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During the COVID-19 pandemic, many countries implemented international

travel restrictions that aimed to contain viral spread while still allowing nec-

essary cross-border travel for social and economic reasons. The relative ef-

fectiveness of these approaches for controlling the pandemic has gone largely

unstudied. Here we developed a flexible network meta-population model to

compare the effectiveness of international travel policies, with a focus on evalu-

ating the benefit of policy coordination. Because country-level epidemiological

parameters are unknown, they need to be estimated from data; we accom-

plished this using approximate Bayesian computation, given the nature of our

complex stochastic disease transmission model. Based on simulation and the-
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oretical insights we find that, under our proposed policy, international airline

travel may resume up to 58% of the pre-pandemic level with pandemic con-

trol comparable to that of a complete shutdown of all airline travel. Our re-

sults demonstrate that global coordination is necessary to allow for maximum

travel with minimum effect on viral spread.

With more than 129 million cases and 2.8 million deaths globally as of March 31, 2021 (1),

the COVID-19 pandemic has had an enormous impact on the world. The pandemic damaged the

global economy, which shrank by 5.2% in 2020, the largest recession since World War II (2).

With a patchwork of travel bans in place worldwide, the tourism industry has been severely

affected, with estimated losses of 900 billion to 1.2 trillion USD and tourism down 58% to

78% (3). The airline industry has also suffered heavily, with 43 airlines declaring bankruptcy

and 193 of 740 European airports at risk of closing (4, 5). To contain the pandemic, most

countries took a two-pronged approach. First, they attempted to slow the spread of the disease

internally by implementing various non-pharmacological interventions, such as social distancing,

using face coverings, and closing businesses and schools. Second, they attempted to reduce the

number of imported cases by implementing travel restrictions. While travel restrictions benefit

the community by preventing importation of some infected cases, these policies end up costing

the global economy an estimated 400 billion USD and millions of jobs each month (6–8). The

gravity of the situation highlights the need for balance between protecting the health of the public

and mitigating the short- and long-term economic damage related to infection control efforts.

The effectiveness of travel restrictions has been investigated in many studies (9–15) (see

(16–18) for systematic reviews). Most of these studies suggest that travel restrictions are

primarily effective at the early stage of a pandemic and may help to delay a pandemic up to

4–6 months (11, 18). However, the effect of travel restrictions wanes over time as cases are

inevitably imported. Furthermore, the effect of travel restrictions is minimal relative to that of
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internal mitigation measures such as social distancing and mask wearing. Many researchers have

concluded that continued use of travel restrictions is not worth the economic trade-off (6, 17).

Although many studies have examined the effectiveness of travel restrictions, limited research

has focused on the best way to lift these restrictions while still protecting health (16). Costantino

et al. (2020) (19) and Linka et al. (2020) (20) studied partial removal of travel bans and urged

caution for regions opening themselves up to regions with a more dire public health situation.

Russell and colleagues went a step further by suggesting scenarios in which a country may want

to leave travel restrictions in place (21). The authors argued that based on existing pandemic data

and travel data, policymakers should first reconstruct the pandemic situation in each country and

then estimate the number of imported cases they receive from each country. The ratio of imported

cases to internal cases, together with the effective reproduction number, should then be used to

decide whether travel restrictions are needed in that country. While these studies emphasize the

important roles of imported and internal cases, none of them recommend specific strategies for

easing travel restrictions or propose ways to coordinate them effectively to minimize health risks.

Our paper aims to address this gap in the literature. We developed a flexible network meta-

population model for comparing the effectiveness of international travel policies, with a focus

on evaluating the benefit of policy coordination. Because the epidemiological parameters of

countries are unknown, they need to be estimated from data, a task usually accomplished using

the likelihood function. However, complex stochastic models of infectious disease transmission

often do not have computationally tractable likelihood functions. To overcome this limitation,

we relied on a class of likelihood-free methods called approximate Bayesian computation (ABC).

We then used our framework to examine two hypothetical travel-regulation policies that allow

people to move from one country to another. The goal was to ensure that a country’s public health

situation does not deteriorate after the country adopts the proposed travel policy. Theoretical

results are provided to support the two proposed approaches. We also used simulation to compare
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the effectiveness of our recommended policies with existing travel restriction policies, such

as a 14-day quarantine for all arrivals and a 14-day quarantine only for people returning from

high-risk countries. Simulations indicate that our proposed travel policies would allow for more

incoming travelers while maintaining control of the pandemic.

We considered a global travel model where people may travel from one country to another.

In this network meta-population model, a node represents a country and an edge represents travel

between two countries. The connections between the nodes are modeled using empirical travel

data. To model the current state of the pandemic in each country, we used the epidemiological

model presented by Warne et al. (22). In each country, at a given time, the population is divided

into six mutually exclusive compartments: susceptible (S), undetected infected (I), active

confirmed (A), confirmed recovered (R), confirmed deceased (D), and unconfirmed recovered

(Ru). Undetected infected (I) are individuals who have contracted COVID-19 but have not been

identified; active confirmed (A) are individuals who have been identified as COVID-19 positive

but are still receiving treatment or in self-quarantine; recovered confirmed (R) are individuals

who have been confirmed to have recovered; and confirmed deceased (D) are individuals who

were reported to have died from COVID-19. Recovered unconfirmed (Ru) are individuals who

have recovered from the disease but who were never confirmed as having contracted the virus.

The remaining individuals in the population are susceptible (S) and could contract the virus. The

spread of disease in each country evolves according to the following transitions and is governed

by the indicated parameters:

S
α−→ I, I

γ−→ A, A
β−→ R, A

δ−→ D, I
β−→ Ru.

Here α is the transmission rate, γ is the identification rate, β is the recovery rate, and δ is the

death rate.

Using this country-specific model, we then built a global network model of countries utilizing
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travel data as follows. In the meta-population network model, for a given country i, the status

of its population is updated in two steps. First, the state of the epidemic evolves based on the

internal population of country i. The transition from day t− 1 to t is characterized by the shift

from Xi(t− 1) based on the local, country-specific epidemiological model, where Xi(t− 1) is a

vector of six compartments of the status of country i at day t− 1. Second, the pandemic evolves

based on factors external to each country; in this study, the external factor is travelers moving

across borders.

In practice, the epidemiological model parameters for each country are unknown and need to

be estimated from empirical data. Most statistical methods rely on the likelihood function for

parameter estimation, but because our global model includes unobserved categories (susceptible

(S), undetected infected (I), and unconfirmed recovered (Ru)), we could not apply either

frequentist or Bayesian inferential methods to this problem as both require a tractable likelihood

function. Instead, we relied on a class of likelihood-free methods called approximate Bayesian

computation (ABC). The use of ABC only requires the ability to forward simulate data from a

model given model parameters; the corresponding likelihood function of the model does not need

to be evaluated. In this paper, we used a variant method called replenishment ABC (RABC) (23).

The main challenge of using ABC to calibrate our network meta-population model was the

large number of parameters that needed to be estimated. Instead of using ABC to estimate all

the parameters for all countries simultaneously, which is computationally expensive and may

result in unstable parameter estimates, we used a marginal estimation strategy to estimate each

country’s epidemiological parameters separately, while still taking the travel data into account.

For a given country i, we first reconstructed all six states describing the pandemic situation in

all other countries j 6= i based on their epidemiological data. Based on the travel data, we then

estimated the number of cases imported to country i from other countries. These quantities,

together with the epidemiological data for country i, were then used to estimate the parameters
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for country i. More details on the estimation procedure are available in the Supplementary

Materials.

Leaving borders completely open puts a country’s public health at risk, while closing borders

is likely to have a negative effect on the economy. A policy that finds a middle ground between

these two extremes is expected to provide a better balance between maintaining public health and

preserving the economy. Some commonly used policies to ease travel restrictions include a 14-

day quarantine for people traveling from high-risk regions and a 14-day quarantine requirement

for all arrivals. However, there are no theoretical results demonstrating that these approaches

control the pandemic as well as a full border closure would.

Under the 14-day quarantine for all arrivals policy, undetected infectious individuals transition

to either active confirmed, recovered (confirmed or unconfirmed), or confirmed deceased as a

result of monitoring during the quarantine period. As such, this policy helps stop importation of

new undetected cases. However, this approach is also likely to dissuade travelers. Furthermore,

if a large number of people are willing to travel despite the quarantine requirement, the country

may see a surge in active confirmed cases from individuals undergoing mandatory quarantine.

This surge could strain the receiving country’s healthcare system. To encourage travel, some

countries have relaxed the quarantine requirement by dividing other countries into zones based

on risk: travelers arriving from high-risk countries need to quarantine for 14 days whereas

those arriving from low-risk countries have no quarantine requirement. While this approach

could revitalize travel, it may still risk overburdening the receiving country’s healthcare system.

Therefore, policy is needed that avoids these drawbacks and offers some guarantees that the

pandemic remains under control.

In our global travel model, at the end of each day, we updated travel according to

X+
i (t) = Xi(t) +

∑
1≤j 6=i≤n

f out
ji (t)− f out

i (t),
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where f out
ji (t) denotes the six compartments of individuals traveling from country j to country i.

Our goal was to regulate the volume of inbound travel by only letting a certain proportion of

travelers enter a country each day. We denote the proportions sequence 0 ≤ {pji(t)}1≤j 6=i≤n ≤ 1

as the travel regulation sequence from country j to country i at day t, i.e., a temporal sequence

of proportions of travelers permitted. A total shutdown of inbound travel in country i at day t is

equivalent to pji(t) = 0, ∀ 1 ≤ j 6= i ≤ n, and fully open inbound travel in country i at day t is

equivalent to pji(t) = 1,∀ 1 ≤ j 6= i ≤ n. Under our strategy, at the end of day t, the status of

country i is updated as follows:

X+
i (t) = Xi(t) +

∑
1≤j 6=i≤n

pji(t)f
out
ji (t)− f out

i (t).

As a result, the number of undetected infected cases in country i at day t is also updated as

I+i (t) = Ii(t) +
∑

1≤j 6=i≤n
pji(t)I

out
ji (t) − Iout

i (t). In our model, the undetected infected cate-

gory is the only one that directly drives the epidemic. Therefore, if we can find a sequence

{pji(t)}1≤j 6=i≤n that ensures the number of undetected cases during the regulation period T does

not go above a desired threshold c, then this sequence could be used to regulate travel. We

took the following approach to find such a sequence. Consider a specific country with I(0)

undetected cases initially, and suppose that under our regulation policy, we allow the number

of daily undetected infected to be inflated at a rate p. In other words, if I(t) is the number

of undetected cases evolved from the internal pandemic in a country at day t, then we allow

incoming travel such that the number of undetected cases can increase up to I+(t) = I(t)(1+ p).

Our goal is to find the value p so that the number of daily undetected infected cases during the

regulation period stays below a given threshold c. Based on this value and the pandemic situation

in the departure country, we can determine an appropriate sequence of proportions.

We considered two types of regulation. Regulation in terms of average control entails finding

a proportion p such that the average number of daily undetected cases in the next T days stays
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below a fixed threshold c. Regulation in terms of probability control entails finding a proportion

p such that the probability of daily undetected cases in the next T days staying lower than a

threshold c is at least π. Lemma 1 and lemma 2 in the Supplementary Materials allowed us to

find the proportion p.

Figure 2A shows the number of undetected infected cases in a country in the 7 days following

the implementation of three different policies: fully open, fully closed, and our proposed average

control policy with a threshold of c = 70. Note that the number of undetected cases under the

average control scenario is below the required threshold and does not differ much from the one

obtained under the fully closed scenario. Additionally, based on our calculations, the volume

of inbound travelers under the average control policy can be up to 88.64% of the normal load.

For more mathematical details on these calculations, including the proof, see the Supplementary

Materials.

In practice, it may be hard to apply the proposed average control policies due to the logistical

difficulties in regulation travel proportions daily. Therefore, we simplified these policies by

first calculating the minimum value of the proportion sequence of incoming travelers. We then

assigned the proportion of incoming travelers allowed as 0, 1/3, 1/2, or 1 if this minimum value

belongs to ranges [0, 1/3), [1/3, 1/2), [1/2, 1), or [1,∞), respectively.

We determined the effectiveness of six different travel regulation policies. We then compared

their effectiveness in terms of the percentage of people allowed to travel relative to the pre-

pandemic period. The first two policies were the most extreme: all countries are fully open or

fully closed, denoted as policies P-1 and P-2, respectively. We investigated the effectiveness of

the four remaining policies by having the receiving country adopt a given policy while all other

countries remain fully open. Under P-3, the receiving country requires a 14-day quarantine for

all arrivals. Under P-4, the country requires 14-day quarantine only for travelers from high-risk

countries. A country is considered high risk if the average number of active confirmed daily
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cases exceeds 20 per 100,000 people in the last 2 weeks (24). Under P-5, the receiving country

adopts the simplified version of the proposed average control policy, where travel is regulated

such that the average number of daily undetected infected cases is at most 10% higher than the

maximum number of daily cases under P-2. In P-6, the country adopts the simplified version of

the proposed probability control policy, but travel is regulated such that the average number of

daily undetected infected cases is at most 10% higher than the maximum daily cases under P-2

with a probability of at least 90%. Policy effectiveness was evaluated based on two factors: the

percentage of inbound travelers and the epidemiological situation in the receiving country.

We evaluated inbound travel in two ways. The percentage of inbound travel capacity is

the number of inbound travelers allowed under the policy divided by the number of inbound

travelers under normal circumstances. The expected percentage of inbound travel is an adjusted

version of the percentage of inbound travel capacity; if the 14-day quarantine policy is applied to

people departing a country, we assume that only 5% of travelers from this country are willing to

travel. South Korea requires a 14-day quarantine for all arrivals, and data provided by the Korea

Tourism Organization supports this 5% assumption (25). After this adjustment, the percentage of

expected inbound travelers is obtained by dividing the number of expected inbound travelers

by the number of inbound travelers under normal circumstances, which gives us insight into

the effect of the 14-day quarantine requirement. We report the effectiveness of policies on the

epidemiological situation in the receiving country using three factors: the relative change in cases,

the relative change in confirmed cases, and the percent of travelers who will eventually move to

the active confirmed category after arrival. Relative change in cases is the difference between

number of cases (detected and undetected) at the end and at the beginning of the regulated period

divided by the number of cases at the beginning of the period; similarly, relative change in

confirmed cases is the difference in the number of detected cases at the end and at the beginning

of the regulated period divided by the number of detected cases at the beginning of the period.
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The percent of travelers who will eventually move to the active confirmed category after arrival is

calculated by using the number of undetected travelers who were eventually confirmed as having

COVID-19 divided by the total number of incoming travelers. In these simulation settings, we

considered only four representative countries, where each country has a reproduction number

in the following ranges: 0.47–0.9, 0.9–1, 1–1.1, and 1.1–6.47. We first generated 200 sets of

parameter values and the corresponding data sets using those parameters. For each data set, we

used ABC to estimate the parameters of each country and the initial conditions at the time the

policy was implemented. We then simulated 1000 realizations under different travel policies to

obtain the above measurements, and report the 2.5th and 97.5th percentiles of each. To give a

fair assessment on the effectiveness of travel restrictions on the pandemic, we report the outputs

by stratifying the countries into three groups: Group 1 consists of countries with the effective

reproduction number R(t) less than 0.9, Group 2 consists of countries with R(t) between 0.9

and 1.1, and Group 3 consists of countries with R(t) greater than 1.1. Finally, for each group,

we calculated the average over these 200 iterations and used it to compare the effectiveness of

different policies. Detailed simulation settings and comprehensive outputs for the effectiveness

of different policies can be found in the Supplementary Materials.

Table 1 demonstrates how the different policies affect travel and each receiving country’s

pandemic situation. Overall, our proposed average control policy, P-5, performed best at

balancing the number of travelers and health outcomes. For all groups, the number of expected

inbound travelers was highest for P-1, followed by P-4, then P-5. To satisfy the requirements

dictated by P-6, countries had to eliminate inbound travel, rendering this policy equivalent to

P-2. Under P-3 and P-4, approximately 0.09% to 0.11% of inbound travelers of Group 1 and

Group 2 would become active confirmed. Therefore, if a receiving country has limited healthcare

resources, it may experience challenges adopting P-3 or P-4. In terms of health outcomes, we

observed that changing policies for countries in Group 3 does not offer much benefit, as the
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Table 1: Shown are 2.5th and 97.5th percentiles of travel effects and health outcomes for policies
P-1 through P-6 using estimated epidemiological parameters to simulate epidemic and travel
data. G1, G2, and G3 denote countries in Group 1, 2, and 3, respectively. RU is the relative
change in the number of cases (including detected and undetected); RA is the relative change in
the number of cases that were confirmed; IA is the percentage of incoming travelers who will
eventually move to the active confirmed category after arrival; Tc is the percentage of inbound
travel capacity; and Te is the percentage of expected of inbound travel.

P-1 P-2 P-3 P-4 P-5 P-6
G1 RU (2.53, 3.20) (0.06, 0.27) (0.64, 0.92) (0.88,1.26) (0.06, 0.27) (0.06, 0.26)

RA (1.58, 2.14) (0.08, 0.27) (0.86, 1.15) (0.99, 1.36) (0.08, 0.27) (0.08, 0.27)
IA (0.09, 0.11) (0.00, 0.00) (0.09, 0.11) (0.09, 0.11) (0.00, 0.00) (0.00, 0.00)
Tc 100% 0% 100% 100% 34% 0%
Te 100% 0% 5% 89% 34% 0%

G2 RU (1.50, 2.05) (0.45, 0.84) (0.63, 1.02) (0.86, 1.32) (0.46, 0.84) (0.45, 0.84)
RA (0.99, 1.37) (0.37, 0.64) (0.60, 0.90) (0.71, 1.04) (0.37, 0.64) (0.36, 0.64)
IA (0.09, 0.11) (0.00, 0.00) (0.09, 0.11) (0.09, 0.11) (0.00, 0.00) (0.00, 0.00)
Tc 100% 0% 100% 100% 60% 0%
Te 100% 0% 5% 89% 60% 0%

G3 RU (6.28, 6.65) (6.30, 6.67) (6.28, 6.65) (6.28, 6.65) (6.28, 6.65) (6.28, 6.65)
RA (5.32,5.56) (5.33,5.57) (5.32,5.56) (5.32,5.56) (5.32,5.56) (5.32,5.56)
IA (0.00, 0.00) (0.00, 0.00) (0.0, 0.00) (0.00, 0.00) (0.0, 0.00) (0.00, 0.00)
Tc 100% 0% 100% 100% 34% 0%
Te 100% 0% 5% 100% 34% 0%
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relative change in cases and confirmed cases were quite similar regardless of whether these

countries totally close or fully open their borders. Travel restrictions were very effective for

countries in Groups 1 and 2, with clear distinctions in the country’s pandemic situation upon

adoption of the different travel regulation policies.

To study the effectiveness of policy coordination, we investigated the percentage of people

allowed to travel and the overall worldwide pandemic situation under different globally coordi-

nated travel policies. Here we considered eight countries, where countries 1 and 2 have R(0)

between 0.47 and 0.9, countries 3 and 4 have R(0) between 0.9 and 1, countries 5 and 6 have

R(0) between 1 and 1.1, and countries 7 and 8 have R(0) between 1.1 and 6.47. The first two

scenarios are the most extreme, where all countries are fully open or fully closed, denoted by S-1

and S-2, respectively. We used S-3 to denote the scenario where all countries require a 14-day

quarantine for all arrivals; S-4 to denote the scenario where all countries use the simplified

version of the average control policy; S-5 to denote the scenario where countries 1, 3, 5, and

7 require a 14-day quarantine for all arrivals while countries 2, 4, 6, and 8 are fully closed to

inbound travel; and S-6 to denote the scenario where countries 1, 3, 5, and 7 use the simplified

version of the proposed average control policy while countries 2, 4, 6, and 8 are fully closed to

inbound travel. We used the same outcome measurements as in the previous simulation. Finally,

we also evaluated the global coordination effectiveness by averaging the above measurements

for all countries.

Table 2 reports the effectiveness of different coordinated responses in the three groups

of countries along with a global average. Under S-4, where all countries use the proposed

average control policy, the expected inbound travel increased up to 50% of normal travel, and

the global pandemic situation was similar to that seen in scenarios where the borders are closed.

These findings demonstrate that a global response is critical for containing the pandemic while

maximizing safe travel.
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Table 2: Shown are 2.5th and 97.5th percentiles of travel effects and health outcomes for scenarios
S-1 through S-6 using estimated epidemiological parameters to simulate epidemic and travel
data. See Table 1 caption for more information.

S-1 S-2 S-3 S-4 S-5 S-6
G RU (10.68, 11.56) (2.65, 3.06) (4.02, 4.51) (2.66, 3.07) (3.45, 3.92) (2.66, 3.07)

RA (8.13, 8.89) (2.77, 3.13) (4.92, 5.43) (2.77, 3.14) (4.08, 4.55) (2.77, 3.13)
IA (1.57, 1.68) (0.00, 0.00) (1.57, 1.68) (0.00, 0.01) (0.80, 0.85) (0.00, 0.00)
Tc 100% 0% 100% 50% 50% 25%
Te 100% 0% 5% 50% 3% 25%

G1 RU (11.16, 12.23) (0.59, 0.93) (3.17, 3.61) (0.60, 0.94) (1.84, 2.22) (0.59, 0.93)
RA (9.01, 9.95) (0.74, 1.06) (4.42, 4.90) (0.75, 1.08) (2.52, 2.91) (0.75, 1.07)
IA (1.98, 2.09) (0.00, 0.00) (1.98, 2.10) (0.00, 0.01) (1.00, 1.04) (0.00, 0,00)
Tc 100% 0% 100% 64% 50% 32%
Te 100% 0% 5% 64% 3% 32%

G2 RU (12.13, 13.29) (1.54, 2.13) (2.98, 3.68) (1.54, 2.13) (2.50, 3.19) (1.54, 2.13)
RA (8.14, 9.14) (1.62, 2.13) (4.08, 4.81) (1.62, 2.13) (3.33, 4.04) (1.62, 2.13)
IA (1.77, 1.89) (0.00, 0.00) (1.77, 1.89) (0.00, 0.01) (0.89, 0.95) (0.00, 0.00)
Tc 100% 0% 100% 64% 50% 32%
Te 100% 0% 5% 64% 3% 32%

G3 RU (7.31, 7.45) (6.94, 7.08) (6.94, 7.08) (6.94, 7.08) (6.95, 7.08) (6.94, 7.08)
RA (7.25, 7.35) (7.10, 7.20) (7.12, 7.22) (7.10, 7.20) (7.11, 7.21) (7.10, 7.20)
IA (0.77, 0.82) (0.00, 0.00) (0.77, 0.82) (0.00, 0.00) (0.42, 0.45) (0.00, 0.00)
Tc 100% 0% 100% 7% 50% 3%
Te 100% 0% 5% 7% 3% 3%
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We used pandemic data from the Johns Hopkins University coronavirus data repository

through May 31, 2020 (26). Flight data are from the Official Airline Guide (OAG). Because

only data for January and February 2020 are available from OAG, we estimated flight data for

other time periods using the OpenSky Network database (27). This database tracks the number

of flights from one region to another over time, which can be used to calculate the rate of flight

reduction and to estimate flight data for other months. We considered the starting day for each

country to be the first day the country exceeded 500 total confirmed cases, because the estimation

for the number of undetected infectious people is unstable during each country’s early pandemic

period. For similar reasons, we only analyzed the 92 countries whose total number of confirmed

infected cases exceeded 500 by April 15, 2020. The remaining countries were combined into a

single fictional country labeled “Other.” All people traveling from this group of countries were

assumed to be susceptible.

To demonstrate the ability of our model to capture the real evolution of the pandemic, we

fit it to real data as follows. The fitting period starts when each country exceeded 500 total

confirmed cases for the first time before May 31. The transmission rate α may change during

the study. We first identify zero crossings of the second derivative of the function, i.e., where

the function changes from convex to concave, and then use one value of α for the pre-period

and another for the post-period. To reduce noise, we use a 7-day moving average, rather than

daily values, to detect these change points. The initial condition for each country is chosen as

(S(0), I(0), A(0), R(0), D(0), Ru(0)), where A(0), R(0), D(0) are obtained from the real data,

and assign Ru(0) = 0. We obtain I(0) by simulating each country independently as in Warne

et al. (2020) (22), where we allow I(0) to follow a uniform distribution with a range from 0 to

50 ∗ U(0), where U(0) is the total confirmed cases in the country on that day. The median value

of the posterior for I(0) is used as a point estimate for I(0). Due to reporting delays and data

quality concerns, especially for the recovered confirmed cases, we only used the daily confirmed

14
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cases and daily deceased to construct the distance when performing the ABC algorithm to study

the model’s parameters. The distance chosen for the calibration was the standardized Euclidean

distance, defined as follows:

Distance =
1

T


√√√√ T∑

t=1

(U(t)− U (s)(t))2

sd(U(t))
+

√√√√ T∑
t=1

(D(t)−D(s)(t))2

sd(D(t))


where t = 1, . . . , T are the days during the study period, U(t) is the total daily confirmed cases,

D(t) is the daily deceased cases in that country at day t, and U (s)(t) and D(s)(t) are the daily

cases from simulated data. The prior standard deviations sd(U(t)) and sd(D(t)) were obtained

by simulating the data for different combinations of parameters during the study period, and

keeping 1000 realizations with the total number of confirmed and deceased cases at the end of

the period no more than 5% different compared to the real data. To avoid the high rejection

rate, we added one step by first running a preliminary analysis on each country independently

and obtaining the posterior distribution for the parameters. We then used these parameters to

simulate the data. To encourage more diversity in the realizations, we replaced the parameter α

with α+ runif(−α/2, α/2), where runif(−α/2, α/2) is a random number drawn from a uniform

distribution from −α/2 to α/2. Based on these 1000 realizations, we then calculated sd(D(t))

and sd(U(t)) for t = 1, . . . , T .

Figure 1 shows the fit of our model for eight countries with the highest number of accumulated

confirmed cases up to May 31, 2020: the United States of America (USA), Brazil (BRA), Russia

(RUS), the United Kingdom (GBR), Spain (ESP), Italy (ITA), France (FRA), and India (IND).

Overall, Figure 1 shows that our model effectively captures the real data (red), as the estimated

line (blue) is very close to the observed line and is contained within the confidence interval.

To understand how different travel restriction policies affect the pandemic both globally and

in each country, we used the estimated parameters for all countries before May 31 together with
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the travel data to simulate the course of the pandemic during the first 14 days of June 2020 under

four different travel regulation scenarios. In the first scenario, we used 2020 travel data during

the COVID-19 pandemic. In the second scenario, where all countries are fully open, we used

2019 travel data from the pre-pandemic period. In the third scenario, all countries fully closed

their borders. Finally, we supposed all countries use the simplified average control policy.

Table 3 reports the relative change in the total number of cases, the total number of confirmed

cases, and the inbound travel capacity for different countries. We evaluated the global effect

of the pandemic for all countries and for the three groups of countries based on their R(t)

values as defined earlier. The proposed simplified average control policy was the most effective

in controlling the pandemic while still maximizing travel capacity. When countries used the

proposed policy, the relative change in cases and confirmed cases was similar to those observed

under the fully closed scenario. At the same time, the global travel rate remained as high as 58%

compared to the fully open scenario. Additionally, the countries belonging to Group 1 benefited

the most from travel restrictions with very little change in cases, even when comparing the most

extreme scenarios. The 95% confidence interval for the relative change in cases for Group 1

was between 0.02 to 0.03 under the fully closed scenario and between 0.05 to 0.06 under the

fully open scenario. Group 2 countries also saw only nominal benefit when closing the border

compared to the fully open case. The 95% confidence interval for the relative change in cases

decreased to (0.22, 0.26) under the fully closed scenario and to (0.24, 0.27) under the fully open

scenario. Countries in Group 3 benefited the least from travel restrictions. The relative change

in cases was between 0.80 to 0.84 under the fully closed scenario and between 0.81 to 0.85

under the fully open scenario. Finally, we also saw a huge reduction in global travel under the

shutdown scenario with 2020 travel amounting to only 33% of 2019 travel.

Figure 2B demonstrates how much different countries benefited from travel restrictions

during the first 2 weeks of June. Greece (GRC), Thailand (THA), Cyprus (CYP), and New
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Table 3: Shown are 2.5th and 97.5th percentiles of relative change in the pandemic situation
and percentages of inbound travelers from different groups of countries for different opening
scenarios. G denotes all countries; G1, G2, and G3 denotes countries in Group 1, 2, and
3, respectively. RelU is the relative change in the number of cases (including detected and
undetected), and RelA is the relative change in the number of cases that were confirmed.

2019 data 2020 data Fully closed Proposed

G RU (0.28, 0.31) (0.27, 0.30) (0.26, 0.29) (0.26, 0.29)
RA (0.29, 0.31) (0.28, 0.30) (0.27, 0.29) (0.27, 0.29)

Inbound travel 100% 33% 0% 58%

G1 RU (0.05, 0.06) (0.03, 0.04) (0.02, 0.03) (0.02, 0.03)
RA (0.04, 0.05) (0.03, 0.04) (0.02, 0.03) (0.02, 0.03)

Inbound travel 100% 29% 0% 55%

G2 RU (0.24, 0.27) (0.23, 0.26) (0.22, 0.26) (0.22, 0.26)
RA (0.25, 0.28) (0.24, 0.27) (0.24, 0.27) (0.24, 0.27)

Inbound travel 100% 37% 0% 66%

G3 RU (0.81, 0.85) (0.80, 0.84) (0.80, 0.84) (0.79, 0.84)
RA (0.81, 0.85) (0.81, 0.84) (0.81, 0.84) (0.80, 0.84)

Inbound travel 100% 36% 0% 54%
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Zealand (NZL) benefited most from border closure.

In this paper, we proposed a flexible network meta-population model for comparing the

effectiveness of international travel policies and for assessing the benefit of international travel

policy coordination. Using a mixture of simulation and theoretical findings, we showed that

our proposed average control policies can effectively preserve global public health by reducing

the number of cases while allowing international travel, thereby preserving the global economy.

Our results show that globally coordinated travel policies are not only necessary for resuming

international travel, but that it is also possible to accomplish this goal with minimal effect on

public health relative to full border closure.

On the technical side, we proposed a marginal approach for estimating the epidemiological

parameters for each country in a global network meta-population model. This approach helped

overcome some of the difficulties of simultaneously or jointly estimating the model parameters.

Our statistical approach has one main limitation: we tried to control a hidden state of the

model, the number of undetected infected cases I(t), which by definition is not available in the

collected data. We therefore need to have a robust way to keep track of this number. Given

the model, with the available data, we can approximate the hidden state I(t) by using the

approximation I(t) ≈ U(t+1)−U(t)
γ

, where U(t) = A(t) +R(t) +D(t) and γ is the identification

rate that can be estimated from data. High-quality data is critical for tracking the number of

undetected infected cases. In public health settings, one of the best strategies to estimate I is

regular use of randomized serology testing (28–30).

Our model assumes active confirmed cases do not spread the disease. Since patients with

COVID-19 may sometimes spread the disease to healthcare workers or their family members

when they are in quarantine, this assumption may not hold in practice. Another limitation is

that we used a conservative approach to model the global pandemic by assuming that travelers

are either susceptible or undocumented infected. However, in reality, some travelers may be
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recovered confirmed or recovered unconfirmed cases, and therefore cannot infect anyone after

arrival in another country. If this fact is taken into account, the number of people traveling may

be higher than the currently reported numbers suggest. Unfortunately, the way empirical real

data are currently reported does not reflect this fact.

Our proposed policies would allow travelers to enter a country without a quarantine require-

ment, with the travel rate adjusted based on the pandemic situation in the receiving country and

the country of departure. Under this policy, the proportion of people allowed to travel from a

high-risk country would be low, while a higher proportion of people would be permitted to travel

from a low-risk country. Therefore, the proposed policy would allow control of the pandemic

while encouraging travel, especially from low-risk countries.

The proposed travel regulation policies are designed for a meta-population model with local

pandemic components as described in Warne et al. (2020) (22). Replacing this local infectious

model (22) with different models such as SEIR or MSEIR as discussed in (31) can be easily

accommodated by our modeling architecture. It is also possible to modify the proposed regulation

policies to adapt to new virus variants.

Finally, although COVID-19 vaccines are becoming available and vaccination campaigns are

underway at the time of writing, we have a long way to go before the entire world can achieve

herd immunity, which is estimated to be attainable around 2024 (32), if ever (33). There is also

increasing evidence that even as vaccines become more readily available, vaccine hesitancy

remains high in some countries or some segments of the population (34–37). Also, with new

variants of the virus emerging in South Africa, the U.K., and Brazil, countries are likely hesitant

to lift their travel restrictions in the near future. For all of these reasons, evidence-based strategies

that simultaneously preserve both global public health and the global economy are much needed.
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Figure 1: Model fit for different countries. For each country, the fit is demonstrated by the
number of accumulated confirmed cases and the accumulated death confirmed. In each plot, the
red line is the real data, the blue line is the median fitted values, and the shaded region is the 95%
confidence interval. BRA, Brazil; ESP, Spain; FRA, France; GBR, Great Britain; IND, India;
ITA, Italy, RUS, Russia; USA, United States.
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Figure 2: (A) Prediction of the average number of undetected infected cases for different travel
regulation policies. “Fully open” indicates no travel restrictions are in place, “Fully closed”
indicates no travel is permitted, and “Average control” denotes our proposed policy whereby the
number of daily undetected infected cases stays below a threshold of c = 70 (the dashed line)
on average. (B) Scatter plot for the relative change in total new cases for each country in the
two most extreme scenarios: fully closed and fully open. The 97.5th percentile value of relative
change in each country’s new cases under the fully closed scenario (x-axis) is plotted versus the
fully open scenario (y-axis). The closer a country is to the reference line x = y, the less benefit
that country gains from travel restrictions.
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1 Models and methods

1.1 Local travel model

We first consider a local epidemiological model as in Warne et al. (2020) (1). In this local model,

for each country, at a given time, its population’s status is divided into 6 mutually exclusive com-

partments: susceptible (S), undetected infected (I), active confirmed (A), confirmed recovered

(R), confirmed deceased (D) and unconfirmed recovered (Ru). Its dynamic states evolve as:

S
α−→ I, I

γ−→ A, A
β−→ R, A

δ−→ D, I
β−→ Ru,

where α is the transmission rate, γ is the identification rate, β is the recovery rate, and δ

is the death rate. Suppose that for a given country the status of its population at time t is

X(t) = [S(t), I(t), A(t), R(t), D(t), Ru(t)], and θ = (α, β, δ, γ) represents the parameter of

the statistical model for the country. Using the tau leaping method by Gillespie (2001) (2), the

status of its population at time (t + τ) evolves as X(t + τ) = X(t) +
∑5

i=1 Yj
(
hj(X(t))τ

)
νi.

In the above formula, νi, i = 1, · · · , 5, are the transition vectors, ν1 = [−1, 1, 0, 0, 0, 0]T , ν2 =

[0,−1, 1, 0, 0, 0]T , ν3 = [0, 0,−1, 1, 0, 0]T , ν4 = [0, 0,−1, 0, 1, 0]T , and ν5 = [0,−1, 0, 0, 0, 1]T .

Let the random variables Yi
(
hi(X(t))τ

)
be Poisson distributed with rates hi(X(t)τ), for i ∈

{1, · · · , 5}. More specifically, h1(X(t)τ) = ατ S(t)I(t)
P

, h2(X(t)) = γτI(t) , h3(X(t)) =

βτA(t), h4(X(t)) = δτA(t), h5(X(t)) = βτI(t), and P is the country’s population.

We choose τ = 1, which represents the change in population status after each day. Then the

dynamic evolution of the epidemic in the country can be elaborated further as follows. After

each day, the state of the model evolves from X(t) = [S(t), I(t), A(t), R(t), D(t), Ru(t)] to

X(t+ 1) = [S(t+ 1), I(t+ 1), A(t+ 1), R(t+ 1), D(t+ 1), Ru(t+ 1)] by the transformation

X(t + 1) = X(t) +
∑5

j=1 Yj
(
hj(X(t))

)
νj . In particular, S(t + 1) = S(t) − Y t

1 , I(t + 1) =

I(t)+Y t
1 −Y t

2 −Y t
5 , A(t+1) = A(t)+Y t

2 −Y t
3 −Y t

4 , R(t+1) = R(t)+Y t
3 , D(1) = D(t)+Y t

4 ,

2
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Ru(t + 1) = Ru(t) + Y t
5 , where Y t

i are Poisson distributed with rates hi(X(t)), i = 1, · · · , 5,

h1(X(t)) = αS(t)I(t)
P

, h2(X(t)) = γI(t), h3(X(t)) = βA(t), h4(X(t)) = δA(t), h5(X(t)) =

βI(t).

Notice that the local model can be made more flexible by letting the transmission rate α

change over time, i.e., setting α = α1I0,T (1)(t) + α2IT (1),T (2)(t) + · · · + αmIT (m−1),T (m)(t),

where 0 = T (0) < T (1) < · · · < T (m) = T , and the indicator function IT (i),T (i+1)(t) = 1 if

T (i) < t ≤ T (i+ 1), and 0 otherwise.

1.2 Global travel model

Our global epidemiological model model is built based on the local model by utilizing travel

flow data as follows. For a given country i, suppose the status of its population at the end of

day (t − 1) is Xi(t − 1) = [Si(t − 1), Ii(t − 1), Ai(t − 1), Ri(t − 1), Di(t − 1), Ru
i (t − 1)],

and the parameter of the statistical model for this country is θi = (αi, βi, δi, γi). On day t, the

epidemic state in country i is updated via two steps. First, the state evolves based on country i’s

internal population. Second, the state evolves based on external factors, here the inflow of airline

travelers from other countries and the outflow of airline travelers to other countries.

We consider changes due to internal effects first. For country i, the transition from t− 1 to t

is characterized by the shift from Xi(t− 1) to Xi(t) = [Si(t), Ii(t), Ai(t), Ri(t), Di(t), R
u
i (t)]

where

Si(t) = Si(t− 1)− Y1,i(t− 1), Ri(t) = Ri(t− 1) + Y3,i(t− 1),

Ii(t) = Ii(t− 1) + Y1,i(t− 1)− Y2,i(t− 1)− Y5,i(t− 1), Di(t) = Di(t− 1) + Y4,i(t− 1),

Ai(t) = Ai(t− 1) + Y2,i(t− 1)− Y3,i(t− 1)− Y4,i(t− 1), Ru
i (t) = Ru

i (t− 1) + Y5,i(t− 1).

3
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and Yj,i(t− 1), j = 1, · · · , 5, are Poisson distributed with rates

h1,i(Xi(t− 1)) = αi
Si(t− 1)Ii(t− 1)

Pi(t− 1)
, h2(Xi(t− 1)) = γiIi(t− 1),

h3(Xi(t− 1)) = βiAi(t− 1), h4(Xi(t− 1)) = δiAi(t− 1),

h5(Xi(t− 1)) = βiIi(t− 1),

and Pi(t− 1) is the size of the population in country i on day (t− 1).

The travel data specify how many new individuals enter the country on day t from each of the

disease states. The current state is updated as X+
i (t) = [S+

i (t), I+
i (t), A+

i (t), R+
i (t), D+

i (t), Ru+
i (t)],

where X+
i (t) = Xi(t) + f in

i (t)− f out
i (t), where f in

i (t) represents the six compartments of people

entering the country on day t and f out
i (t) represents the six compartments of people leaving

the country on day t. Due to temperature checks and other approaches for screening travelers,

we assume that all active confirmed cases are unable to travel. We also assume that deceased

individuals do not travel between countries. Consequently, the compartments in f in
i (t) and f out

i (t)

only include four of the six disease states: susceptible (S), undetected infected (I), recovered

confirmed (R), and recovered unconfirmed (Ru). Travelers in the recovered confirmed (R) and

recovered unconfirmed (Ru) states do not impact the epidemiological state of destination popula-

tion. However, data on all four categories is not readily available. While each country keeps track

of the total number of confirmed recovered each day, they do not necessarily keep track of how

many of them leave the country. Therefore, we take a conservative approach and assume that each

traveler either belongs to the S category or the I category, meaning travelers bring some potential

risk when they arrive in a new country as undetected infected will likely spread the disease

and susceptible individuals reduce population immunity and can proliferate disease spread. In

other words, we impose f in
i (t) = [S in

i (t), I in
i (t), 0, 0, 0, 0] and f out

i (t) = [Sout
i (t), Iout

i (t), 0, 0, 0, 0],

where I in
i (t) and Iout

i (t) are the number of undetected infected that enter and leave country

4
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i on day t, respectively. S in
i (t) and Sout

i (t) are the total numbers of susceptible individuals

who enter and leave the country i on day t, respectively. S in
i (t) + I in

i (t) = Tin
i (t) gives the

total number of travelers that enter country i on day t, and Sout
i (t) + Iout

i (t) = Tout
i (t) gives

the total number of individuals who leave the country i on day t. As such, Xi(t) and X+
i (t)

only differ in the first two categories, where X+
i (t) = [S+

i (t), I+
i (t), Ai(t), Ri(t), Di(t), R

u
i (t)],

S+
i (t) = Si(t)+S in

i (t)−Sout
i (t), and I+

i (t) = Ii(t)+I in
i (t)−Iout

i (t). On day (t+1), the internal

model will be updated based on X+
i (t). The compartmental quantities are updated as follows

Si(t+ 1) = S+
i (t)− Y1,i(t), Ri(t+ 1) = Ri(t) + Y3,i(t),

Ii(t+ 1) = I+
i (t) + Y1,i(t)− Y2,i(t)− Y5,i(t), Di(t+ 1) = Di(t) + Y4,i(t),

Ai(t+ 1) = Ai(t) + Y2,i(t)− Y3,i(t)− Y4,i(t), Ru
i (t+ 1) = Ru

i (t) + Y5,i(t).

and Yj,i(t), j = 1, · · · , 5, are Poisson distributed with rates

h1,i(Xi(t)) = αi
S+
i (t)I+

i (t)

Pi(t)
, h2(Xi(t)) = γiI

+
i (t), h3(Xi(t− 1)) = βiAi(t),

h4(Xi(t)) = δiAi(t), h5(Xi(t)) = βiI
+
i (t).

Our model assumes that active confirmed cases do not spread the disease due to self-isolation

or hospitalization. Therefore, undetected infected cases are the only ones to spread the disease.

Moreover, when I = 0, the pandemic in the country will cease if we stop admitting undetected

infected cases from other countries. Each day, among the people that travel from country i

to other countries, there may be some undetected infected cases. If an undetected infected

individual enters a country with zero undetected infectious cases, they will seed a new outbreak

in this country. Suppose that on day t, there are Iout
i (t) undetected infected people departing

from country i to country j, j 6= i. Then Iout
i (t) =

∑n
j=1,j 6=i I

out
ij (t), where Iout

ij (t) is the number

of undetected infected moving from country i to country j at day t, and n is the total number of

5
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countries. We model the number of undetected infected people who are leaving country i for

country j at day t using a multinomial distribution with probabilities based on travel network

data. In other words, {Iout
ij (t)}1≤j 6=i≤n ∼M(Iouti (t), {pij(t)}1≤j 6=i≤n), where pij(t) =

Tout
ij (t)

Tout
i (t)

and

Tout
ij (t) is the total number of travelers leaving country i for j at day t. Let us denote Sout

ij (t)

as the number of susceptible people who travel from country i to country j at day t. Then

Tout
ij (t) = Sout

ij (t) + Iout
ij (t). Therefore, at the end of day t, the six states for country i are updated

as X+
i (t) = [S+

i (t), I+
i (t), Ai(t), Ri(t), Di(t), R

u
i (t)], where

S+
i (t) = Si(t) + S in

i (t)− Sout
i (t) = Si(t) +

∑
1≤j 6=i≤n

Sout
ji (t)− Sout

i (t)

I+
i (t) = Ii(t) + I in

i (t)− Iout
i (t) = Ii(t) +

∑
1≤j 6=i≤n

Iout
ji (t)− Iout

i (t).

1.3 Travel regulation policies

Our goal is to find the value p so that the number of undetected infected I+(1), I+(2), · · · , I+(T )

stay below a given threshold c. More specifically, we consider two types of regulation, an average

control policy and a probability control policy described below:

1. Regulation in terms of average control, where we find a proportion p such that the average

number of undetected cases each day in the next T days stays below a threshold c, i.e.,

E(I+(1)), E(I+(2)), · · · , E(I+(T )) < c, where E denotes the expectation.

2. Regulation in terms of probability control, where we find a proportion p such that the

probability of undetected cases each day in the next T days being lower than a threshold c

is at least at π, i.e. P (I+(1) < c, I+(2) < c, · · · , I+(T )+ < c) ≥ π.

The following lemmas gives us the proportion p that satisfies the above requirements.

Lemma 1. Under the assumptions of our model, for a given country with population size P , the

6
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initial status X(0) = [S(0), I(0), A(0), R(0), D(0), Ru(0)] and the parameter of the statistical

model is θ = (α, β, δ, γ), let us denote ψ = 1 + αS(0)
P
− γ − β,

1. The average control requirement is satisfied if

p = min

(
(c/I(0))1/k

ψ
− 1

)
k=1,··· ,T

(1)

2. The probability control requirement is satisfied if

p = min

(
(c(1− π)/I(0))1/k

ψ
− 1

)
k=1,··· ,T

(2)

Proof:

1. Average control. With an initial number I(0) of undetected infected cases, on the first

day, from the internal evolution process we have I(1) = I(0) + Y1,0 − Y2,0 − Y5,0, then

at the end of this day, we have I+(1) = I(1)(1 + p), where Y1,0 ∼ Poisson(αS(0)I(0)
P

),

Y2,0 ∼ Poisson(γI(0)) and Y5,0 ∼ Poisson(βI(0)). Therefore, we have: E(I+(1) =

E
(
E(I+(1)/I(0))

)
= I(0)(1 + αS(0)

P
− γ − β)(1 + p) < I(0)ψ(1 + p). Similarly, we

have: E(I+(2)) = E
(
E(I+(2) /I+(1))

)
= E

(
I+(1)(1 + αS(1)

P
− γ − β)(1 + p)

)
<

(1 +p)ψE(I+
1 ) = (1 +p)2ψ2I(0). Repeating this argument until reaching day T results in

E(I(T )+) < (1 + p)TψT I0. For average control, therefore, we want to find a p such that:

(1 + p)ψI(0), (1 + p)2ψ2I(0), · · · , (1 + p)TψT I(0) < c. By solving the above inequality,

the p that satisfies the requirements is

p = min

(
(c/I(0))1/k

ψ
− 1

)
k=1,··· ,T

�

7
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2. Probability control. Here we have

E
(
I+(1)/I(0)

)
= ψ(1 + p)I(0), E

(
I+(2)/I+(1)

)
< ψ(1 + p)I+(1),

E
(
I+(3)/I+(2)

)
< ψ(1 + p)I+(2), · · · , E

(
I+(T )/I+(T − 1)

)
< ψ(1 + p)I+(T − 1).

Let us denote I+(1)
ψ(1+p)

= I∗(1), I+(2)
ψ2(1+p)2

= I∗(2), · · · , I+(T )
ψT (1+p)T

= I∗(T ). The sequence

I∗(1), I∗(2), · · · , I∗(T ) forms a non-negative supermartingale sequence. Since

E
(
I∗(1)/I(0)

)
= I(0), E

(
I∗(2)/I∗(1)

)
< I∗(1),

E
(
I∗(3)/I∗(2)

)
< I∗(2), · · · , E

(
I∗(T )/I∗(T − 1)

)
< I∗(T − 1).

Applying the maximal inequality for a non-negative supermartingale we have: P (∪i≥1(I∗(i) ≥

m)) ≤ E(I∗(1))
m

, for a given m > 0. This gives 1−P (∪i≥1(I∗(i) ≥ m)) ≥ 1− E(I∗(1))
m

. In

other words, P (I∗(1) < m, I∗(2) < m, · · · , I∗(T ) < m) ≥ 1 − E(I∗(1))
m

= 1 − I(0)
m

.

If we want P (I∗(1) < m, I∗(2) < m, · · · , I∗(T ) < m) ≥ pc, then the smallest

value of m must satisfy the relation 1 − I(0)
m

= π. We choose m = I(0)
1−π . We have:

P (I∗(1) < m, I∗(2) < m, · · · , I∗(T ) < m) = P
(
I+(1) < mψ(1 + p), I+(2) <

mψ2(1 + p)2, · · · , I+(T ) < mψT (1 + p)T
)
. So, if we want I+(1), I+(2), · · · , I+(T ) < c,

then we need to find a p such that mψ(1+p) < c,mψ2(1+p) < c, · · · ,mψT (1+p)T < c.

In other words, we need a p that satisfies: p < (c/m)1/k

ψ
− 1, ∀k = 1, · · · , T , or

p < (c(1−π)/I(0))1/k

ψ
− 1, ∀k = 1, · · · , T . In conclusion, for a probability control level π

and a threshold c in the next T days, the required p is

p = min

(
(c(1− π)/I(0))1/k

ψ
− 1

)
k=1,··· ,T

�

Remark: The probability control policy is more conservative than the average control policy.

Under the same threshold c, the difference between the two policies is the factor (1− π) in the

8
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numerator of the probability control strategy. If we want the probability control to have at least

0.9 of the threshold c of average control, this factor becomes 0.1. As a result, the proportion of p

in probability control is much smaller than the proportion of p in average control. If we want to

use the probability control with a probability of at least 0.9, we need to set up the threshold c

in probability control higher than the threshold c in average control to make sure that our p is

non-negative.

Example 1. Here we give one example of using the average control policy to regulate the travel.

For simplicity, we consider a small world with only three countries, with the following initial

states and true parameter values:

X1(0) = [S1(0), I1(0), A1(0), R1(0), D1(0), Ru
1(0)] = (28718795, 68, 167, 259, 149, 101)

θ1 = (α1, β1, δ1, γ1) = (0.82, 0.18, 0.09, 0.68)

X2(0) = (6358016, 40356, 1573, 454, 55, 320)

θ2 = (0.74, 0.15, 0.02, 0.06)

X3(0) = (28507087, 206, 764, 619, 72, 188)

θ3 = (0.92, 0.13, 0.02, 0.76)

and we want to regulate the incoming travel in the first country (country 1). These choices of

initial conditions and parameter values are based on our simulations where benefits of travel

restriction can be seen clearly. We now need to find the regulation sequences {p21(t)}t=1,··· ,7

and {p31(t)}t=1,··· ,7 that can regulate airline travel from country 2 to country 1 and from country

3 country 1 such that for the next T = 7 days, the number of undetected infected cases in the

arriving country will not exceed c = 70 cases on average per day. Applying Lemma 1a, we can

find parameter p for country 1 as p = min
(
(c/I0)1/k/ψ − 1

)
k=1,··· ,7 = 0.035.

So the sequence of the number of undetected infected imported cases that country 1 can

9
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accept each day as
((

(1 + p)ψ
)i
I(0)

)
i=1,··· ,7

= (2, 2, 2, 2, 2, 2, 2). Because country 1 has two

“neighbors”, so country 1 can accept about 1 undetected infected from each neighbor each day

during the regulation period.

The next step is to predict, for each day, the number of undetected infected travelers from

countries 2 and 3 that can enter country 1 for the next 7 days when full travel is allowed. We get

these numbers by simulating data given the true parameters under the fully open scenario. We

first simulate 10000 stochastic realizations under this scenario and use the 0.975 percentile of

the simulated sequence of undetected infected in countries 2 and 3 in the next 7 days as proxies

for the number of undetected infected cases in these countries. Then we simulate a deterministic

realization under the fully open scenario during the regulation period and use the values from the

deterministic realization to calculate the percentage of undetected infected people in countries 2

and 3. Based on these percentages and the travel data, we estimate how many undetected infected

individuals enter country 1 from country 2 and country 3 daily during the regulation period if

full travel is allowed. The final step is obtaining the regulation sequence that country 1 can allow

country 2 and country 3 to enter its border. The regulation sequence that country 1 can allow for

country 2 to enter its border during the regulation period is obtained by dividing the number of

daily undetected infected cases that country 1 can tolerate from country 2 by the daily estimated

number of imported undetected infected cases from country 2 if full travel is allowed. Notice

that if the daily proportion is greater or equal to 1, we set it to 1. Repeat the same procedure, we

can also find the regulation sequence that country 1 can allow for country 3 to enter its border.

Following the above steps, we can find that in the next 7 days, the regulation sequence of

proportions of people who can move from country 2 to country 1 is (0.103, 0.076, 0.051, 0.035,

0.022, 0.014, 0.009), and the sequence of proportions of people who can move from country

3 to country 1 is (1, 1, 1, 1, 1, 1, 1). Compared to the fully open scenario, using the average

control approach with the threshold of 70 cases during the 7-day regulation period, about 6.03%
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of travelers from country 2 are allowed enter the country 1, and all travelers from country 3 are

allowed to enter country 1. Overall, the volume of inbound travelers in country 1 is about 88.64%

of the normal levels.

In practice, the value of the transmission rate α varies over time, and we therefore provide an

additional lemma that generalizes Lemma 1 to address the aspect of varying α.

Lemma 2. Under the assumptions of our model, for a given country with population size P ,

initial status X(0) = [S(0), I(0), A(0), R(0), D(0), Ru(0)] and the parameter of the statistical

model for this country over the time period from 0 = T (0) to T = T (m) is θ = (α, β, δ, γ),

where α = α1I0,T (1)(t) + α2IT (1),T (2)(t) + · · · + αmIT (m−1),T (m)(t). Let us denote ψmax =

max
(

1 + αi
S(0)
P
− γ − β

)
i=1,...,m

.

1. The average control requirement is satisfied if

p = min

(
(c/I0)1/k

ψmax
− 1

)
k=1,··· ,T

(3)

2. The probability control requirement is satisfied if

p = min

(
(c(1− π)/I0)1/k

ψmax
− 1

)
k=1,··· ,T

(4)

Proof:

1. Average control. Follow the same argument as in the proof of Lemma 1, we have

E(I+(1) = E
(
E(I+(1)/I(0))

)
= I(0)(1 + αS(0)

P
− γ − β)(1 + p) = I(0)(1 + α1

S(0)
P
−

γ − β)(1 + p) < I(0)ψmax(1 + p). Repeating the argument until we reach day T

yields : E(I(T )+) < (1 + p)TψTmaxI(0). Therefore, we want to find a p such that

(1 + p)ψmaxI(0), (1 + p)2ψ2
maxI(0), · · · , (1 + p)TψTmaxI(0) < c. Hence the value p that
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satisfies the requirements for average control is

p = min

(
(c/I(0))1/k

ψmax
− 1

)
k=1,··· ,T

�

2. Probability control. Here we have

E
(
I+(1)/I(0)

)
< ψmax(1 + p)I(0), E

(
I+(2)/I+(1)

)
< ψmax(1 + p)I+(1),

E
(
I+(3)/I+(2)

)
< ψmax(1 + p)I+(2), · · · , E

(
I+(T )/I+(T − 1)

)
< ψmax(1 + p)I+(T − 1).

Let us denote I+(1)
ψmax(1+p)

= I∗(1), I+(2)
ψ2

max(1+p)2
= I∗(2), · · · , I+(T )

ψT
max(1+p)T

= I∗(T ). Similar to

Lemma 1, the sequence of I∗(1), I∗(2), · · · , I∗(T ) forms a non-negative supermartingale

sequence. Hence, following the same arguments as in Lemma 1, we have for a probability

control level π and a threshold c in the next T days, the required p is

p = min

(
(c(1− π)/I(0))1/k

ψmax
− 1

)
k=1,··· ,T

�

1.4 Choosing distance and summary statistics in Approximation Bayesian
Computational

There are many variants of ABC, but they are all based on a comparison of observed and

simulated data, which in most cases requires specification of data summary statistics, a distance

measure, and a scalar distance threshold ε. The most basic ABC algorithm, the so-called accept-

reject method, starts by simulating a parameter value from a prior distribution and then uses the

model, given this parameter value, to generate one realization of data. If the distance between

the summary statistics for the observed data and the summary statistics for the simulated data

is less than or equal to ε, the sampled parameter value is retained; otherwise, it is discarded.

The collection of accepted parameter values constitutes a sample from an approximation of the
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posterior distribution. The approximation generally improves with smaller values of ε, but at the

same time it becomes more computationally expensive to obtain acceptances.

This basic ABC algorithm is computationally inefficient when working with a small threshold

ε as a vast majority of sampled parameter values are rejected. To address this inefficiency, some

sequential variants of ABC have been proposed, such as the ABC Markov chain Monte Carlo

algorithm (ABC-MCMC) by Marjoram, et al. (2003) and the ABC Sequential Monte Carlo

algorithm (ABC-SMC) by Sisson et al. (2007), Toni, et al. (2009), and Drovandi and Pettitt

(2011) (3–6). In this paper, we use the variant from Drovandi and Pettitt (2011) (6), called

replenishment ABC (RABC). For its implementation, we use the R package protoABC from

Ebert (2020) (7). This package is very flexible as the users can employ any priors, generative

models, and distance functions.

A commonly used distance is the Euclidean distance due to its simple form. In our problem

setting, this Euclidean distance L
(
S(Data(i)), S(Data)

)
can be written as:

(
1

T

T∑
t=1

[(
A(i)(t)− A(t))2 + (R(i)(t)−R(t))2 + (D(i)(t)−D(t)

)2
])1/2

,

where
(
A(i)(t), R(i)(t), D(i)(t)

)
and

(
A(t), R(t), D(t)

)
are active confirmed, accumulated re-

covered confirmed, and accumulated death confirmed cases on day t of the simulated data and

the real (empirical) data, respectively. However, simply using the Euclidean distance may not

be the best choice since it does not account for the scale of different quantities, and may need

to be standardized (see for example Beaumont et al. (2002), Csilléry et al. (2012), or Prangle

(2017) (8–10)). This is why we also consider the following weighted Euclidean distance, with

weights given by the inverse variances:

(
1

T

T∑
t=1

[(
A(i)(t)− A(t)

sd(A(t))

)2

+

(
R(i)(t)−R(t)

sd(R(t))

)2

+

(
D(t)(i) −D(t)

sd(D(t))

)2
])1/2

,

13
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where {sd(A(t)), sd(R(t)), sd(D(t))}t=1,··· ,T are the prior predictive standard deviations of

A(t), R(t), D(t) at each time step. These standardization values are obtained by first generating

N (N being large) parameters values θ = (α, β, δ, γ) from the prior π(θ), and then generating

one realization of simulated data for each of them. The standard deviation at each time step is

then calculated based on these N simulated data, giving {sd (A(t)), sd (R(t)), sd (D(t))}t=1,··· ,T .

In our simulation study, we choose N = 5000.

To improve the predictive quality of ABC algorithms, we can also use additional information

from parameter estimates to make new summary statistics. Under our model assumptions, we

can learn additional knowledge about how parameters can be estimated. We are thus going to

include as summary statistics estimates of our epidemiological parameters. For simplicity, we

first limit our discussion to the local model, where each country is considered separately. The

choice of the distance for the global model will be discussed in Section 1.5.

Under our model assumptions, we have: R(t) = R(t − 1) + Poisson (βA(t− 1)) ,∀t =

1, · · · , T . So for a given A(t − 1), we have: E (R(t)−R(t− 1)) = βA(t − 1). This yields

E
(
R(t)−R(t−1)

A(t−1)

)
= β. So for a given sequence of known {A(t)}t=1,··· ,T , the sequence of

independent variables {R(t)−R(t−1)
A(t−1)

}t=1,··· ,T has β as common mean value. Therefore, we can

use its median value to estimate β. If our algorithm generated a reasonable θ(i), then the data

generated by θ(i) should also gives us a sequence {R
(i)(t)−R(i)(t−1)

A(i)(t−1)
}t=1,··· ,T with median value

close to the corresponding median value of {R(t)−R(t−1)
A(t−1)

}t=1,··· ,T . Therefore under our model

assumptions, adding the term |median{R(t)−R(t−1)
A(t−1)

}t=1,··· ,T − median{R
(i)(t)−R(i)(t−1)

A(i)(t−1)
}t=1,··· ,T |

when calculating L
(
S(Data(i)), S(Data)

)
would help to improve the estimation of β. Similarly,

the median of the sequence {D(t)−D(t−1)
A(t−1)

}t=1,··· ,T can be used to estimate the death rate δ, and

adding the term |median{D(t)−D(t−1)
A(t−1)

}t=1,··· ,T −median{D
(i)(t)−D(i)(t−1)

A(i)(t−1)
}t=1,··· ,T | would help to

improve the estimation of δ.

We now try to learn the transmission rate α under our model assumptions. We have S(t) =
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S(t− 1) + Poisson
(
αS(t−1)I(t−1)

P

)
,∀t = 1, · · · , T , where P is the total population size of the

country. So for a given S(t− 1), I(t− 1), we have E (S(t)− S(t− 1)) = αS(t−1)I(t−1)
P

. This

yields E
(
S(t)−S(t−1)
S(t−1)I(t−1)

P
)

= α. Unfortunately, S(t− 1) and I(t− 1) are hidden states and not

available in our data. To use the above strategy to improve the estimation of α, we need to

reconstruct these hidden states based on the available data {(A(t), R(t), D(t))}t=1,··· ,T . Because

our model is stochastic, all values would change each time we rerun the model. However,

based on the available data {(A(t), R(t), D(t))}t=1,··· ,T we can reconstruct the mean realization

that adopts these three states. Let us denote U(t) the total number of confirmed cases at

time t, ∆U(t − 1) the number of new confirmed cases at time t as, and ∆Ru(t − 1) the

number of new undocumented recover cases at day t. Note that U(t) = A(t) + R(t) + D(t),

∆U(t− 1) = U(t)− U(t− 1), and ∆Ru(t− 1) = Ru(t)−Ru(t− 1).

From the local model we have:

U(t) = A(t) +R(t) +D(t)

= A(t− 1) + Y2(t− 1)− Y3(t− 1)− Y4(t− 1)

+R(t− 1) + Y3(t− 1) +D(t− 1) + Y4(t− 1)

= A(t− 1) +R(t− 1) +D(t− 1) + Y2(t− 1)

= U(t− 1) + Y2(t− 1)

So Y2(t−1) = U(t)−U(t−1) = ∆U(t−1). Moreover, since Y2(t−1) ∼ Poisson (γI(t− 1)),

we have

E (I(t− 1)) = E

(
∆U(t− 1)

γ

)
. (5)

Equation (5) tells us that with the observed data {A(t), R(t), D(t)}t=1,··· ,T , if the identification

rate γ is known, the average realization I(t) can be reconstructed up to time T − 1.

Similarly, since Ru(t) = Ru(t− 1) + Y5(t− 1), where Y5(t− 1) ∼ Poisson (βI(t− 1)), we
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have

E (∆Ru(t− 1)) = E (βI(t− 1)) .

Using (5), we obtain

E (∆Ru(t− 1)) = E

(
β∆U(t− 1)

γ

)
. (6)

Moreover, using Ru(t) = Ru(0) +
t−1∑
i=1

∆Ru(i) and (6), the average value of Ru(t) can be

reconstructed as

E (Ru(t)) = E (Ru(0)) +
t−1∑
i=1

E (∆Ru(i))

= E (Ru(0)) +
t−1∑
i=1

E (βI(i))

= E (Ru(0)) +
t−1∑
i=1

E

(
β∆U(i)

γ

)
(7)

Equations (5) and (7) tell us that based on the available data {(A(t), R(t), D(t)}t=1,··· ,T if

the identification rate γ and the recovered rate β are available to us, then we can reconstruct the

average realization of I(t) and Ru(t), ∀t = 1, · · · , T − 1. As a result the average realization

category at time t can also be reconstruct as P − E (I(t)− A(t)−R(t)−D(t)−Ru(t)) =

P − U(t)− ∆U(t)
γ
−
∑t−1

i=0
β
γ
∆U(i), where P is the country population.

Overall, based on the observed data {(A(t), R(t), D(t))}t=1,··· ,T , suppose that the identifi-

cation rate γ and the recover rate β are available to us. The average realization that adopts
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{(A(t), R(t), D(t))}t=1,··· ,T can be reconstructed up to time T − 1 as

{S(t), I(t), A(t), R(t), D(t), Ru(t)}t=1,··· ,T−1

={P (t)− U(t)− ∆U(t)

γ
−

t−1∑
i=0

β

γ
∆U(i),

∆U(t)

γ
,A(t), R(t), D(t),

t−1∑
i=0

β

γ
∆U(i)}t=1,··· ,T−1.

Therefore α can be estimated as the median of the sequence { S(t−1)−S(t)
S(t−1)I(t−1)

P}1,··· ,T−1. Unfortu-

nately, β and γ are not known in advance and need to be estimated.

We therefore use the testing argument to recover the average realization and estimate α. This

argument is based on the following observation. In step 1 of the ABC algorithm, a parameter

value θ(i) =
(
α(i), β(i), δ(i), γ(i)

)
is generated and available to us. If γ(i), β(i) are correctly speci-

fied as γ, β of the underlying true parameter θ = (α, β, δ, γ). We would expect that the median

value of the sequence { S(t−1)−S(t)
S(t−1)I(t−1)

P}1,··· ,T−1 constructed using γ(i), β(i) and the available data

{(A(t), R(t), D(t))}t=1,··· ,T , should give us a good estimator for the underlying true α value. A

similar statement holds for the median value of the sequence { S
(i)(t−1)−S(i)(t)

S(i)(t−1)I(i)(t−1)
P}1,··· ,T−1 that was

constructed by γ(i), β(i) and the available data {(A(i)(t), R(i)(t), D(i)(t)}t=1,··· ,T should also give

us a good estimator for the underlying true α value. Therefore the distance |median{ S(t−1)−S(t)
S(t−1)I(t−1)

P}t=1,··· ,T−1−

median{ S
(i)(t−1)−S(i)(t)

S(i)(t−1)I(i)(t−1)
P}t=1,··· ,T−1| in L

(
S(Data(i)), S(Data)

)
should be close to 0. On the

other hand, if the generated parameters γ(i), β(i) are far away from the underlying true param-

eters, then |median{ S
(i)(t)−S(i)(t−1)

S(i)(t−1)I(i)(t−1)
P}t=1,··· ,T−1 −median{ S(t)−S(t−1)

S(t−1)I(t−1)
P}t=1,··· ,T−1| should not

be close to 0.

Based on this observation, we then add the term

|median{ S
(i)(t)− S(i)(t− 1)

S(i)(t− 1)I(i)(t− 1)
P}t=1,··· ,T−1 −median{ S(t)− S(t− 1)

S(t− 1)I(t− 1)
P}t=1,··· ,T−1|

in L
(
S(Data(i)), S(Data)

)
to improve the estimation for α.
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Finally, our proposed distance for the model is designed as follows:√√√√ 1

T

T∑
t=1

[

(
A(i)(t)− A(t)

sd(A(t))

)2

+

(
R(i)(t)−R(t)

sd(R(t))

)2

+

(
D(i)(t)−D(t)

sd(D(t))

)2

] +
√
d,

where

d = |median{R(t)−R(t− 1)

A(t− 1)
}t=1,··· ,T −median{R

(i)(t)−R(i)(t− 1)

A(i)(t− 1)
}t=1,··· ,T |

+ |median{D(t)−D(t− 1)

A(t− 1)
}t=1,··· ,T −median{D

(i)(t)−D(i)(t− 1)

A(i)(t− 1)
}t=1,··· ,T |

+ |median{ S(t− 1)− S(t)

S(t− 1)I(t− 1)
P}t=1,··· ,T−1 −median{ S

(i)(t− 1)− S(i)(t)

S(i)(t− 1)I(i)(t− 1)
P}t=1,··· ,T−1|.

1.5 Marginal approach to parameter estimation

In the following, we will discuss how to use ABC to estimate parameters in each country for our

global model. The challenge of using ABC to estimate the global model parameters is that many

parameters need to be estimated. Therefore directly using ABC to estimate all the parameters for

all countries at once may result in very unstable parameter estimations and will be extremely

computationally intensive. We propose a marginal estimating approach to estimate each country

parameter for the global model separately while still taking into account the travel data.

For simplicity, let us first consider a given country m with the represented parameter

θm = (αm, βm, δm, γm). Let us denote Ak(t), Rk(t), Dk(t) as the number of active con-

firm cases, accumulated recover confirmed, and accumulated death confirmed at country k

on day t, respectively. We denote T (t) = [Tij(t)]i,j=1,··· ,n is the global traveling matrix at

day t, where Tij(t) is the number of travelers from country i to country j at day t. Notice

that Tij(t) = 0 if i = j,∀t ∈ 1, · · · , T . With the available data from the global model

{Ak(t), Rk(t), Dk(t)}k=1,··· ,n;t=1,··· ,T and the travel data {T (t)}t=1,··· ,T , we need to estimate θi.

Before introducing our estimation procedure, we rewrite how our global model evolved for
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the country m at day t and (t+ 1):

Step 1a The internal pandemic evolves at day t: The internal pandemic situation in the country

evolves from Xm(t− 1) to Xm(t) = [Sm(t), Im(t), Am(t), Rm(t), Dm(t), Ru
m(t)], where

Sm(t) = Sm(t−1)−Y1,m(t−1), Im(t) = Im(t−1)+Y1,m(t−1)−Y2,m(t−1)−Y5,m(t−

1), Am(t) = Am(t− 1) + Y2,m(t− 1)− Y3,m(t− 1)− Y4,m(t− 1), Rm(t) = Rm(t− 1) +

Y3,m(t− 1), Dm(t) = Dm(t− 1) + Y4,m(t− 1), Ru
m(t) = Ru

m(t− 1) + Y5,m(t− 1). And

Yj,m(t−1), j = 1, · · · , 5 are Poisson distributed with rates (hj,i(Xm(t−1))), respectively,

as h1,m(Xm(t−1)) = αm
Sm(t−1)Ii(t−1)

Pm(t−1)
, h2(Xm(t−1)) = γmIm(t−1) , h3(Xm(t−1)) =

βmAm(t− 1), h4(Xm(t− 1)) = δmAm(t− 1), and h5(Xm(t− 1)) = βmIm(t− 1).

Step 1b The external pandemic added at day t: From the travel data, Xm(t) is updated to X+
m(t) =

[S+
m(t), I+

m(t), Am(t), Rm(t), Dm(t), Ru
m(t)], where S+

m(t) = Sm(t)+S in
m(t)−Sout

m (t), and

I+
m(t) = Im(t) + I in

m(t)− Iout
m (t).

Step 2a The internal pandemic evolves at day (t + 1): The internal pandemic situation in the

country evolves from X+
m(t) to Xm(t + 1) = [Sm(t + 1), Im(t + 1), Am(t + 1), Rm(t +

1), Dm(t+1), Ru
m(t+1)], as Sm(t+1) = S+

m(t)−Y1,m(t), Im(t+1) = I+
m(t)+Y1,m(t)−

Y2,m(t)−Y5,m(t), Am(t+1) = Am(t)+Y2,m(t)−Y3,m(t)−Y4,m(t), Rm(t+1) = Rm(t)+

Y3,m(t), Dm(t+ 1) = Dm(t) + Y4,m(t), Ru
m(t+ 1) = Ru

m(t) + Y5,m(t). And Yj,m(t), j =

1, · · · , 5 are Poisson distributed with rates hj,m(Xm(t)), respectively, as h1,m(Xm(t)) =

αm
S+
m(t)I+m(t)
Pm(t)

, h2(Xm(t)) = γmI
+
m(t), h3(Xm(t − 1)) = βiAi(t), h4(Xi(t)) = δiAi(t),

and h5(Xm(t)) = βmI
+
m(t).

Step 2b The external pandemic added at day (t+ 1): From the travel data, Xm(t+ 1) is updated

to X+
m(t+ 1) = [S+

m(t+ 1), I+
m(t+ 1), Am(t), Rm(t+ 1), Dm(t+ 1), Ru

m(t+ 1)], where

S+
m(t+ 1) = Sm(t+ 1) + S in

m(t+ 1)− Sout
m (t+ 1), and I+

m(t+ 1) = Im(t+ 1) + I in
m(t+

1)− Iout
m (t).
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As shown in the model’s evolving process, step 1b and step 2b make the global model behave

differently from the local model. Therefore, if we can estimate quantities S in
m(t), I in

m(t), Sout
m (t), Iout

m (t)

for each day t, then we can use the marginal approach to estimate each country’s parameters

separately. The two quantities Sout
m (t), Iout

m (t) come from inside the considered country m. There-

fore the amount can be calculated during the data generation process of the ABC algorithm. Our

main task now is estimating S in
m(t), I in

m(t).

We have S in
m(t) =

∑
1≤j 6=m≤n

Sout
jm(t), I in

m(t) =
∑

1≤j 6=m≤n
Iout
jm(t), where Sout

jm(t) and Iout
jm(t) are

the number of susceptible people and undocumented infected people move from country j to

country m at day t, respectively. It should be noticed that under our model assumptions the

summation of Sout
jm(t) and Iout

jm(t) gives us the total number of people traveling from country j to

countrym at day t, i.e. Sout
jm(t)+Iout

jm(t) = Tji(t). So if we can estimate {Iout
jm(t)}1≤j 6=m≤n,t=1,··· ,T

then with the travel data, we can estimate {Sout
jm(t)}1≤j 6=m≤n,t=1,··· ,T . As a result we can then

estimate Sinm (t), and I inm (t).

We discuss the procedure for estimating Iout
jm(t). To estimate Iout

jm(t) we need to estimate the

pandemic situation in country j at day t, i.e. we need to estimate:

X+
j (t) = [S+

j (t), I+
j (t), Aj(t), Rj(t), Dj(t), R

u
j (t)]. Then based on these compartments and

the travel data Tjm(t), we can estimate Iout
jm(t) as Tjm(t) =

Tjm(t)I+j (t)

S+
j (t)+I+j (t)

.

From the global model we have:

Uj(t+ 1) = Aj(t+ 1) +Rj(t+ 1) +Dj(t+ 1)

= Aj(t) + Y2,j(t)− Y3,j(t)− Y4,j(t) +Rj(t) + Y3,j(t) +Dj(t) + Y4,j(t)

= Aj(t) +Rj(t) +Dj(t) + Y2,j(t) = Uj(t) + Y2,j(t),

so Y2,j(t) = Uj(t+ 1)− Uj(t) = ∆Uj(t).
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Since Y2,j(t) ∼ Poisson
(
γjI

+
j (t− 1)

)
, therefore, we have

E(I+
j (t− 1)) = E

(∆Uj(t)

γj

)
. (8)

Similarly we also have

E(I+
j (t− 2)) = E

(∆Uj(t− 1)

γj

)
(9)

From (8) and (9), we have

E(I+
j (t− 1))

E(I+
j (t− 2))

=
E
(∆Uj(t)

γj

)
E
(∆Uj(t−1)

γj

) =
E(∆Uj(t))

E(∆Uj(t− 1))
(10)

Applying (10) for t = 1, · · · , T − 1, we have the sequence of relationships:
E(I+j (1))

E(Ij(0))
=

E(∆Uj(2))

E(∆Uj(1))
,

E(I+j (2))

E(I+j (1))
=

E(∆Uj(3))

E(∆Uj(2))
, · · · , E(I+j (T−1))

E(Ij(T−2))
=

E(∆Uj(T ))

E(∆Uj(T−1))
. Therefore, based on the available data at

country j as {Aj(t), Rj(t), Dj(t)}t=1,··· ,T , we can approximate the average realization of the

sequence of undetected infected people in country j up to time (T − 1) by Ij(0), I+
j (1) =

Ij(0)
∆Uj(2)

∆Uj(1)
, I+

j (2) = I+
j (1)

∆Uj(3)

∆Uj(2)
,· · · , I+

j (T − 1) = I+
j (T − 2)

∆Uj(T )

∆Uj(T−1)
.

In addition, we also haveRu
j (t) = Ru

j (t−1)+Y5,j(t−1), where Y5,j(t−1) ∼ Poisson
(
βI+

j (t−

1)
)
. Therefore,

E
(
∆Ru

j (t− 1)
)

= E
(
βI+

j (t− 1)
)

(11)

We have Rj(t) = Rj(t− 1) + Y3,j(t− 1), where Y3,j(t− 1) ∼ Poisson
(
βAj(t− 1)

)
,∀t =

1, · · · , T . Therefore the median value of the sequence {Rj(t)−Rj(t−1)

Aj(t−1)
}t=1,··· ,T can be used to

approximate β. We denote this median value as β̂.

The fact Ru
j (t) = Ru

j (0) +
t−1∑
i=1

∆Ru
j (i) and (11) tells us that the average value of Ru(t) at
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country j can be reconstructed as

E
(
Ru
j (t)
)

= E
(
Ru
j (0)

)
+

t−1∑
i=1

E(∆Ru
j (i))

= E
(
Ru
j (0)

)
+

t−1∑
i=1

βE
(
I+
j (i)

)
, (12)

where the sequence {E
(
I+
j (i)

)
}j=1,··· ,T−1 and β are estimated as above.

So the average realization of the pandemic at country j which adopts {(Aj(t), Rj(t), Dj(t)}t=1,··· ,T

as its active confirmed, recover confirmed and death confirmed can be reconstructed up to

time T − 1 as {S+
j (t), I+

j (t), A(t), R(t), D(t), Ru(t)}t=1,··· ,T−1 = {Pj(t) − Uj(t) − I+
j (t) −

Ru
j (t), I+

j (t), A(t), R(t), D(t), Ru
j (t)}t=1,··· ,T−1.

This procedure of estimating the average realization of a given country j based on the avail-

able data {(Aj(t), Rj(t), Dj(t))}t=1,··· ,T is completed. As a result, this gives us the estimation

of Sout
jm(t) and Iout

jm(t). This means we can estimate Sinm (t), and I inm (t). Therefore, the underlying

true parameter θm in a given country m can be approximated marginally by using the above

estimating procedure.

We now discuss the proposed distance when estimating θm in a given country m by

ABC marginally. Following the same argument as in Section 1.4, instead of using the com-

monly used Euclidean distance to estimate θm we first need to standardize each sequence,

then we try to learn each parameter under our model assumptions. From the available data

{(Am(t), Rm(t), Dm(t))}t=1,··· ,T of country m, follow the same argument as in Section 1.4, we

can add the term

|median{Rm(t)−Rm(t−1)
Am(t−1)

}t=1,··· ,T−median{R
(i)
m (t)−R(i)

m (t−1)

A
(i)
m (t−1)

}t=1,··· ,T | to improve the estimation

for the recover rate βm, and adding the term

|median{Dm(t)−Dm(t−1)
Am(t−1)

}t=1,··· ,T−median{D
(i)
m (t)−D(i)

m (t−1)

A
(i)
m (t−1)

}t=1,··· ,T | to improve the estimation

for the death rate δm. We discuss the transmission rate αm, at a time step t + 1, we have:
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Sm(t+ 1) = S+
m(t)− Y1,m(t), where Y1,m(Xm(t)) ∼ Poisson

(
αm

S+
m(t)I+m(t)
Pm(t)

)
. Therefore, αm =

Pm(t)E(S
+
m(t)−Sm(t+1))

S+
m(t)I+m(t)

)
. Notice that Sm(t + 1) = S+

m(t + 1) − S in
m(t + 1) + Sout

m (t + 1). The

hidden states S+
m(t) and I+

m(t) can be reconstructed as above or by using the testing argument as

above. We discuss the approach by using the testing argument.

From (8) we have: E(I+
m(t − 1)) = E

(
∆Um(t)
γm

)
. Therefore the average realization of

{I+
m(t)}t=1,··· ,T can be reconstructed as {∆Um(t)

γm
}t=1,··· ,T . Using (12), we have E

(
Ru
m(t)

)
=

E
(
Ru
m(0)

)
+

t−1∑
i=1

βmE
(
I+
m(i)

)
. Therefore the average realization of {Ru

m(t)}t=1,··· ,T can be

reconstructed as {Ru
m(0) +

t−1∑
i=1

βm∆Um(t)
γm

}t=1,··· ,T

The average realization of the pandemic at countrymwhich adopts {(Am(t), Rm(t), Dm(t)}t=1,··· ,T

as its active confirmed, recover confirmed and death confirmed can be reconstructed up to time

T − 1 as {S+
m(t), I+

m(t), Am(t), Rm(t), Dm(t), Ru
m(t)}t=1,··· ,T−1 = {Pm(t)−Um(t)− ∆Um(t)

γm
−

(Ru
m(0) +

t−1∑
i=1

βm∆Um(t)
γm

), ∆Um(t)
γm

, Am(t), Rm(t), Dm(t), Ru
m(0) +

t−1∑
i=1

βm∆Um(t)
γm

}t=1,··· ,T−1.

Similarly as above, in step 1 of the ABC algorithm, the parameter θ(i)
m =

(
α

(i)
m , β

(i)
m , δ

(i)
m , γ

(i)
m )

is generated and available to us. If γ(i)
m , β

(i)
m are correctly specified as γm, βm of the underlying

true parameter θm =
(
αm, βm, δm, γm

)
, we would expect the distance

|median{Pm(t)S
+
m(t)−Sm(t+1))

S+
m(t)I+m(t)

}1,··· ,T−1−median{P (i)
m (t)S

(i)+
m (t)−S(i)

m (t+1))

S
(i)+
m (t)I

(i)+
m (t)

}1,··· ,T−1 to be close

to 0. Where values of the sequence {Pm(t)S
+
m(t)−Sm(t+1))

S+
m(t)I+m(t)

}1,··· ,T−1 are constructed based on

γ
(i)
m , β

(i)
m and the available data {(Am(t), Rm(t), Dm(t)}t=1,··· ,T , and values of the sequence

{P (i)
m (t)S

(i)+
m (t)−S(i)

m (t+1))

S
(i)+
m (t)I

(i)+
m (t)

}1,··· ,T−1 are constructed based on γ
(i)
m , β

(i)
m and the simulated data

{(A(i)
m (t), R

(i)
m (t), D

(i)
m (t)}t=1,··· ,T . So adding the term:

|median{Pm(t)S
+
m(t)−Sm(t+1))

S+
m(t)I+m(t)

}1,··· ,T−1−median{P (i)
m (t)S

(i)+
m (t)−S(i)

m (t+1))

S
(i)+
m (t)I

(i)+
m (t)

}1,··· ,T−1 would help

to improve the estimation for αm. Finally, the proposed global distance in the calibrating step of

the ABC algorithm is designed as follow:√
1
T

∑T
t=1[
(A(i)

m (t)−Am(t)
sd(Am(t))

)2
+
(R(i)

m (t)−Rm(t)
sd(Rm(t))

)2
+
(D(i)

m (t)−Dm(t)
sd(Dm(t))

)2
] +
√
dm,
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where

dm = |median{Rm(t)−Rm(t− 1)

Am(t− 1)
}t=1,··· ,T −median{R

(i)
m (t)−R(i)

m (t− 1)

A
(i)
m (t− 1)

}t=1,··· ,T |

+ |median{Dm(t)−Dm(t− 1)

Am(t− 1)
}t=1,··· ,T −median{D

(i)
m (t)−D(i)

m (t− 1)

A
(i)
m (t− 1)

}t=1,··· ,T |

+ |median{Pm(t)
S+
m(t)− Sm(t+ 1))

S+
m(t)I+

m(t)
}1,··· ,T−1 −median{P (i)

m (t)
S

(i)+
m (t)− S(i)

m (t+ 1))

S
(i)+
m (t)I

(i)+
m (t)

}1,··· ,T−1|.

2 Simulation studies

2.1 Simulation 1: Performance of different RABC distance metrics

For our first simulation study, we limit our model to the analysis of only one country, i.e., we

only use the internal model. We here demonstrate the impact of the choice of the distance in

ABC algorithms and which one to choose in our epidemiological framework.

We simulate N = 200 sets of parameters and data, in an ABC fashion, by first simulating

a parameter value from the prior and using it to generate data according to the model. We

treat these N simulations as our test data set to assess how accurately the true parameters are

recovered by ABC using various distance functions. The simulation proceeds as follows.

Step 1. Generating data and parameters: For i ∈ {1, · · · , N} (N large), we generate

the parameter θ(i) = (α(i), β(i), δ(i), γ(i)) from uniform priors α(i) ∼ U(0, 2), β(i) ∼ U(0, 1),

δ(i) ∼ U(0, 1), and γ(i) ∼ U(0, 1). Based on the parameters and the stochastic model, we

generate a data set Data(i) corresponding to θ(i). If the generated data set Data(i) satisfies

certain conditions making it sufficiently real-world like, such as having the number of confirmed

accumulated deaths greater than 1% and lower than 30% of total confirmed cases and having the

number of accumulated recovered cases at least twice the number of accumulated deaths, then we

keep θ(i) as a true parameter value to be estimates and treat the generated data {A(i)
t , R

(i)
t , D

(i)
t } as
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real observed data. We repeat the process until we obtain 200 underlying true parameter values θ(i)

and the corresponding 200 datasets {A(i)
t , R

(i)
t , D

(i)
t }. For simplicity, we fix the initial condition

of the six compartments in the model as X1(0) = [S1(0), I1(0), A1(0), R1(0), D1(0), Ru
1(0)] =

(9999972, 15, 13, 0, 0, 0) and set the simulation time period T = 84 days for all i.

Step 2. Estimating parameters: For each iteration i, i ∈ {1, · · · , 200}, based on the sequence

of {A(i)
t , R

(i)
t , D

(i)
t }, we use RABC with different distance metrics to estimate the underlying

true parameter value θ(i). In this estimation step, we choose the acceptance rate 0.01 and sample

1000 particles to form the posterior. From the posterior distribution for each i, we calculate the

median values of each parameter: α̂(i), β̂(i), δ̂(i), γ̂(i). Then θ̂(i) = (α̂(i), β̂(i), δ̂(i), γ̂(i)) is used as

the best candidate for estimating the underlying true θ(i).

Step 3. Evaluating parameter estimates: For each iteration i, i ∈ {1, · · · , 200}, we evaluate

estimation accuracy in terms of the absolute bias, absolute relative bias, interquartile range, and

coverage rate of the interquartile for each parameter α(i), β(i), δ(i), γ(i) and its average. These

accuracy measurements are defined as follows. For a given parameter α(i) the absolute bias is

defined as |α̂(i) − α(i)|, and the absolute relative bias is defined as | α̂(i)−α(i)

α(i) |. Similarly for β(i),

γ(i), and δ(i). Average absolute bias for all parameters is defined as (|α̂(i)−α(i)|+ |β̂(i) − β(i)|+

|δ̂(i) − δ(i)|+ |γ̂(i) − γ(i)|)/4 and average absolute relative bias for all parameters is defined as

(| α̂(i)−α(i)

α(i) | + | β̂
(i)−β(i)

β(i) | + | δ̂
(i)−δ(i)
δ(i)

| + | γ̂(i)−γ(i)
γ(i)

|)/4. For each parameter, we also calculate the

interquartile range (IQR) of the posterior, denoted IQR(i), which is the difference between the

third and the first quartile of the resulting ABC posterior distribution. Furthermore, we check

whether the IQR of the posterior covers the underlying true parameter value, which we use

to calculate the coverage rate CR(i). Then the average of the IQR for all four parameters and

the average of the coverage rate is calculated to characterize the overall performance of the

two distance metrics. Finally, the average over the 200 iterations of these accuracy metrics is

calculated, which we use as our overall accuracy metrics for comparing the performance of the
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two RABC distance metrics.

Table S1 summarizes the different prediction accuracy measures for the two distances. This

table shows that the distance we proposed increases the estimation accuracy in terms of relative

bias. The two types of bias are much smaller compared to using Euclidean distance. We also

observe that the IQR for the proposed distance is higher than the IQR for the Euclidean distance,

but the proposed distance also yields more narrow IQR. This means that our proposed distance

metric more frequently correctly bounds the true parameter values. The IQR is about 2.5 times

smaller when using the proposed distance metric instead of Euclidean distance. Figure S1 shows

boxplots of the IQR for the two distance metrics.

Table S1: Accuracy of Euclidean distance and our proposed distance when using RABC to
estimate the four parameters of the local model.

Accuracy Distances Average alpha beta delta gamma
Absolute bias Euclidean 0.071 0.125 0.046 0.012 0.101

Proposed 0.028 0.054 0.004 0.002 0.052
Absolute relative bias Euclidean 0.148 0.107 0.089 0.093 0.303

Proposed 0.077 0.039 0.007 0.022 0.241
IQR Euclidean 0.153 0.264 0.094 0.031 0.222

Proposed 0.060 0.107 0.014 0.012 0.109
IQ coverage Euclidean 0.677 0.620 0.675 0.770 0.645

Proposed 0.777 0.635 0.880 0.960 0.635
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Figure S1: Interquartile range of the posterior for parameters estimation of the proposed distance
and the Euclidean distance for the local model of one country.
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2.2 Simulation 2: Performance of local and global estimation

In this simulation study, we investigate the accuracy of three different estimation procedures

for the global travel model consisting of three countries. (We limit this investigation to three

countries for simplicity.) The first procedure uses a local approach with the Euclidean distance to

estimate each country’s parameters independently and ignores the travel between the countries.

We call this estimation procedure Euclidean local, and we use it as a benchmark to be compared

with the other two approaches. Then we consider a global estimation procedure as discussed in

Section 1.5 to estimate each country’s parameters. Here we use two distance metrics, Euclidean

distance and the distance proposed in Section 1.5. We call these estimation procedures Euclidean

global and Proposed global, respectively. The simulation is set up as follows.

Step 1. Generating data and parameters: For i ∈ {1, · · · , N} (N large), we generate the

parameter θ(i) = (θ
(i)
1 , θ

(i)
2 , θ

(i)
3 ), where for each j in 1, 2, 3, θ(i)

j = (α
(i)
j , β

(i)
j , δ

(i)
j , γ

(i)
j ) from

uniform priors as α(i)
j ∼ U(0, 2), β(i)

j ∼ U(0, 1), δ(i)
j ∼ U(0, 1), and γ(i)

j ∼ U(0, 1). Based

on the parameters and the stochastic model, we generate a data set Data(i) corresponding to

θ(i). If the generated data set Data(i) satisfies the conditions described above for Simulation

1, we retain θ(i) and treat it as the underlying true parameter value; we also retain the data

{A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)}, for j = 1, 2, 3, and treat them as the observed data from these three

countries. We repeat the procedure until we have 500 parameter values and their corresponding

data sets {A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)}j=1,2,3.

For simplicity, we fix the initial condition of the six compartments in the model as

X1(0) = [S1(0), I1(0), A1(0), R1(0), D1(0), Ru
1(0)] = (9999720, 150, 130, 0, 0, 0),

X2(0) = [S2(0), I2(0), A2(0), R2(0), D2(0), Ru
2(0)] = (2999970, 20, 10, 0, 0, 0),

X3(0) = [S3(0), I3(0), A3(0), R3(0), D3(0), Ru
3(0)] = (1999970, 15, 15, 0, 0, 0),
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and set the simulation period T = 84 days for all i. Each day, the number of outbound travelers

from country j, j = 1, 2, 3, is drawn from a normal distribution with mean µj = Pj ∗ 0.0003

and standard deviation sdj = 0.05 ∗ µj , where Pj is the size of the population of country j.

Those outbound travelers will enter one of the neighboring countries with proportions that are

proportional to the sizes (populations) of the target countries. For example, if there are n1 people

leaving country 1, the number of them entering country 2 is n1P2

P2+P3
and the number of them

entering country 3 is n1P3

P2+P3
.

Step 2. Estimating parameters: For each iteration i, i ∈ {1, · · · , 500}, based on the sequence

of {A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)}j=1,2,3, we first naively use RABC with the local estimation approach and

Euclidean distance to estimate θ(i). Then we use RABC with the global estimation approach

with the two distance metrics to estimate the underlying true parameters θ(i). Then θ̂
(i)
j =

(α̂
(i)
j , β̂

(i)
j , δ̂

(i)
j , γ̂

(i)
j ) is obtained as the median of the RABC posterior samples and is used to

estimate the underlying true θ(i)
j , for j = 1, 2, 3.

Step 3. Evaluating parameter estimates: For each iteration i, i ∈ {1, · · · , 500}, for each

country, we evaluate the accuracy of our parameter estimates based on the absolute bias, ab-

solute relative bias, interquartile range (IQR), and coverage rate of IQR for each parameter

α(i), β(i), δ(i), γ(i) and its average as in simulation 1. The final accuracy measurements are cal-

culated by averaging the accuracy measurements across all three countries. When averaging

accuracy measures over multiple countries, we consider two weighted averages, one having

equal weights for all countries regardless of their population sizes and the other weighted based

on relative population sizes. In the latter, the weights are P1

P1+P2+P3
for country 1, P2

P1+P2+P3
for

country 2, and P3

P1+P2+P3
for country 3.

Tables S2 and S3 show the overall accuracy of different estimation procedures using equal

weights for each country (Table S2) and using population-based weights for each country (Table

S3). The two tables convey the same message: using a local approach to estimate the parameters
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Table S2: Accuracy of Euclidean distance and our proposed distance when using RABC to
estimate the four parameters of the global model. For simplicity, we consider a small world of
just three countries with different population sizes; here each country has the same weight when
computing the overall accuracy.

Accuracy Estimation procedure Average alpha beta delta gamma
Absolute bias Euclidean local 0.496 1.328 0.108 0.058 0.490

Euclidean global 0.236 0.448 0.070 0.030 0.397
Proposed global 0.205 0.497 0.023 0.054 0.248

Absolute relative bias Euclidean local 0.928 1.611 0.176 0.591 1.332
Euclidean global 0.502 0.534 0.109 0.280 1.085
Proposed global 0.494 0.629 0.034 0.545 0.769

IQR range Euclidean local 0.171 0.263 0.179 0.060 0.180
Euclidean global 0.149 0.218 0.129 0.040 0.210
Proposed global 0.091 0.135 0.041 0.038 0.151

IQ coverage Euclidean local 0.528 0.463 0.577 0.690 0.381
Euclidean global 0.610 0.539 0.649 0.714 0.540
Proposed global 0.631 0.543 0.647 0.761 0.574

95% range Euclidean local 0.410 0.646 0.406 0.157 0.430
Euclidean global 0.361 0.542 0.309 0.107 0.486
Proposed global 0.247 0.378 0.116 0.115 0.380

95% coverage Euclidean local 0.866 0.819 0.956 0.978 0.712
Euclidean global 0.935 0.893 0.957 0.980 0.911
Proposed global 0.958 0.923 0.972 0.989 0.949
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Table S3: Accuracy of Euclidean distance and our proposed distance when using RABC to
estimate the four parameters of the global model. For simplicity, we consider a small world
of just three countries with different population sizes; here each country’s contribution to the
overall accuracy is weighted based on the size of its population.

Accuracy Estimation procedure Average alpha beta delta gamma
Absolute bias Euclidean local 0.380 0.939 0.095 0.048 0.438

Euclidean global 0.194 0.338 0.064 0.025 0.351
Proposed global 0.155 0.372 0.019 0.043 0.186

Absolute relative bias Euclidean local 0.862 1.277 0.162 0.636 1.371
Euclidean global 0.512 0.459 0.101 0.304 1.185
Proposed global 0.414 0.583 0.028 0.564 0.480

IQR range Euclidean local 0.147 0.228 0.156 0.048 0.154
Euclidean global 0.131 0.191 0.118 0.035 0.182
Proposed global 0.073 0.111 0.033 0.030 0.120

IQR coverage Euclidean local 0.526 0.468 0.575 0.661 0.400
Euclidean global 0.610 0.548 0.641 0.701 0.550
Proposed global 0.613 0.536 0.595 0.733 0.586

95% range Euclidean local 0.360 0.571 0.361 0.128 0.380
Euclidean global 0.325 0.488 0.284 0.094 0.433
Proposed global 0.201 0.310 0.094 0.090 0.309

95% coverage Euclidean local 0.860 0.812 0.950 0.973 0.704
Euclidean global 0.928 0.887 0.954 0.976 0.898
Proposed global 0.948 0.905 0.962 0.985 0.941
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in the travel model is not appropriate. As shown in these tables, the Euclidean local estimation

procedure yields the highest bias, largest interquartile range, largest 95 % percentile range, and

lowest coverage. The performance is better for the Euclidean global procedure. As expected, the

proposed distance, which takes into account the travel model, performs best of the three.

2.3 Simulation 3: Effectiveness of travel regulation

In this simulation study, we study the effectiveness of different travel regulation policies. We

compare the percentages of people allowed to travel under each policy and the pandemic situation

in the country adopting the policy. The simulation is set up as follows.

Step 1. Generating data and parameters: For i ∈ {1, · · · , N} (N large), we generate the

parameter θ(i) = (θ
(i)
1 , θ

(i)
2 , θ

(i)
3 , θ

(i)
4 ), where for each j in 1, 2, 3, 4 θ(i)

j = (α
(i)
j , β

(i)
j , δ

(i)
j , γ

(i)
j ),

from uniform priors as α(i)
j ∼ U(ε, 1 − ε), β(i)

j ∼ U(ε, 0.25 − ε), δ(i)
j ∼ U(ε, 0.25 − ε),

and γ
(i)
j ∼ U(ε, 1 − ε). We chose ε = 0.001 to make sure that the generated parameters

do not fall at the boundaries of the priors and cause the generation of atypical data. We

also added some constraints to ensure the parameter values are reasonable by only keeping

parameters with R0 =
α
(i)
j

β
(i)
j +γ

(i)
j

between 0.47 and 6.47 as reported for different regions around

the world (11). To investigate the effectiveness of travel regulations, we use one more constraint

to set the reproduction number R0 in these 4 countries in 4 different zones, where country

1 has R0 between 0.47 and 0.9 , country 2 has R0 between 0.9 and 1, country 3 has R0

between 1 and 1.1, and country 4 has R0 between 1.1 and 6.47. The initial conditions of

each country are generated randomly as (S
(i)
j (0), I

(i)
j (0), A

(i)
j (0), R

(i)
j (0), D

(i)
j (0), R

u(i)
j (0)) =

(Pj − (I
(i)
j (0) + I

(i)
j (0)), I

(i)
j (0), A

(i)
j (0), 0, 0, 0), where Pi ∼ U(50 ∗ 104, 100 ∗ 106)), I

(i)
j (0) ∼

U(0, 200), A
(i)
j (0) ∼ U(0, 10). Based on the parameters and the stochastic model, we generate

a data set Data(i) corresponding to θ(i). If the generated data set Data(i) satisfies the conditions

described for Simulation 1 above, we keep θ(i) and treat it as the underlying true value of the
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parameter; we also retain the data {A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)} for j = 1, 2, 3, 4, which we treat as the

observed data collected from each country. We keep generating data till we get 200 underlying

true parameters θ(i) and the corresponding 200 data sets {A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)}j=1,2,3,4. We fix

the duration of the simulation to T = 42 days for all i. Each day, the total number of of

outbound travelers from country j, j = 1, 2, 3, is drawn from a normal distribution with mean

µ
(i)
j = P

(i)
j ∗ 0.0003 and standard deviation sd(i)

j = 0.05 ∗ µ(i)
j , where P (i)

j is the size of the

population of country j. The outbound travelers enter other countries in proportion to sizes of

their populations.

Step 2. Estimation step: For each iteration i, i ∈ {1, · · · , 200}, based on the sequence of

{A(i)
(t,j), R

(i)
(t,j), D

(i)
(t,j)}j=1,2,3,4, we use the proposed global approach to estimate the underlying

true θ(i). Then θ̂
(i)
j = (α̂

(i)
j , β̂

(i)
j , δ̂

(i)
j , γ̂

(i)
j ) are obtained as the median values of the RABC

posterior samples and are used to estimate the underlying true θ(i)
j , for j = 1, 2, 3, 4.

Step 3. Prediction step: For each iteration i, i ∈ {1, · · · , 200}, based on the estimated pa-

rameter θ̂(i), we simulate data for the following two weeks under eight different travel regulation

policies. The first two are the most extreme, where all countries are either fully open or fully

closed. The third and the fourth are currently used policies, where a 14-days quarantine is

required for all arrivals or a 14-day quarantine is required required for arrivals from high-risk

countries only. The last 4 policies are our proposed travel regulation policies. We describe each

policy in detail below.

P-1 All countries are fully open and allow all airline travel as usual.

P-2 All countries are fully closed and no airline travel is allowed across their borders.

P-3 The country requires a 14-day quarantine for all arrivals. This policy is currently used in

many countries such as Korea or India. The other countries are fully open.
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P-4 The country requires a 14-day quarantine for travelers from high-risk countries only, i.e.,

countries with the average number of active confirmed daily cases greater than 20 in

100000 people during the last 2 weeks, and no quarantine for arrivals from other countries.

P-4 is a more flexible policy that is currently used by the UK. The other countries are fully

open.

P-5 The country adopts a simplified version of the proposed average control policy: we regulate

travel such that the average number of daily undetected infected cases is at most 10%

higher than the maximum number of daily cases under P-2. The other countries are fully

open.

P-6 The country adopts the proposed probability control policy: we regulate travel such that

the average number of daily undetected infected cases is at most 10% higher than the

maximum number of daily cases under P-2 with probability at least 90%. The other

countries are fully open.

P-7 Policy 7 is similar to P-5 but we use the full version of the proposed average control policy

as in Example 1 of Section 1.3. The other countries are fully open.

P-8 Policy 8 is similar to P-6 but we use the full version of the proposed probability control

policy as in Example 1 of Section 1.3. The other countries are fully open.

Policy effectiveness is evaluated based on two factors: the percentage of people allowed to

travel and the pandemic situation in the country once the policy is adopted.

1. The percentage of people allowed to enter the country under each policy is denoted Tc.

This number is calculated using the number of people allowed to travel inbound to the

country divided by the total number of people willing to enter the country.
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2. The percentage of people that will travel due to each policy is denoted Te. This number is an

adjusted version Tc. If a 14-day quarantine is applied to a country, we assume that only 5%

of the normal number of travelers from this country are willing to travel under this policy.

The choice of 5% is based on the data provided by Korea Tourism Organization. (Korea is

one of the countries that require a 14-day quarantine for all arrivals.) This adjustment gives

us more insights concerning the effect of the 14-day quarantine requirement. After this

adjustment, the percentage of expected inbound travelers is obtained by using the number

of expected inbound travelers divided by the normal number of inbound travelers.

The effectiveness of policies on the epidemic in the considered country is evaluated based on

7 factors.

1. Percentage of active confirmed imported cases that enter the country due to each policy.

This number is calculated using the total number of inbound traveling active confirmed

cases that eventually become active confirmed cases, divided by the total number of

inbound travelers during the regulation period. We denote this category as IA.

2. Percentage of undetected infected imported cases entering the country due to each policy.

This number is obtained using the total number of undetected infected cases traveling

inbound divided by the total number of inbound travelers during the regulation period. We

denote this category as II.

3. Percentage of undetected infected imported cases when quarantining after entering the

country. A policy that does not require quarantine is equivalent to a 0 -day quarantine. This

number is obtained by taking the total number of undetected infected inbound travelers

after quarantine divided by the total number of inbound travelers during the regulation

period. We denote this category as IIQ.
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4. Relative change in total new cases (detected and undetected), denoted as RU. This number

is calculated as the difference in the total number of cases at the end of the regulation

period and the beginning of the regulation period, divided by the total number of cases at

the beginning of the regulation period.

5. Relative change in total new active confirmed cases, denoted as RA. This number is

calculated similarly to RU above but instead of using the number of cases, all counts are

based on the number of active confirmed cases.

6. Percent change in total new cases, denoted as PU. This number is calculated as the

difference in the total number of cases at the end of the regulation period and the beginning

of the regulation period, divided by the population of the country.

7. Percent change in total confirmed cases, denoted as PA. This number is calculated as the

difference in the total number of confirmed cases at the end of the regulation period and

the beginning of the regulation period, divided by the population of the country.

We generate 1000 stochastic realizations conditional on the estimated parameters and the

estimated initial conditions at the beginning of the regulation period. For each realization, we

calculate the above metrics, and we report the 0.025 and 0.975 percentile values of each based

on the 1000 realizations. To give a fair judgment on the effectiveness of travel regulation on the

pandemic, we stratify the metrics by dividing countries to three different groups, where Group 1

corresponds to countries with an effective reproduction number R(t) lower than 0.9, group 2

corresponds to countries with R(t) between 0.9 and 1.1, and Group 3 for countries with an R0

greater than 1.1. Notice that for our model, following Diekmann et al. (2009) (12), we can show

that the effective reproduction number Ri(t) of a given country i is Ri(t) =
S
(t)+
i αi

Pi(t)(βi+γi)
. The

overall average across these 200 iterations of the above metrics for each group of countries is

calculated and used as the final measurement to compare the effectiveness of different policies.

36

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.14.21255465doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.14.21255465
http://creativecommons.org/licenses/by/4.0/


In Table S5, we see that under P-4 the number of expected inbound travelers, Te, is higher

than P-5, the simplified version of our proposed average control policy. However, under P-4,

the percent of undetected infected after done with quarantine, IIQ enter countries of Group 1 is

about (0.03%, 0.03%) and Group 2 is about (0.03%, 0.04%). These values quite high compare

to (0.00%, 0.00%) for both groups as in P-5. This is because the average of increased cases

each day in the last 14 days was used to decide which countries belong to a green zone or red

zone. However, the number of undetected infectious cases may grow very fast in the green

zone countries, and in the absence of quarantine, undetected infectious cases from green zone

countries may spread the disease fast in the arrival country.

2.4 Simulation 4. Effectiveness of policy coordination

In this simulation study, we study the effectiveness of a global response on the pandemic in

terms of the percentage of people allowed to travel and the overall worldwide pandemic situation

under a coordinated policy. Simulations are set up similarly to those in Section 2.3 but here we

consider a world of 8 countries, where countries 1 and 2 with R(0) greater between 1.1 and 6.47,

countries 3 and 4 with R(0) between 1 and 1.1, countries 5 and 6 with R(0) between 0.9 and 1,

and countries 7 and 8 with R(0) from 0.47 to 0.9.

We consider 8 different policy coordination scenarios:

S-1 All countries are fully open and allow all travel.

S-2 All countries are fully closed and do not allow any airline travel .

S-3 All countries require a 14-day quarantine for all arrivals.

S-4 All countries use the simplified version of the proposed average control policy.
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S-5 Countries 1, 3, 5, 7 require a 14-day quarantine for all arrivals, and countries 2, 4, 6, 8

allow no inbound travel.

S-6 Countries 1, 3, 5, 7 use the simplified version of the proposed average control policy, and

countries 2, 4, 6, 8 allow no inbound travel.

S-7 Countries 1, 3, 5, 7 require a 14-day quarantine for all arrivals, and countries 2, 4, 6, 8 are

fully open.

S-8 Countries 1, 3, 5, 7 use the simplified version of the proposed average control policy, and

countries 2, 4, 6, 8 are fully open.

The coordination effectiveness is evaluated based on the overall change in the global pandemic

and for each group of countries as in the simulation studies of Section 2.3.
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Table S4: We show (0.025, 0.975) percentiles of pandemic changes for different scenarios. For a
given policy, the upper value and lower value of each measurement are the 0.025 percentile value
and the 0.975 percentile value, respectively. G1, G2, G3 denotes countries in Group 1, 2, and 3,
respectively. RU is the relative change in number of cases (including detected and undetected),
RA is the relative change in number of cases that were confirmed, PU is the percent change in
total new cases, and PA is the percent change in total new confirmed cases.

P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8
G1 RU 2.53 0.06 0.64 0.88 0.06 0.06 0.11 0.06

3.20 0.27 0.92 1.26 0.27 0.26 0.35 0.26
RA 1.58 0.08 0.86 0.99 0.08 0.08 0.12 0.08

2.14 0.27 1.15 1.36 0.27 0.27 0.34 0.27
PU (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PA (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G2 RU 1.50 0.45 0.63 0.86 0.46 0.45 0.48 0.45

2.05 0.84 1.02 1.32 0.84 0.84 0.88 0.84
RA 0.99 0.36 0.60 0.71 0.37 0.36 0.39 0.36

1.37 0.64 0.90 1.04 0.64 0.64 0.67 0.64
PU (%) 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
PA (%) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
G3 RU 6.28 6.30 6.28 6.28 6.28 6.28 6.28 6.28

6.65 6.67 6.65 6.65 6.65 6.65 6.65 6.65
RA 5.32 5.33 5.32 5.32 5.32 5.32 5.32 5.32

5.56 5.57 5.56 5.56 5.56 5.56 5.56 5.56
PU (%) 5.39 5.40 5.38 5.39 5.38 5.38 5.38 5.38

5.50 5.52 5.50 5.50 5.50 5.50 5.50 5.50
PA (%) 2.39 2.40 2.39 2.39 2.39 2.39 2.39 2.39

2.45 2.46 2.45 2.45 2.45 2.45 2.45 2.45
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Table S5: We show (0.025, 0.975) percentiles of travel effects for different policies. For a given
policy, the upper value and lower value of each measurement are the 0.025 percentile value and
the 0.975 percentile value, respectively. IA is the percentage among the incoming travellers that
will eventually become active confirmed after arrival, II is the percentage among the incoming
travellers that are undetected infectious, IIQ is the percentage of the incoming travellers who are
undetected infectious after the quarantine if the destination country requires a 14-day quarantine,
Tc is the percentage of inbound travel capacity, and Te is the percentage of expected of inbound
travel.

P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8
G1 IA (%) 0.09 0.00 0.09 0.09 0.00 0.00 0.00 0.00

0.11 0.00 0.11 0.11 0.00 0.00 0.01 0.00
II (%) 0.17 0.00 0.17 0.17 0.00 0.00 0.00 0.00

0.19 0.00 0.19 0.19 0.00 0.00 0.01 0.00
IIQ (%) 0.17 0.00 0.00 0.03 0.00 0.00 0.00 0.00

0.19 0.00 0.00 0.03 0.00 0.00 0.01 0.00
Tc 100% 0% 100% 100% 34% 0% 37% 0%
Te 100% 0% 5% 89% 34% 0% 37% 0%

G2 IA (%) 0.09 0.00 0.09 0.09 0.00 0.00 0.00 0.00
0.11 0.00 0.11 0.11 0.00 0.00 0.01 0.00

II (%) 0.18 0.00 0.18 0.18 0.00 0.00 0.01 0.00
0.20 0.00 0.20 0.20 0.00 0.00 0.02 0.00

IIQ (%) 0.18 0.00 0.00 0.03 0.00 0.00 0.01 0.00
0.20 0.00 0.00 0.04 0.00 0.00 0.02 0.00

Tc 100% 0% 100% 100% 60% 0% 63% 0%
Te 100% 0% 5% 89% 60% 0% 63% 0%

G3 IA (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

II (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

IIQ (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tc 100% 0% 100% 100% 34% 0% 34% 0%
Te 100% 0% 5% 100% 34% 0% 34% 0%
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Table S6: We show (0.025, 0.975) percentile of pandemic changes for different scenarios. For a
given scenario, the upper value and lower value of each measurement are the 0.025 percentile
value and the 0.975 percentile value, respectively. G denotes all countries. See Table S4 caption
for more information.

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8
G RU 10.68 2.65 4.02 2.66 3.45 2.65 6.79 6.01

11.56 3.06 4.51 3.07 3.92 3.07 7.46 6.61
RA 8.13 2.77 4.92 2.77 4.08 2.77 6.34 5.04

8.89 3.13 5.43 3.14 4.55 3.13 6.97 5.56
PU (%) 8.35 8.31 8.28 8.31 8.29 8.31 8.31 8.33

8.39 8.35 8.32 8.35 8.33 8.35 8.35 8.37
PA (%) 4.40 4.38 4.37 4.38 4.37 4.38 4.38 4.39

4.42 4.40 4.39 4.40 4.39 4.40 4.41 4.41
G1 RU 11.16 0.59 3.17 0.60 1.84 0.59 7.24 6.01

12.23 0.93 3.61 0.94 2.21 0.93 7.99 6.70
RA 9.01 0.74 4.42 0.75 2.52 0.74 6.62 4.85

9.95 1.06 4.90 1.07 2.91 1.07 7.33 5.48
PU (%) 0.05 0.01 0.02 0.01 0.01 0.01 0.03 0.03

0.05 0.01 0.02 0.01 0.01 0.01 0.04 0.03
PA (%) 0.03 0.00 0.01 0.00 0.01 0.00 0.02 0.02

0.03 0.00 0.02 0.00 0.01 0.00 0.02 0.02
G2 RU 12.13 1.54 2.98 1.54 2.50 1.54 6.43 5.47

13.29 2.13 3.68 2.13 3.19 2.13 7.32 6.27
RA 8.14 1.62 4.08 1.62 3.33 1.62 5.79 4.08

9.14 2.13 4.81 2.13 4.04 2.13 6.64 4.74
PU (%) 0.11 0.04 0.05 0.04 0.05 0.04 0.08 0.08

0.13 0.05 0.06 0.05 0.06 0.05 0.10 0.09
PA (%) 0.07 0.03 0.04 0.03 0.03 0.03 0.05 0.05

0.08 0.04 0.05 0.04 0.04 0.04 0.06 0.06
G3 RU 7.31 6.94 6.94 6.94 6.94 6.94 7.07 7.07

7.45 7.08 7.07 7.08 7.08 7.08 7.21 7.21
RA 7.25 7.10 7.12 7.09 7.11 7.10 7.18 7.17

7.35 7.20 7.22 7.20 7.21 7.20 7.29 7.27
PU (%) 33.11 33.14 32.99 33.14 33.06 33.14 33.05 33.12

33.24 33.27 33.12 33.27 33.19 33.27 33.18 33.25
PA (%) 17.43 17.44 17.39 17.44 17.42 17.44 17.41 17.44

17.50 17.52 17.46 17.52 17.49 17.52 17.48 17.51
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Table S7: We show (0.025, 0.975) percentiles of travel effects for different scenarios. For a given
scenario, the upper value and lower value of each measurement are the 0.025 percentile value
and the 0.975 percentile value, respectively. See Table S5 caption for more information.

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8
G IA (%) 1.57 0.00 1.57 0.00 0.80 0.00 1.57 0.78

1.67 0.00 1.68 0.00 0.85 0.00 1.68 0.83
II (%) 2.68 0.00 2.68 0.01 1.36 0.00 2.68 1.32

2.81 0.00 2.81 0.01 1.42 0.00 2.81 1.38
IIQ (%) 2.68 0.00 0.00 0.01 0.00 0.00 1.32 1.32

2.81 0.00 0.00 0.01 0.00 0.00 1.38 1.38
Tc 100% 0% 100% 50% 50% 25% 100% 75%
Te 100% 0% 5% 50% 3% 25% 52% 75%

G1 IA (%) 1.98 0.00 1.98 0.00 0.99 0.00 1.98 0.99
2.09 0.00 2.09 0.01 1.04 0.00 2.10 1.05

II (%) 3.10 0.00 3.10 0.01 1.57 0.00 3.10 1.54
3.24 0.00 3.24 0.01 1.63 0.00 3.24 1.61

IIQ (%) 3.10 0.00 0.00 0.01 0.00 0.00 1.53 1.54
3.24 0.00 0.00 0.01 0.00 0.00 1.60 1.61

Tc 100% 0% 100% 64% 50% 32% 100% 82%
Te 100% 0% 5% 64% 3% 32% 52% 82%

G2 IA (%) 1.77 0.00 1.77 0.00 0.89 0.00 1.77 0.89
1.89 0.00 1.89 0.01 0.95 0.00 1.90 0.95

II (%) 3.02 0.00 3.02 0.01 1.52 0.00 3.02 1.51
3.17 0.00 3.17 0.01 1.59 0.00 3.17 1.59

IIQ (%) 3.02 0.00 0.00 0.01 0.00 0.00 1.51 1.51
3.17 0.00 0.00 0.01 0.00 0.00 1.58 1.59

Tc 100% 0% 100% 64% 50% 32% 100% 82%
Te 100% 0% 5% 64% 3% 32% 52% 82%

G3 IA (%) 0.77 0.00 0.77 0.00 0.42 0.00 0.77 0.35
0.82 0.00 0.82 0.00 0.45 0.00 0.82 0.37

II (%) 1.57 0.00 1.57 0.01 0.85 0.00 1.57 0.72
1.64 0.00 1.64 0.01 0.88 0.00 1.64 0.76

IIQ (%) 1.57 0.00 0.00 0.01 0.00 0.00 0.72 0.72
1.64 0.00 0.00 0.01 0.00 0.00 0.76 0.76

Tc 100% 0% 100% 7% 50% 3% 100% 53%
Te 100% 0% 5% 7% 3% 3% 52% 53%
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