.668

aAUC: area under the curve.

bXGBoost: extreme gradient boosting.